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Abstract. Dealing with conflicting and target-specific requirements is an important 

issue in multi-sensor and multi-target tracking. This paper aims to allocate sensing 

resources among various targets in reaction to individual information requests. The 

approach proposed is to introduce agents for every relevant target responsible for its 

tracking. Such agents are expected to bargain with each other for a division of 

resources. A bilateral negotiation model is established for resource allocation in two-

target tracking. The applications of agent negotiation to target covariance tuning are 

illustrated together with simulation results presented. Moreover, we suggest a way of 

organizing simultaneous one-to-one negotiations, making our negotiation model still 

applicable in scenarios of tracking more than two targets. 
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1. Introduction 

 

   Sensor management aims to control the data acquisition process in a multi-sensor 

system  to  enhance  the   performance  of   data  fusion.  It   plays   the  role  of  process  
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refinement in the JDL data fusion model with the goal of best utilizing available sensing 

resources in reaction to identified intelligence requirements. In sophisticated data fusion 

applications, the sensor manager has to cope with a disparate set of information requests 

and conflicts in order to engender directed sensing events (Denton et al. 1994).  

 

   Modern tracking systems present an active practical field motivating sensor 

management and demonstrating its significance (Blackman and Popoli 1999). 

Simultaneous tracking of multiple targets entails decisions about what sensors to assign 

to which objects at every instant for achieving best possible accurate state estimates of 

the environment. So far allocating sensors across targets has been mainly treated as an 

optimization problem in choosing sensor-to-target associations based on an objective 

function constructed beforehand in terms of entropy-based information metrics 

(Schmaedeke 1993; Schmaedeke and Kastella 1998; Dodin et al. 2000) or the expected 

overall utility (Greenway and Deaves 1994; Dodin and Nimier 2001) of a sensing plan. 

The sensor manager, driven by one such objective function, would proceed to maximize 

the overall information gain acquired on all targets in the global picture. However, it is 

difficult to deal with target-specific requirements, like maintaining the specified 

covariance of state estimates on particular targets, given an optimization framework. 

 

   It is important here to stress that the ultimate goal of sensor management is to guide 

sensors to satisfy information requests which can be situation and target dependent. 

Dynamic response to information requests is crucial for adaptive allocation of resources 

in accordance with demands imposed during mission completion. The scheme of 

covariance control was developed in (Kalandros and Pao 1998; Kalandros et al. 1999) 

to assign sensor combinations to each target for meeting a desired covariance level. By 

doing this, the sensor allocation problem is decomposed into independent sub-problems 

for individual targets, each dealing with a target-specific covariance goal. Nevertheless, 

separate covariance controllers on individual targets can occasionally induce conflicting 

commands on sensors and thereby delay or even loss of certain planned measurements. 
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   This paper proposes an agent negotiation model for allocation of sensing resources in 

reaction to identified information requests. We associate an agent with every relevant 

target responsible for its tracking. All such agents are supposed to be rational and self-

interested, they want access to as many sensor resources as possible for optimizing their 

own performance. However, as available resources are constrained, agents have to 

bargain over the division of resources in order to reach a solution that cares for 

everybody’s interest and is commonly acceptable. The use of a negotiation mechanism 

is motivated by the recognition that the task of multi-target tracking elicits inherently 

conflicting goals for data fusion, i.e. the improvement of tracking accuracy on one 

target implies degradation of performance on another. We believe that the proposed 

negotiation model can help to determine a good trade-off of tracking performance 

among various targets.  

   For a different approach to managing a distributed data fusion network, see 
(Nicholson and Leung 2004). A recent survey of negotiation-based approaches to multi-
sensor management is given in (Johansson 2006). 
 

   The paper is organized as follows. The following section presents a general 

perspective of our approach, outlining the basic concepts and framework. A bilateral 

negotiation model for resource distribution in two-target tracking is proposed in section 

3 and its applications to target covariance tuning are illustrated. Then, in section 4, we 

discuss a way of employing the proposed negotiation model for tracking scenarios with 

more than two targets. Finally the paper is concluded in section 5. 

   

 

2. Resource Allocation in Reaction to Requests: A New Perspective  

 

   Our paper aims to update sensor-to-targets assignments to comply with demands on 

local tracking performance, i.e. reducing estimate covariance on particular targets. In 

this section, we will first introduce an objective function to be manipulated when 

attempting to tune the estimate accuracy on a target and then highlight a negotiation-
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based framework to redistribute resources across targets in reaction to imposed 

information requests. 

 

2.1  A Key to Target Estimate Accuracy 

 

   We consider a target observed by a set of sensors and study the role of the sensors in 

reducing the uncertainty of its estimate. The target and sensor observations are modeled 

by the standard state based equations: 

            )1()1()( −+−= kwkFxkx                                                                         (1) 

            )()()( kvkxHky iii +=                                                                               (2) 

   In the above x(k) is the current state of the target; and yi(k) denotes the measurements 

of the target from sensor i in the sensor combination. The elements w(k) and vi(k) 

represent the system noise and measurement noise respectively, both of which are 

assumed to have zero-mean, white, Gaussian probability distributions. Such 

assumptions justify the usage of the sequential Kalman filter to fuse data from multiple 

sensors in the update stage. This can be a sequential procedure performing a separate 

filtering for each sensor in the combination and then propagating its estimate to the next 

filter. 

 

   A mathematically identical alternative to the conventional Kalman filter was 

introduced in (Durrant-Whyte and Stevens 2001) and termed therein as the information 

filter. It offers a simpler but equivalent form for estimation updating in multi-sensor 

situations by  

     )()1|(ˆ)1|()|(ˆ)|( 111 kyRHkkxkkPkkxkkP iiSi
T
i

−
∈

−− ∑+−−=                 (3) 

    ∑∈
−−− +−=

Si ii
T
i HRHkkPkkP 111 )1|()|(                                                  (4) 



 5

where S denotes the sensor combination applied to the target at time k; P is the 

covariance of state estimate, and Ri stands for the noise covariance of sensor i.  

 

   From equation (4), we see that iSi ii HRH∑∈
−1T  is an important matrix for discerning the 

difference of covariance of state estimates before and after measurements. The bigger 

this matrix, the smaller the updated covariance will be. In view of this, we define sensor 

information gain, g(k), for the target at time k as 

 

                      ∑∈

−=
Si iii HRHkg 1T)(                                                                                   (5) 

which can be considered as a total contribution of the applied sensors to information 

attainment or uncertainty reduction. Clearly g(k) is increased by including more and/or 

better sensors in the combination S. 

 

   Sensor information gain provides a convenient objective function that can be utilized 

as a basis for control of the sensor allocation strategy and as such it can be used as the 

basis for negotiation. 

 

2.2. Request-Triggered Negotiation 

  

    As was stated previously, sensor information gain is a key factor affecting the 

covariance of state estimates. A higher tracking accuracy can be achieved by applying 

more and/or better sensors to the target. However, the total resources are limited and 

there are interactions between the performance on different targets. The sensor manager 

has to, on one side, update sensor assignments to tune the state covariance of certain 

targets in the requested direction, and on the other side, care for the effect of such 

events on other targets and try to engender a graceful degradation of performance on 

them. Obviously there may be a lot of alternatives when making such a decision. Here 
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we intend to use the mechanism of negotiation for finding a good trade-off between 

conflicting benefits with respect to tracking of various targets. 

 

   The framework to redistribute resources in reaction to information requests is depicted 

in Fig. 1, where new sensor-to-target assignments are generated through bargaining of 

agents responsible for tracking of respective targets. Negotiations are trigged by 

information requests produced by the block mission planning. This block is outside the 

scope of the paper but located at level four of the top-down procedure for sensor 

management (Xiong and Svensson 2002). It concerns meta-reasoning about system-

level tasks and requests for tracking different targets. Our work is contingent upon the 

availability of relevant guidelines from mission planning and hereby efforts are 

dedicated to agent negotiations to comply with requests of accuracy on individual 

targets. 
 

Sensors Targets

Mission 
Planning 

Kalman 
Filterring 

Negotiation 

Updated 
sensing plan 

Sensing  
actions Measurements 

Information 
requests 

 
Fig. 1. Redistributing resources in terms of information requests 

 

   A distinguishing merit of agent negotiation is that it can scale well to goal uncertainty 

(lack of a clear general goal) prevalent in real applications. Sometimes the mission 

planning might merely give a simple guideline of possibly reducing the covariance of a 

certain target, but it is vague in the sense of how far or to which degree this should be 
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achieved. The other instance to mention is that in which we have exact desired 

covariance levels for each target but the lack of sufficient sensors makes it impossible to 

meet all these desired standards. Consequently, ambiguity arises about how to treat 

those target-specific requirements in constructing a global allocation decision. 

Negotiation provides a powerful means to deal with interactions between local interests 

and facilitate a mechanism to arrive at a good balance between them. 

 

   Another important attribute of our work is that it is requirement-oriented to improve 

local tracking performance rather than a global figure. This does make sense in complex 

tracking scenarios where the diversity of targets and situations leads to distinct and 

time-varying demands (of tracking performance) across various targets. Request-

triggered negotiation offers a flexible way of updating sensor assignments to tune local 

performance wherever necessary. 

 

 

3. Bilateral Negotiation in Two-Target Tracking  

 

   Here we consider a scenario with two targets originally measured with sensor subsets 

O1 and O2 respectively. Now with the unfolding situation, there is a need to increase the 

tracking accuracy on one of the targets, say target 2. However, owing to limitation of 

resources, the improvement of performance on one target leads to the loss of precision 

on another. This section proposes a game-theoretic negotiation model to cope with such 

interactions and reach a rational trade-off between conflicting interests. 

 

3.1 Agents and Their Preferences 

    

   We arrange for an agent for every target responsible for its tracking. Both agents 

needs to use sensors for tracking their respective targets, they bargain over the division 
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of resources in reaction to information requests. The following behaviors are supposed 

of such agent(s) in the tracking process: 

• Rationality. Both agents are self-interested and rational, they try to maximize their 

own benefits in negotiations. 

• Requisition versus reaction. Since the accuracy of target 2 is to be increased, it is 

agent 2 that wants to achieve a higher sensor information gain and hence launches the 

negotiation. Contrarily, agent 1 is passively involved in the negotiation and has to react 

to the requisition of the opponent by giving up some benefits.   

• Unilateral existing. Agent 2, anxious to be better off, would like an agreement as soon 

as possible. It may choose to opt out as a threat to enforce the other agent to be a bit 

generous. In case of opting out, agent 2 will interrupt the usage of sensors by its 

opponent for several time steps and agent 1 would have to start another negotiation to 

re-attain resources. Therefore, for its own interest, agent 1 will try to prevent agent 2 

from opting out by giving offers beneficial to the opponent. 

• Initial conservation. After negotiation begins, the old division profile is retained until 

an agreement is reached or agent 2 opts out. That is to say, both agents keep available 

resources in tracking their respective targets during the negotiation.  

 

   There are three kinds of outcomes as long as a negotiation is initiated. One case is 

disagreement meaning that the negotiation continues forever without any agreement and 

without opting out of any agents. Otherwise the negotiation will end with an agreement 

reached at some time t∈T or opting out by agent 2. Every agent is assumed to have its 

own preference over all possible outcomes: { } { }ntDisagreemeToptA ∪×∪ )( , where A is 

the set of agreements (divisions) and T refers to the time interval within which the 

negotiation is finished. Establishment of utility functions for all agents is a prerequisite 

for developing efficient negotiation strategies.  
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   As agent 1 loses benefit once the negotiation is finished while agent 2 gets better off 

from the consequence, they have opposite attitudes toward disagreement, as stated in C1 

(the first characteristic of agent preferences). 

C1: Best/worst case with disagreement.  Disagreement is the best case for agent 1 

whereas the worst outcome for agent 2. For any outcome { }ToptAx ×∪∈ )( , we have 

utilities as )()( 11 xUntDisagreemeU >  and )()( 22 xUntDisagreemeU <  

 

   For outcomes in { }TA× , we consider sensor information gains during the negotiation 

as an important basis to yield their utility values. We denote by (S1, S2) the agreement 

which assigns sensor subsets S1, and S2 to agents 1 and 2 respectively with the 

properties as 

                                                     2121 OOSS ∪=∪                                          (5) 

                                                   ∑∑ ∈

−

∈

− <
11

1T1T
Oi iiiSi iii HRHHRH                                (6) 

                                                   ∑∑ ∈

−

∈

− >
22

1T1T
Oi iiiSi iii HRHHRH                                     (7) 

 

The utilities of reaching such an agreement at time t is defined as the average of sensor 

information gains in the period from the beginning of the negotiation until its 

completion. So we write: 
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   The above defined utilities of outcomes with agreements manifest the other two 

important characteristics of agent preferences in the negotiation: 

C2: Sensor information gain valuable. For all t∈T, j∈Agents and sensor 

combinations Pj and Sj allocated to agent j:   

                    ∑∑ ∈

−

∈

− <⇔<
jj Pi iiiSi iiijjjj HRHHRHtPUtSU 1T1T),(),(  

For agreements reached at the same time step, each agent prefers to get a larger sensor 

information gain. 

C3: Gain/Losses over time. For any t1, t2∈T and agreement S=(S1, S2), if t1<t2  then we 

have ),(),( 211111 tSUtSU <  and ),(),( 222122 tSUtSU > . 

 

   Opting out is artificially incorporated into the process to provide driving a force 

toward quick agreements. Our presumption is that if agent 2 opts out of the negotiation, 

it will prevent the opponent from using resources from time t to t+k-1, and then at time 

t+k all sensors turn to be occupied by agent 2. The utilities from opting out for both 

agents are hence expressed as: 

                                    
1

),( 1

1T

1 ++

⋅
=
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−

kt

HRHt
toptU Oi iii                                         (10) 

 

                      
1
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−

∈

−
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HRHHRHkt
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   Evident from the above formulas is the fourth characteristic of preferences of agents: 

C4: Cost/benefit of opting out over time. For any t∈T, )1,(),( 11 +< toptUtoptU  and 

)1,(),( 22 +> toptUtoptU . Agent 2 prefers to opting out early while later opting out is 

more beneficial for agent 1.  
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3.2. Extensive Game of Alternating Offers 

 

   We model the negotiation for resource allocation for two-target tracking as an 

extensive game characterized by a 5-tuple ,),(,,, 〉〈 iUHPHAAgents  where  

•   Agents={Agent 1 for tracking target 1, Agent 2 for tracking target 2};  

•   A is the set of possible divisions of sensors upon O1∪O2; 

•   H  is the set of sequences of offers and responses by agents;  

•   P(h) determines which agent has the turn to make an offer after a nonterminal history   

h;  

•   Ui:  utility functions of agents on the set of outcomes { } { }ntDisagreemeToptA ∪×∪ )( . 

  

    In this game the agents alternate offers. In case an offer is rejected, the negotiation 

moves to the next round where the agent rejecting in the preceding period has to make a 

proposal. The first action in the game occurs in period 0 when agent 2 makes the first 

offer and agent 1 must accept or reject it. Acceptance by agent 1 ends the game with 

agreement while rejection causes the game to continue into period 1, in which it is the 

turn of agent 1 to propose something and agent 2 decides whether to accept or reject it 

or to opt out. Acceptance or opting out by agent 2 in period 1 stops the game, otherwise 

the game proceeds to period 2 in which agent 2 will make an offer again. The game 

continues in this manner as long as no agreement is reached and no agent chooses to opt 

out. If the negotiation continues forever without agreements and without opting out by 

an agent, then disagreement is the outcome of this bargaining game.  

 

3.3 Rational Negotiation Strategies 

 

    Negotiation strategies, as a key element in our negotiation game, are utilized by both 

agents to maximize the expected values of their respective utilities. A strategy for an 

agent is essentially a function that specifies what the agent has to do after every possible 
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history, i.e. what to propose in the turn to make an offer as well as how to respond 

facing a proposal from the other agent. A strategy profile is a collection of strategies for 

both agents. We aim to develop rational bargaining strategies leading to an outcome that 

is profitable for both parties and where nobody can get better off by using another 

strategy. 

 

   A fundamental concept in game theory is the Nash Equilibrium (Nash 1953) referring 

to a steady state in which every player holds a correct expectation of the opponent’s 

behavior/strategies and acts rationally. A stronger requirement for bargaining games is 

that agents are rational at any stage of the process, not only from the beginning of the 

negotiation. This leads to the concept of subgame perfect equilibrium (SPE) (Osborne 

and Rubinstein 1994) meaning that the strategy profile included in every subgame is a 

Nash equilibrium of that subgame. Our paper follows the notion of SPE to develop 

negotiation strategies for resource allocation in two-target tracking. Later we will show 

that if both agents honor SPE strategies, negotiation will be finished with agreement 

within two time steps. 

  

   Before discussing the negotiation strategies, the following three notions are 

introduced to help making later formulations easy and concise. 

1. Poss(t): the set of offers better than opting out for agent 2 at time t      

                      { }),(),(|),()( 22221 toptUtSUSSStPoss >==                           (12) 

2. )(tSb : the best offer for agent 1 in Poss(t) at time t 

                      ),(max)),(( 1)(1 tSUttSU
tPossSb ∈

=  and )()( tPosstSb ∈                        (13) 

3. Compet(t): the set of offers in Poss(t) which yield better utilities for agent 1 at time t 

than what it can achieve in the next time step  

                { })1),1((),(|)()( 11 ++≥∈= ttSUtSUtPossStCompet b                    (14) 
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   In the following we consider a subgame starting from stage t in which agent 2 has the 

turn to make an offer. Owing to the generality of this subgame, its Nash equilibrium 

offers the SPE strategies for the whole bargaining game. We begin from SPE strategies 

at time t+1 then move backwards to time t.  

   At time t+1, agent 1 has to propose something that maximizes its own utility but 

prevents agent 2 from opting out. Hence agent 1 will propose Sb(t+1) which is its best 

offer from Poss(t+1). Further, since maximizing the utility of agent 1 equals minimizing 

that of agent 2, the utility ( )1),1(2 ++ ttSU b  of agent 2 will be very similar to its utility 

from opting out U2(opt,t+1). If agent 2 rejected Sb(t+1), it would follow that agent 2 will 

do the same later in responding to proposals by agent 1 due to 

( ) ( )3),3(1),1( 22 ++≥++ ttSUttSU bb . As countermeasures, agent 1 will also reject 

offers by agent 2 afterwards to push the game into the outcome of disagreement, which 

is best for agent 1 but worst for agent 2. In view of this, agent 2 has the only option to 

accept the offer Sb(t+1) at t+1. The above statements are summarized in Lemma 1. 

Lemma 1: For the subgame starting from stage t, then following the SPE strategies 

agent 1 will propose the offer Sb(t+1) at t+1 and agent 2 will accept it. 

 

   Now we move to the proceeding stage t when agent 2 makes an offer and agent 1 

responds to it. As agent 1 is rational, it cares whether a proposal received at time t gives 

it a higher payoff than what it can obtain in the next period such that only offers from 

the set Compet(t) will be accepted. On the other side, reaching agreement at time t is in 

line with the interest of agent 2, as it can not benefit from moving to the next stage and 

getting a utility very similar to U2(opt,t+1). For the sake of agreement, agent 2 will 

choose an offer best for it from the set Compet(t) if this set is nonempty, otherwise any 

proposals by agent 2 at time t will be rejected. These points are briefed in Lemma 2 as 

the SPE strategies at stage t. 
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Lemma 2: For the subgame starting from stage t, then following the SPE strategies 

agent 2 will propose the offer S*∈Compet(t) such that 

),(max),( 2)(

*
2 tSUtSU

tCompetS∈
=                                     (15) 

and agent 1 will accept it, provided that Compet(t) is nonempty. Otherwise, if there is 

no offer in the set Compet(t), agent 1 will choose rejection as the response.  

    

   Finally, by applying the developed SPE strategies from the beginning of the 

negotiation game, we get to the following theorem 

Theorem: If both agents honor SPE strategies for negotiation of resources in two-target 

tracking, then an agreement will be found within one or two time steps depending on 

the set Compet(0): 

• If Compet(0) is empty, any offer of agent 2 at time 0 will be rejected. At time 1, agent 

1 proposes a counteroffer Sb(1) which will be accepted by agent 2. 

• If Compet(0) is nonempty, agent 2 will give an offer S´∈Compet(0) such that 

)0,(max)0,'( 2)0(2 SUSU
CompetS∈

=  and agent 1 will accept this offer immediately.  

 

3.4 Applications of Bilateral Negotiations for Target Covariance Tuning 

 

   This part is dedicated to demonstrate the usage of our negotiation model to tune target 

covariance in terms of information requests. Here we will not dwell on how such 

requests are generated but assume that they are available from the mission planning 

block in Fig. 1. The applications of the negotiation model for meeting two common 

requirements in target tracking are illustrated in subsections 3.4.1 and 3.4.2 

respectively. 

 

3.4.1 Improving the Worst Accuracy 
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    One common requirement in target covariance control is to improve the worst 

accuracy. In this case the agent with the lowest tracking accuracy launches the 

negotiation to receive higher sensor information gain, and the other agent is passively 

involved in the game and has to accept a reduced performance. We performed 

simulation tests to study this process with the initial condition of target 1 being tracked 

by all the resources while target 2 tracked by none of the resources. Fig. 2 shows the 

simulation results when the k parameter in (10) and (11) was set to 5. We can see in the 

figure that at first the covariance on target 2 was always bigger than that on target 1, 

therefore it was agent 2 that launched negotiations in early stages. But after entering the 

steady state, both agents started negotiations alternatively to increase the lowest 

tracking accuracy on whatever target. 

 

     Interesting is that the parameter k can be considered as reflecting the emotion of the 

requesting agent in the negotiations.  A small value of k implies that this agent is very 

anxious or greedy to be better off and vice versa. The influence of variations of k on the 

covariance tuning processes is illustrated in Figs. 3 and 4 that depict the cases with k as 

15 and 24 respectively. Comparison of the processes with different k values indicates 

that a smaller value of the k parameter can enable quicker convergence at the beginning 

but larger oscillations later in the steady state.   

 

   Another alternative is to adapt the k parameter according to the difference in target 

covariance by    

                                ∇−−
=

e
Kk

1
min

 

where Kmin is the minimum value of this parameter and ∇ stands for the absolute value 

of the difference in target covariance norms. The covariance tuning process using this 

adaptive strategy of k parameter is shown in Fig. 5 which exhibits not only quicker 

covergence in the beginning but also smaller oscillations in the steady state.     
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Fig. 2. Improving the worst tracking accuracy when k=5 
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Fig. 3. Improving the worst tracking accuracy when k=12 
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Fig. 4.  Improving the worst tracking accuracy when k=24 
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Fig. 5.  Improving the worst tracking accuracy with adaptation of k 
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3.4.2 Dealing with Desired Covariance Levels 

   In many other applications we may have different desired covariance levels for 

different targets. Negotiation is needed as long as the accuracy on one of the targets 

does not meet its desired objective. When the covariance on both targets is above their 

respective levels, the agent with the biggest difference with respect to its desired level is 

allowed to launch a negotiation for getting better/more resources. Again we conducted 

simulation tests to examine the negotiation-based processes of target covariance tuning 

in face of desired levels. We also supposed that initially target 1 got attentions from all 

sensors whereas target 2 got no observations.  

 

   Fig. 6 showed the process when the desired covariance levels were set as 0.43 for 

target 1 and 0.71 for target 2 in the first half period, and then in the second half period 

both targets exchanged their desired levels. Negotiations helped to tune the covariance 

of both targets below their respective levels very quickly such that the process was most 

of the time stationary with no negotiations launched by any agent. 
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                     Fig. 6. Satisfying the desired covariance levels on both targets 

 

   Then we changed the desired covariance levels to 0.42 and 0.70. The first was set for 

target 1 and the second for target 2, and then in the second half period the two targets 

exchanged their desired covariance levels. Fig. 7 illustrated the covariance tuning 

process in reaction to such desired levels. The limitation of resources made it 
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impossible to satisfy the requirements on the two targets at the same time. Therefore 

both agents were constantly interacting with each other by means of negotiation. 
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            Fig. 7. Covariance tuning when desired levels are not achievable simultaneously 
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4. Extension to Multiple Target Cases 
 

   This section discusses one possibility of using the bilateral negotiation model to deal 

with resource allocation in tracking more than two targets. We still arrange for an agent 

for every target responsible for its tracking and then organize simultaneous one-to-one 

negotiations in target covariance tuning. For doing this we need evaluations of tracking 

performance on all targets with respect to information requirements. We presume that 

such evaluations can be provided by mission planning in the form of satisfactory 

degrees, with satis_degree(i) standing for the degree value for target i. Further a 

negative satisfactory degree means that improvement of tracking performance on the 

underlying target is being requested, and vice versa. We attempt to organize multiple 

bilateral negotiations through a mating process, i.e. associating the best performance 

agent with the worst performance agent, the second best with the second worst and so 

on, until no targets with negative satisfactory degrees are left.  Given in the following is 

a procedure for organizing multiple bilateral negotiations, which is to be executed at 

every time step of a multi-target tracking process. 

Procedure for organizing multiple bilateral negotiations 

New_starting=∅; 

)(_min idegreesatisWorst
Unengagedi∈

= ; 

Stage 1: 

While ( ))0()2( <≥ WorstandUnengaged  

   Begin 

         )(_maxarg idegreesatisp
Unengagedi∈

= ; 

          )(_minarg idegreesatisq
Unengagedi∈

= ; 

          add pair (p,q) to New_starting; 

          remove p, q from Unengaged; 
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          )(_min idegreesatisWorst
Unengagedi∈

= ; 

   End; 

Stage 2: 

For every pair (p,q) in Previous_started 

   Begin 

        update allocation with results from );,( qp AAnegtia  

        add p, q to Unengaged; 

        remove pair (p,q) from Previous_started; 

      End; 

Stage 3: 

For every pair (p,q) in New_starting 

    Begin 

          Launch the negotiation negtia(Ap,Aq) by agent Aq; 

        If agreement is reached by negtia(Ap,Aq) within the time step 

            Then Begin  

                         update allocation with results from );,( qp AAnegtia  

                         add p, q to Unengaged; 

                         End 

              Otherwise 

                         add pair (p,q) to Previous_started; 

       End; 

 

   The above procedure consists of three stages. Stage 1 serves the matching purpose to 

find agent pairs from the list Unengaged containing all agents that are so far not 

involved (in negotiations). Since the matched pairs of agents are to launch negotiations 

right now, they are put into the list New_starting. Stage 2 is tasked to continue the 

negotiations for agent pairs (in the list Previous_started) that initialized bargaining in 
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the preceding period. As negotiations need maximally two time steps, all pairs of agents 

that began previously must finish now with their agreements taken into effect in the 

current period. Finally, at Stage 3, we launch negotiations for every agent pair in the list 

New_starting. If a pair of newly started agents can reach their consensus within the time 

step, their agreement is honored at once. Otherwise this pair of agents is added into the 

list Previous_started for continuation in the upcoming period.  

 

 

5. Conclusion 

 

   This paper advocates using agent negotiation in resource allocation to cope with 

trade-offs of tracking performance between various targets. A bilateral negotiation 

model for two-target tracking is thoroughly investigated with the development of the 

SPE negotiation strategies that ensures reaching of agreements within two time steps. 

The applications of our negotiation model for target covariance tuning are illustrated 

with given results from simulation.  

 

  Further the proposed bilateral negotiation model can also be used in multi-target 

tracking cases with more than two targets. The way suggested to achieve this is to 

organize multiple one-to-one negotiations simultaneously. We hesitate to introduce 

negotiations with many agents altogether in this context, since doing this would greatly 

increase the number of time steps required to reach agreements. Comparatively bilateral 

negotiations are simpler and quicker, making them attractive in real-time applications. 

We believe that local interactions between agents can be a good means to approach 

global goals in complex scenarios. 
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