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Introduction

Last time we talked about Kernels and Memory Based Models

Estimate the full GRAM matrix can pose a major challenge

Desirable to store only the “relevant” data

Two possible solutions discussed
1 Support Vector Machines (Vapnik, et al.)
2 Relevance Vector Machines

Main difference in how posterior probabilities are handled

Small robotics example to show SVM performance

Relevance Vector Machines is the probabilistic equivalent
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Maximum Margin Classifiers - Preliminaries

Lets initially consider a linear two-class problems

y(x) = wTφ(x) + b

with φ(.) being a feature space transformation and b is the bias factor

Given a training dataset xi , i ∈ {1...N}
Target values ti , i ∈ {1...N}, ti ∈ {−1, 1}
Assume for now that there is a linear solution to the problem
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The objective

The objective here is to optimize the margin

Let’s just keep the points at the margin

y = 1
y = 0

y = −1

margin

y = 1

y = 0

y = −1
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Recap distances and metrics
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The objective function

We know that y(x) and t are supposed to have the same sign so that
y(x)t > 0, i.e.

tny(xn)

||w||
=

tn(wTφ(xn) + b)

||w||
The solution is then

arg max
w ,b

{
1

||w||
min
n

[
tn(wTφ(xn) + b)

]}
We can scale w and b without loss of generality.

Scale parameters to make the key vector points

tn
(

wTφ(xn) + b
)

= 1

Then for all data points it is true

tn
(

wTφ(xn) + b
)
≥ 1
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Parameter estimation

We need to optimize ||w||−1 which can be seen as minimizing ||w||2
subject to the margin requirements

In Lagrange terms this is then

L(w, b, a) =
1

2
||w||2 −

N∑
n=1

an
{
tn
(

wTφ(xn) + b
)
− 1
}

Analyzing partial derivatives gives us

w =
N∑

n=1

antnφ(xn)

0 =
N∑

n=1

antn

Henrik I. Christensen (RIM@GT) Support Vector Machines 9 / 55



Introduction Maximum Margin Multiple Class Example RVM Intro Regression RVM Class Summary

Parameter estimation

Eliminating w and b from the objective function we have

L(a) =
N∑

n=1

an −
1

2

N∑
n=1

N∑
m=1

anamtntmk(xn, xm)

This is a quadratic optimization problem - see in a minute

We can evaluate new points using the form

y(x) =
N∑

n=1

antnk(x, xn)
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Estimation of the bias

Once w has been estimated we can use that for estimation of the bias

b =
1

NS

∑
n∈S

(
tn −

∑
m∈S

amtmk(xn, xm)

)
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Illustrative Synthetic Example
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Status

We have formulated the objective function

Still not clear how we will solve it!

We have assumed the classes are separable

How about more messy data?
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Overlapping class distributions

Assume some data cannot be correctly classified

Lets define a margin distance

ξn = |tn − y(xn)|

Consider
1 ξ < 0 - correct classification
2 ξ = 0 - at the margin / decision boundary
3 ξ ∈ [0; 1] between decision boundary and margin
4 ξ ∈ [1; 2] between margin and other boundary
5 ξ > 2 - the point is definitely misclassified
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Overlap in margin

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0
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Recasting the problem

Optimizing not just for w but also for misclassification

So we have

C
N∑

n=1

ξn +
1

2
||w||

where C is a regularization coefficient.

We have a new objective function

L(w, b, a) =
1

2
||w||2 +C

N∑
n+1

ξn−
N∑

n=1

an {tny(xn)− 1 + ξn}−
N∑

n=1

µnξn

where a and µ are Lagrange multipliers

Henrik I. Christensen (RIM@GT) Support Vector Machines 16 / 55



Introduction Maximum Margin Multiple Class Example RVM Intro Regression RVM Class Summary

Optimization

As before we can derivate partial derivatives and find the extrema.
The resulting objective function is then

L(a) =
N∑

n=1

an −
1

2

N∑
n=1

N∑
m=1

anamtntmk(xn, xm)

which is like before bit the constraints are a little different

0 ≤ an ≤ C and∑N
n=1 antn = 0

which is across all training samples

Many training samples will have an = 0 which is the same as saying
they are not at the margin.
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Generating a solution

Solutions are generated through analysis of all training date

Re-organization enable some optimization (Vapnik, 1982)

Sequential minimal optimization is a common approach (Platt, 2000)

Considers pairwise interaction between Lagrange multipliers

Complexity is somewhere between linear and quadratic
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Mixed example

−2 0 2

−2

0

2
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Multi-Class SVMs

This far the discussion has been for the two-class problem

How to extend to K classes?
1 One versus the rest
2 Hierarchical Trees - One vs One
3 Coding the classes to generate a new problem

Henrik I. Christensen (RIM@GT) Support Vector Machines 21 / 55



Introduction Maximum Margin Multiple Class Example RVM Intro Regression RVM Class Summary

One versus the rest

Training for each class with all the others serving as the non-class
training samples

Typically training is skewed - too few positives compared to negatives

Better fit for the negatives

The one vs all implies extra complexity in training ≈ K 2

Henrik I. Christensen (RIM@GT) Support Vector Machines 22 / 55



Introduction Maximum Margin Multiple Class Example RVM Intro Regression RVM Class Summary

Tree classifier

Organize the problem as a tree selection

Best first elimination - select easy cases first

Based on pairwise comparison of classes.

Still requires extra comparison of K 2 classes
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Coding new classes

Considering optimization of an error coding

How to minimize the criteria function to minimize errors

Considered a generalization of voting based strategy

Poses a larger training challenge
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Categorization of Rooms

Example of using SVM for room categorization

Recognition of different types of rooms across extended periods

Training data recorded over a period of 6 months

Training and evaluation across 3 different settings

Extensive evaluation
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Room Categories
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Training Organization
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Training Organization
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Preprocessing of data
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SVM details

The system uses a χ2 kernel.

The kernel is widely used for histogram comparison

The kernel is defined as

K (x, y) = e−γχ
2(x,y)

χ2(x, y) =
∑
i

{
||xi − yi ||2/||xi + yi ||

}
Initially introduced by Marszalek, et al, IJCV 2007.

Trained used “one vs the rest”
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SVM results - Video
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The recognition results
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Another small example

How to remove dependency on background? (Roobaert, 1999)
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Smart use of SVMs - a ”hack” with applications
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RVM Introduction

We already discussed memory based methods

Sparse methods are directed at memory based systems with minimum
(but representative) training samples

We already discussed support vector machines

A few challenges - ie., multi-class classification

What if we could be more Bayesian in our formulation?
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Regression model

We are seen continuous / Bayesian regression models before

p(t|x,w, β) = N(t|y(x), β−1)

We have the linear model for fusion of data

y(x) =
N∑
i=1

wiφi (x) = wTφ(x)

A relevance vector formulation would then be:

y(x) =
N∑
i=1

wik(x, xi ) + b
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The collective model

Consider N observation vectors collected in a data matrix X where
row i is the data vector xi . The corresponding target vector
t = {t1, t2, ..., tN} the likelihood is then:

p(t|X,w, β) =
N∏
i=1

p(ti |xi ,w, β−1)

If we consider weights to be zero-mean Gaussian we have

p(w|α) =
N∏
i=0

N(wi |0, α−1)

ie we have different uncertainties/precision for each factor
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More shuffling

Reorganizing using the results from linear regression we get

p(w|t,X, α, β) = N(w|m,Σ)

where

m = βΣΦT t

Σ =
(

A + βΦTΦ
)T

where Φ is the design matrix and A = diag(αi ). In many cases the
design matrix is the same as the GRAM matrix i.e. Φij = k(xi , xj).
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Estimation of α and β

Using maximum likelihood we can derive estimates for α and β. We
can integrate out w

p(t|X, α, β) =

∫
p(t|X,w, β)p(w|α)dw

The log likelihood is then

ln p(t|X, α, β) = lnN(t|0,C)

= −1

2

{
N ln(2π) + ln |C|+ tTCt

}
where

C = β−1I + ΦA−1ΦT
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Re-estimation of α and β

We can then re-estimate α and β from

αnew
i =

γi
m2

i

(βnew )−1 =
||t−Φm||2

N −
∑

i γi

where γi are precision estimates defined by

γi = 1− α1Σii

the precision will go to zero for some of these - ie. very large
uncertainty and the corresponding α values will go to zero.

In the sense of an SVM the training data becomes irrelevant.
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Regression for new data

Once hyper parameters have been estimated regression can be
performed

p(t|x,X, t, α∗, β∗) = N(t|mTφ(x), σ2(x))

where
σ2(x) = (β∗)−1 + φ(x)TΣφ(x)
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Illustrative example

x

t

0 1

−1

0

1
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Status

Relevance vectors are similar in style to support vectors

Defined within a Bayesian framework

Training requires inversion of an (N + 1)× (N + 1) matrix which can
be (very) costly

In general the resulting set of vectors is much smaller

The basis functions should be chosen carefully for the training. Ie.
analyze your data to fully understand what is going on.

The criteria function is no longer a quadratic optimization problem,
and convexity is not guaranteed.
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Analysis of sparsity

There is a different way to estimate the parameters that is more
efficient. I.e brute force is not always optimal

The iterative estimation of α poses a challenge, but does suggest an
alternative. Consider a rewrite of the C matrix

C = β−1I +
∑
j 6=i

α−1j φjφ
T
j + α−1i φiφ

T
i

= C−i + +α−1i φiφ
T
i

I.e. we have made the contribution of the i ’th term explicit.

Standard linear algebra allow us to rewrite

det(c) = |C| = |C−i ||1−+α−1i φTi C−1−i φi |

C−1 = C−1−i −
C−1−i φiφ

T
i C−1−i

αi + φTi C−1−i φi

Henrik I. Christensen (RIM@GT) Support Vector Machines 47 / 55



Introduction Maximum Margin Multiple Class Example RVM Intro Regression RVM Class Summary

The seperated log likelihood

This allow us to rewrite the log likelihood

L(α) = L(α−i ) + λ(αi )

The contribution of alpha is then

λ(αi ) =
1

2

[
lnαi − ln(αi + si ) +

q2i
αi + si

]
Here we have the complete dependency on αi

We have used

si = φTi C−1−i φi

qi = φTi C−1−i t

si is known as the sparsity and qi is known as the quality of φi
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Evaluation for stationary conditions

It can be shown (see Bishop pp. 351-352)

if q2i > si then there is a stable solution

αi =
s2i

q2i − si

otherwise αi goes to infinity == irrelevant
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Status

There are efficient (non-recursive) ways to evaluate the parameters.

The relative complexity is still significant.
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Relevance vectors for classification

For classification we can apply the same framework

Consider the two class problem with binary targets t ∈ {0, 1} then the
form is

y(x) = σ(wtφ(x))

where σ(.) is the logistic sigmoid function

Closed form integration is no longer an option

We can use the Laplace approach to estimate the mode and which in
turn allow estimation of weights (α) and in term re-estimate the
mode and then new values for α until convergence.
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Synthetic example

−2 0 2

−2

0

2
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Summary

An approach to storage of “key” data for recognition/regression

Definition of optimization to recognize data points

The learning is fairly involved (complex)

Basically a quadratic optimization problem

Evaluation across all training data

Keep the essential data
1 Training can be costly
2 Execution can be fast - optimized

Multi-class cases can pose a bit of a challenge

SVM is a fixed metric and RVM is probabilistic.
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