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Vision for robotic object manipulation in domestic settings
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Abstract

In this paper, we present a vision system for robotic object manipulation tasks in natural, domestic environments. Given
complex fetch-and-carry robot tasks, the issues related to the wholedetect-approach-grasploop are considered. Our vision
system integrates a number of algorithms using monocular and binocular cues to achieve robustness in realistic settings. The
cues are considered and used in connection to both foveal and peripheral vision to provide depth information, segmentation of the
object(s) of interest, object recognition, tracking and pose estimation. One important property of the system is that the step from
object recognition to pose estimation is completely automatic combining both appearance and geometric models. Experimental
evaluation is performed in a realistic indoor environment with occlusions, clutter, changing lighting and background conditions.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

One of the key components of a robotic system
hat operates in a dynamic, unstructured environment
s robust perception. Our current research considers the
roblem of mobile manipulation in domestic settings
here, in order for the robot to be able to detect and
anipulate objects in the environment, robust visual

eedback is of key importance. Humans use visual feed-
ack extensively toplanandexecuteactions. However,
lanning and execution is not a well-defined one-way
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stream: how we plan and execute actions depend
what we already know about the environment we o
ate in, what we are about to do, and what we think
actions will result in. Complex coordination betwe
the eye and the hand is used during execution o
eryday activities such as pointing, grasping, reac
or catching. Each of these activities or actions requ
attention to different attributes in the environmen
while pointing requires only an approximate locat
of the object in the visual field, a reaching or grasp
movement requires more exact information abou
object’s pose.

In robotics, the use of visual feedback for mot
coordination of a robotic arm or platform motion
termedvisual servoing, Hutchinson et al.[1]. In gen-
eral, visual information is important at different lev
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of complexity: from scene segmentation to object’s
pose estimation. Hence, given a complex fetch-and-
carry type of task, issues related to the wholedetect-
approach-grasploop have to be considered. Most vi-
sual servoing systems, however, deal only with theap-
proachstep and disregard issues such asdetectingthe
object of interest in the scene or retrieving its three
dimensional (3D) structure in order to perform grasp-
ing. A so calledteach-by-showingapproach is typi-
cally used where the desired camera placement with
respect to the object is well defined and known before
hand.

Our goal is the development of an architecture that
integrates different modules where each module en-
capsulates a number of visual algorithms responsi-
ble for a particular task such as recognition or track-
ing. Our system is heavily based on theactive vi-
sionparadigm, Ballard[2] where, instead of passively
observing the world, viewing conditions are actively
changed so that the best results are obtained given a
task at hand.

In our previous work, Bj̈orkman and Kragic[3] we
have presented a system that consists of two pairs of
stereo cameras: a peripheral camera set and a foveal
one. Recognition and pose estimation are performed
using either one of these, depending on the size and
distance to the object of interest. From segmentation
based on binocular disparities, objects of interest are
found using the peripheral camera set, which then trig-
gers the system to perform a saccade, moving the ob-
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presented in Section8 and final conclusion given in
Section9.

2. Problem definition

In general, vision based techniques employed in vi-
sual servoing and object manipulation depend on:
• Camera placement: Most visual servoing systems

today useeye-in-handcameras and deal mainly with
theapproachobject step in ateach-by-showingman-
ner, Malis et al.[5]. In our approach, we consider a
combination of a stand-alone stereo and an eye-in-
hand camera systems, Kragic and Christensen[6].

• Number of cameras: In order to extract metric
information, e.g. sizes and distances, about objects
observed by the robot, we will show how we can
benefit from binocular information. The reason for
using multiple cameras in our system is the fact that
it simplifies the problem of segmenting the image
data into different regions representing objects in a
3D scene. This is often referred to asfigure-ground
segmentation. In cluttered environments and com-
plex backgrounds, figure-ground segmentation is
particularly important and difficult to perform and
commonly the reason for experiments being per-
formed in rather sparse, simplified environments.
In our work, multiple cameras are used for scene
segmentation while a single camera is used for
visual servoing, object tracking and recognition.
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ect into the center of foveal cameras achieving th
ombination of a large field of view and high image r
lution. Compared to one of the recent systems, Ki
l. [4], our system uses both hard (detailed models)
oft modeling (approximate shape) for object segm
ation. In addition, choice of binocular or monocu
ues is used depending on the task. In this pape
ormalize the use of the existing system with resp
o Fig. 1—how to utilize the system with respect
ifferent types of robotic manipulation tasks.

This paper is organized as follows. In Section2,
problem definition is given. In Section3, a shor

verview of the current system is given and in S
ion 4 hypotheses generation is presented. In Sect5
e deal with the problem of manipulating known o

ects and in Section6with the problem of manipulatin
nknown objects. Some issues related to object g

ng are given in Section7. Experimental evaluation
Camera type: Here we consider systems u
zooming cameras or combinations of foveal and
ripheral ones. With respect to these, very little w
has been reported in visual servoing commu
Benhimane and Malis[7]. In this paper, we demo
strate how a combination of foveal and periph
cameras can be used for scene segmentation, o
recognition and pose estimation.

n our current system, the robot may be given ta
uch as “Robot, bring me the raisins” or “Robot, p
p this”. Depending on the prior information, i.e. tas
ontext information, different solution strategies m
e chosen. The first task of the above is well defi
ince it assumes that the robot already has the int
epresentation of the object, e.g. theidentityof the ob-
ect is known. An example of such a task is show
ig. 2: after being given a spoken command, the ro

ocates the object, approaches it, estimates its pos
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Fig. 1. Robotic manipulation scenarios.

finally performs grasping. More details related to this
approach are given in Section5. For the second task, the
spoken command is commonly followed by a pointing
gesture—here, the robot does not know theidentityof
the object, but it knows its approximatelocation. The
approach considered in this work is presented in Sec-
tion 6. Fig. 1shows different scenarios with respect to
prior knowledge of objectidentityand location, with
the above examples shaded. A different set of underly-

Fig. 2. Detect-approach-grasp example.

c Tech

ing visual strategies is required for each of these sce-
narios. We have considered these two scenarios since
they are the most representative examples for robotic
fetch-and-carry tasks.

2.1. Experimental platform

The experimental platform is a Nomadic Technolo-
gies XR4000, equipped with a Puma 560 arm for ma-
nipulation (seeFig. 3). The robot has sonar sensors, a
SICK laser scanner, a wrist mounted force/torque sen-
sor (JR3), and a color CCD camera mounted on the
Barrett Hand gripper. The palm of the Barrett hand is
covered by a VersaPad touch sensor and, on each fin-
ger, there are three Android sensors. On the robot’s
shoulder, there is a binocular stereo-head. This sys-
tem, known as Yorick, has four mechanical degrees of
freedom; neck pan and tilt, and pan for each camera in
relation to the neck. The head is equipped with a pair of
Fig. 3. (Left) Experimental platform Nomadi
 nologies XR4000, and (Right) Yorick stereo-head.
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Sony XC999 cameras, with focal length of 6 mm. Ad-
ditional pair of Sony XC999 cameras with focal length
of 12 mm is placed directly on the robot base.

For some of the experimental results that will be pre-
sented further on, a stand-alone binocular stereo-head
system shown inFig. 3 was used. Here, the head is
equipped with two pairs of Sony XC999 cameras, with
focal lengths 28 and 6 mm, respectively. The motiva-
tion for this combination of cameras will be explained
related to the examples.

3. The system

Fig. 4 shows a schematic overview of the basic
building blocks of the system. These blocks do not nec-
essarily correspond to the actual software components,
but are shown in order to illustrate the flow of informa-
tion through the system. For example, the visual front
end consists of several components, some of which are
running in parallel and others hierarchically. For ex-
ample, color and stereo information are extracted in
parallel, while epipolar geometry has to be computed
prior to disparities. On the other hand, action genera-
tion, such as initiating 2D or 3D tracking, is distributed
and performed across multiple components.

The most important building blocks can be summa-
rized as follows:
• The Visual Front-End is responsible for the ex-

traction of visual information needed for figure-

ground segmentation and other higher level proce-
sses.

• Hypotheses Generation produces a number of hy-
potheses about the objects in the scene that may be
relevant to the task at hand. The computations are
moved from being distributed across the whole im-
age to particular regions of activation.

• Recognition is performed on selected regions, using
either corner features or color histograms, to deter-
mine the relevancy of observed objects.

• Action Generation triggers actions, such as visual
tracking and pose estimation, depending on the out-
come of the recognition and current task specifica-
tion.

Due to the complexity of the software system, it
was partitioned into a number of smaller modules
that communicate through a framework built on a
interprocess communication standard called CORBA
(Common Object Request Broker Architecture),
Vinoski [8]. The current version of the system consists
of about ten such modules, each running at a different
frame rate. The lowest level frame grabbing module
works at a frequency of 25 Hz, while the recognition
module is activated only upon request. In order to
consume processing power, modules are shut down
temporarily when not been accessed by any other
module within a time frame of 10 s.

With limited resources in terms of memory stor-
age and computational power, biological and robotic

ding bl
Fig. 4. Basic buil
 ocks of the system.
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systems need to find an acceptable balance between
the width of the visual field and its resolution. Other-
wise, the amount of visual data will be too large for the
system to efficiently handle. Unfortunately, this bal-
ance depends on the tasks the systems have to perform.
An animal that has to stay alert in order to detect an ap-
proaching predator, would prefer a wide field of view.
The opposite is true if the same animal acts as a preda-
tor itself. Similarly, a robotic system benefits from a
wide field of view, in order not to collide with obsta-
cles while navigating through a cluttered environment.
A manipulation task on the other hand, requires a high
resolution in order grasp and manipulate objects. That
is, to find objects in the scene a wide field of view is
preferable, but recognizing and manipulating the same
objects require a high resolution.

On a binocular head, Björkman and Kragic[3] we
overcame this problem by using a combination of two
pairs of cameras, a peripheral set for attention and a
foveated one for recognition and pose estimation. In
order to facilitate transfers of object hypotheses from
one pair to the other, and replicate the nature of the hu-
man visual system, the pairs were placed next to each
others. The camera system on the robot is different in
that the two pairs are widely separated and placed on
an autonomously moving platform, seeFig. 3: a stereo
head on a shoulder and another pair on the base. The
search pair is located on-top of the robot overlooking
the scene and the manipulation pair is at waist height,
such that the gripper will not occlude an object while it
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lation to the base. Hypotheses are found by the search
pair, the 3D positions are derived using triangulation
and finally projected onto the image planes of the ma-
nipulation pair. For the 3D position to be accurately
estimated, the search pair is calibrated on-line, simi-
larly to the original version of the system, Björkman
and Eklundh[9]. The precision in depth ranges from
about a decimeter to half a meter depending on the
observed distance.

3.1. Stereo system modeling—epipolar geometry

With a binocular set of cameras, differences in
position between projections of 3D points onto the
left and right image planes (disparities) can be used
to perform figure-ground segmentation and retrieve
the information about three-dimensional structure
of the scene. If the relative orientation and position
between cameras is known, it is possible to relate
these disparities to actual metric distances. One of the
commonly used settings is where the cameras are rec-
tified and their optical axes mutually parallel, Kragic
and Christensen[6]. However, one of the problems
arising is that the part of the scene contained in the
field of view of both cameras simultaneously is quite
limited.

Another approach is to estimate the epipolar geom-
etry continuously from image data alone, Björkman
[10]. Additional reason for this may be that small distur-
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s being manipulated. In the original version, hypo
sis transfers were based on matched corner fea
nd affine geometry. Hence, with the cameras re
airwise, the position of hypotheses seen by the pe
ral cameras could be transferred to the images o

oveated stereo set.
This way of transferring positions is no longer fea

le in the robot camera configuration. With the cam
eparated by as much as a meter, the intersection
ween visual fields tend to be small and the numbe
eatures possible to match is low. Furthermore, a fea
een from two completely different orientations is v
ifficult to match, even using affine invariant matchi

nstead we exploit the fact that we can actively m
he platform such that an object of interest, found
he search pair, will become visible by the manipula
air. For this to be possible we have to approxima
now the orientation and position of the cameras in
ances such as vibrations and delays introduce si
ant noise to the estimation of the 3D structure. In
n error of just one pixel leads to depth error of sev
entimeters on a typical manipulation distance. Th
ore, for some of the manipulation tasks, the ep
ar geometry is estimated robustly using Harris’ co
eatures, Harris and Stephens[11]. Such corner feature
re extracted and matched between the camera im
sing normalized cross-correlation. The vergence
leα, gaze directiont, relative tiltrx and rotation aroun

he optical axesrz, are iteratively sought using

dx

dy

)
=
(

(1 + x2)α − yrz

xyα + ry + xrz

)
+ 1

Z

(
1 − xt

−yt

)
, (1)

hereZ is the unknown depth of a point at image po
ion (x, y). The optimization is performed using a co
ination of RANSAC[12] for parameter initialization
nd M-estimators[13] for improvements.
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This optical flow model[14] is often applied to mo-
tion analysis, but has rarely been used for stereo. The
reason for this is because the model is approximate
and only works for relatively small displacements. In
our previous work we have, however, experimentally
shown that this model is more robust than the essential
matrix in the case of binocular stereo heads, Björkman
and Eklundh[9], even if the essential matrix leads
to a more exact description of the epipolar geometry,
Longuet-Higgins[15].

4. Hypotheses generation

The purpose of this component is to derive quali-
fied guesses ofwherethe object of interest is located
in the current scene. As mentioned earlier, this step
is performed using the peripheral cameras while the
recognition module uses the foveal ones. This requires
a transfer from peripheral to foveal vision, or from dis-
tributed to focused attention Palmer[16].

4.1. Distributed attention

Unlike focused attention, distributed attention
works on the whole image instead of being con-
centrated to a particular image region. Using the
available visual cues a target region, that might
represent an object of interest, is identified. Even if the
current system is limited to binocular disparities, it is
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is set so as to maximize the response of image blobs
representing objects of the requested size and distance.
The depth range is continuously updated so that hy-
potheses are obtained for objects at different depths.
In our system, the depths typically vary between 1 and
3 m.

4.2. Focused attention

From the generated hypotheses, a target region is
selected so that the gaze can be redirected and recog-
nition performed using the foveal cameras. This se-
lection is done automatically from the hypothesis of
largest strength. However, before the strongest hy-
pothesis is selected, a small amount of noise equiva-
lent to about 20% of the largest possible strength is
added. This is done in order to prevent the system
from getting stuck at a local maximum. Due to occlu-
sions, the requested object might otherwise never be
visited.

Since hypotheses are described in the peripheral
cameras frame and recognition is performed using the
foveal ones, the relative transformations have to be
known. These are found applying a similarity model
to a set of Harris’ corner features similar to those used
for epipolar geometry estimation in Section3.1. On
the stereo head system shown inFig. 3, the relative
rotations, translations and scales are continuously
updated at a rate of about 2 Hz. For the manipulator
system, the robot first has to rotate its base while
t lap.
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traightforward to add additional cues, such as in
odel of Itti et al.[17]. Here, we have concentrat
n disparities because they contain valuable infor

ion about object size and shape. This is espec
mportant in a manipulation task, where the co
f an object might be irrelevant, whereas the siz
ot.

The only top-down information needed for hypot
es generation is the expected size of an object of
st and the approximate distance from the camer
ore information about the attention system can

ound in Björkman and Eklundh[18]. A binary map is
reated containing those points that are located wit
pecified depth range. The third column ofFig. 9shows
wo such maps overlaid on-top of the corresponding
eripheral images. Initial hypotheses positions are
enerated from the results of a difference of Gaus
lter applied to the binary map. The scale of this fi
racking the hypotheses until visual fields over
nowing the transformations, it is possible to trans

he hypotheses positions into the foveal cam
rames.

Before a saccade is finally executed, fixating
oveal cameras onto the selected hypothesis re
he target position is refined in 3D. During a cou
f image frames, a high-resolution disparity map
alculated locally around the target area. A mean
lgorithm, Comaniciu et al.[19], is run iteratively up
ating the position from the cluster of 3D points aro

he target position, represented by the disparity m
he maximum size of this cluster is specified using

op-down information mentioned above. The first
mages ofFig. 5 show these clusters highlighted
he left peripheral images before and after a sacc
he foveal images after the saccade can be seen
ight.
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Fig. 5. The first two images show a target region before and after a saccade (the rectangles show the foveal regions within the left peripheral
camera image) and the foveal camera images after executing a saccade are shown in the last two images.

4.3. Active search

For mobile manipulation tasks, it is important that
the visual system is able to actively search for the ob-
ject of interest. The search system includes two neces-
sary components, an attentional system that provides
hypotheses to where an object of interest might be lo-
cated, and a recognition system that verifies whether a
requested object has indeed been found, as presented
above. Even if the attentional system works on a rela-
tively wide field of view, 60◦ is still limited if alocation
is completely unknown to the robot. In our system, we
have extended this range by applying an active search
strategy, that scans the environment and records the
most probable locations. Five images from such a scan
can be seen on the last row ofFig. 6. The crosses
indicate hypothesis positions when the robot actively
searches for and locates an orange package that is in fact
located on the table seen on the first and fourth image.

5. Manipulating known objects

If a robot is to manipulate a known object, some type
of representation is typically known in advance. Such a
representation may include object textural and/or geo-
metrical properties which are sufficient for theobject to
be located and manipulation task to be performed. For
realistic settings, a crude information about objects lo-
cation can sometimes be provided from the task level.
e.g. “Bring me red cup from the dinner table”. How-
ever, if the location of the object is not provided, it is up
to the robot to search the scene. The following sections
give examples of how these problems are approached
in the current system.

5.1. Detect

If we can assume that the object is in the field of view
from the beginning of the task, a monocular recognition

F equest : strongest
h

ig. 6. First row: hue-saliency map with orange package as r
ypotheses marked with crosses.
ed object, second row: peripheral disparity map, and third row
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system can be used to locate the object in the image,
Zillich et al. [20].

However, when a crude information about object’s
current position is not available, detecting a known ob-
ject is not an easy task since a large number of false
positives can be expected. Candidate locations have to
be analyzed in sequence which may be computationally
too expensive, unless the robot has an attentional sys-
tem that delivers the most likely candidate locations
first, using as much information about the requested
object as possible.

A natural approach here is to employ a binoc-
ular system that provides metric information as an
additional cue. Since the field of view of a typical
camera is quite limited, binocular information can
only be extracted from those parts of the 3D scene
that are covered by both cameras’ peripheral field of
view. In order to make sure that an object of inter-
est is situated in the center of each camera’s field of
view, the head is able to actively change gaze direc-
tion and vergence angle, i.e. the difference in orienta-
tion between the two cameras. In our system, stereo
based figure-ground segmentation is intended for mo-
bile robot navigation and robot arm transportation to
the vicinity of the object. More detailed information
about an object’s pose is provided using a monocu-
lar model based pose estimation and tracking, Kragic
[21].

The visual front-end is responsible for delivering 3D
data about the observed scene. Such information is ex-
t s the
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the computational cost of these methods makes them
infeasible for our particular application which means
that correlation based methods are typically used in
practice. Currently, we use two kinds of visual cues
for this purpose, 3D size and hue histograms using
the procedure described in Section4.1. These cues
were chosen since they are highly object dependent
and relatively insensitive to changing lighting condi-
tions, object pose and viewing direction. The images
in Fig. 6 show examples where the orange package
is requested. The upper images illustrate the saliency
maps generated using the hue histograms of this ob-
ject. From the disparity maps (second row) a number
of candidate locations are found, as shown in the last
row.

We further use recognition to verify that a requested
object has indeed been found. With attention and recog-
nition applied in a loop, the system is able to automat-
ically search the scene for a particular object, until it
has been found by the recognition system. Two recog-
nition modules are available for this purpose: (i) a fea-
ture based module based on Scale Invariant Feature
Transform (SIFT) features Lowe[24], and (ii) an ap-
pearance based module using color histograms, Ekvall
et al.[25].

Most recognition algorithms expect the considered
object to subtend a relatively large proportion of the
images. If the object is small, it has to be approached
before is can be detected. Possible solution would
be using a eye-in-hand camera and only approach
t lat-
f em
e ras,
l pre-
s field
c veal
o

5

ct,
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i een
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h ms
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r ore
racted using a three-step process, which include
bove mentioned epipolar geometry estimation, im
ectification and calculation of dense disparity ma
he generation of this data is done continuousl
rate of 8 Hz, independently of the task at hand

sed by more high-level processes for further inter
ation. Further information on this part of the syst
an be found in Bj̈orkman [10]. Since most meth
ds for dense disparity estimation assume the im
lanes to be parallel, image rectification has to be

ormed using the estimated epipolar geometry be
isparities can be estimated. The current system
ludes seven different disparity algorithms, from s
le area correlation, Konolige[22] to more complicate
raph-cut methods, Kolmogorov and Zabih[23]. The
enefit of using a more advanced global metho

he fact that they often lead to denser and more
urate results. However, even if density is import
he object through the manipulator, keeping the p
orm itself static. A more efficient solution is a syst
quipped with wide field as well as foveal came

ike the stereo-head system used for the example
ented here. Hypotheses are found using the wide
ameras, while recognition is done using the fo
nes.

.2. Approach

Transporting the arm to the vicinity of the obje
onsidering a closed-loop control system, requires
stration or computation of spatial relationship betw
wo or more images. Although this problem has b
tudied extensively in the computer vision societ
as rarely been fully integrated in robotic syste

or unknown objects. One reason for this is that h
eal-time demand makes the problem of tracking m
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difficult then when processing image sequences off-
line. For cases where the object is initially far away
from the robot, a simple tracking techniques can be
used to keep the object in the field of view while ap-
proaching it. For this purpose we have developed and
evaluated methods based on correlation and optical
flow, Kragic et al.[26] as well as those based on integra-
tion of cues such as texture, color and motion, Kragic
and Christensen[27]. The latter approach is currently
used for tracking.

Performing final approach toward a known object
depends also on the number of cameras and their place-
ment. For eye-in-hand configuration we have adopted
a teach-by-showingapproach, where a stored image
taken from the reference position is used to move the
manipulator so that the current camera view is gradu-
ally changed to match the stored reference view. Ac-
complishing this for general scenes is difficult, but a
robust system can be made under the assumption that
the objects are piecewise planar. In our system, a wide
baseline matching algorithm is employed to establish
point correspondences between the current and the ref-
erence image, Kragic and Christensen[27]. The point
correspondences enable the computation of a homog-
raphy relating the two views, which is then used for 2
1/2D visual servoing.

In cases where the CAD model of the object is
available, a full 6D pose estimate is obtained. After
the object has been localized in the image, its pose
is automatically initiated using SIFT features from
t ata.
T lane
t fur-
t this
p era-
t ully
a

6

ob-
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l de-
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s ing
g bject
s

6.1. Detect

Numerous methods exist for segmentation of ob-
jects in cluttered scenes. However, from monocular
cues only this is very difficult, unless the object has
a color or texture distinct from its surrounding. Unfor-
tunately, these cues are sensitive to lighting as well as
pose variations. Thus, for the system to be robust, one
has to rely on information such as binocular disparities
or optical flow. A binocular setting is recommended,
since the motion that needs to be induced should prefer-
ably be parallel to the image plane, complicating the
process of approaching the object.

In our current system, binocular disparities are used
for segmentation with the foveal camera set. We use
this set since the focal lengths have to be relatively
large in order to get the accuracy required for grasp-
ing. When the resolution in depth increases, so does
the range of possible disparities. If only a fraction of
these disparities are tested, e.g. the range in which the
object is located, a large number of outliers can be ex-
pected, such as in the lower-left image ofFig. 7. We
apply a Mean-Shift algorithm, Comaniciu et al.[19] to
prune the data, using the fact that the points represent-
ing the object are located in a relatively small part of 3D
space and the center of these points is approximately
known. After applying a sequence of morphological
operation a mask is found as shown in the lower-right
image.
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. Manipulating unknown objects

For general setting, manipulation of unknown
ects has rarely been pursued. The primary reas
ikely to be that the shape of an object has to be
ermined in order to successfully grasp it. Another
on is that, even if the location is given by a point
esture, the size also has to be known and the o
egmented from its background.
.2. Approach

Approaching an unknown object can be done e
sing the stereo-head or with an eye-in-hand cam
ithout knowing the identity of the object the lat

ase is hardly feasible. It would be possible to ta
equence of images, while approaching the object
rom these estimate a disparity map, but this map w
ardly be as accurate as using the disparities ava

rom the foveal camera set.
If the stereo-head is used instead, it is essentia

he robot gripper itself can be located in disparity sp
sing the mask derived in Section6.1, the elongatio
nd orientation of the object can be determine and
ngers of the gripper be placed on either side of
bject. In general we will not be able, from one ste
iew only, to retrieve the full 3D shape of the object
articular, if the extension in depth is significant, it w
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Fig. 7. Left peripheral (upper left) and foveal (upper right) camera images and disparities (lower left) and segmentation (lower right) automatically
obtained from the peripheral stereo pair.

be difficult to guarantee that the full closing grasp can
be performed. This problem can be solved by moving
the stereo-head to another location. This is a topic we
intend to investigate further in the future.

7. Grasping

For active grasping, visual sensing will in general
not suffice. One of the problems closely related to eye-
in-hand configurations is the fact that when theap-
proachstep is finished, the object is very close to the
camera, commonly covering the whole field of view.
To retrieve features necessary for grasp planning is im-
possible. One solution to this problem is to use a wide
field eye-in-hand camera, together with a stand-alone
mono- or stereo vision system. Our previous work has
integrated visual information with tactile and force-
torque sensing for object grasping, Kragic and Chris-
tensen[28]. We have, however, realized that there is a
need for a system that is able to monitor the grasping
process and track the pose of the object during exe-

cution. We have shown that in this way, even if the
robot moves the object, grasping can successfully be
performed without the need to reinitiate the whole pro-
cess. This can be done even for unknown objects where
the Mean-Shift strategy suggested in Section6.1is ap-
plied on consecutive images.

8. Experimental evaluation

As mentioned in Section3, our system is built on
a number of independently running and communicat-
ing modules. Since most methods used within these
modules have been analyzed elsewhere, we will con-
centrate on the integrated system as a whole, rather than
analyzing each individual method in isolation. The sys-
tem should be considered as an integrated unit and its
performance measured based on the behavior of the
complete system. The failure of one particular module
does not necessarily mean that the whole system fails.
For example, figure-ground segmentation might well
fail to separate two nearby objects located on a similar
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distance, but the system might still be able to initiate
pose estimation after recognition.

The following properties of the system have been
evaluated, as will be described in more detail in the
sections below:

• combined figure-ground segmentation based on bin-
ocular disparities and monocular pose estimation,

• combined monocular Cooccurence Color Histog-
rams (CCH) Chang and Krumm[29] based object
recognition and monocular pose estimation,

• robustness of figure-ground segmentation,
• robustness toward occlusions using SIFT features,
• robustness of pose initialization toward rotations.

For recognition, a set of 28 objects was used.
Fig. 8 shows a few of them. A database was created
consisting of object models based on SIFT features
and CCHs. Eight views per object were used for the
SIFT models as well as in the case of CCHs. Pose esti-
mation was only considered for the first three box-like
objects, automatically starting as one of these objects
are recognized. For this purpose, the width, height and
thickness of these objects were measured and recorded
in the database.

Since the observed matching scores did not signif-
icantly differ from those already published in Lowe
[24] and Mikolajczyk and Schmid[30] we have cho-
sen not to include any additional quantitative results. A
few observations have lead us to believe that recogni-
t ing
u rely
r lient

features are due to specularities. However, the distinct
color makes it particularly suitable for CCHs, which on
the other hand have a tendency of mixing up the tiger
and the giraffe, unlike the recognition module based on
SIFT features.

8.1. Binocular segmentation and pose estimation

The first experiments illustrate the typical behavior
of the system with binocular disparity based figure-
ground segmentation and SIFT based recognition. Re-
sults from these experiments can be seen inFig. 9.
The first column shows the left foveal camera images
prior to the experiments. It is clear that a requested ob-
ject would be hard to find, without peripheral vision
controlling a change in gaze direction. However, from
the disparity maps in the second column the system is
able to locate a number of object hypotheses, which
can be shown as white blobs overlaid on-top of the
left peripheral camera image in the third column of the
figure.

The matching scores of the recognition module
for these two examples were 66% and 70%, respec-
tively, measured as the fraction of SIFT features being
matched to one particular model. Once an object has
been recognized, pose estimation is automatically initi-
ated. This is done using SIFT features from the left and
right foveal camera images, fitting a plane to the data.
Thus, it is assumed that there is a dominating plane that
can be mapped to the model. The process is further im-
p lane.
T ing
d

ts use
ion would benefit from CCHs and SIFT features be
sed in conjunction. For example, the blue car is ra
ecognized properly using SIFT, since the most sa

Fig. 8. Some of the objec
roved searching for straight edges around this p
he last two columns show an example of this be
one in practice.

d for experimental evaluation.
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Fig. 9. An example of binocular figure-ground segmentation and pose estimation. The first column shows the foveal images before a saccade
has been issued. Disparity maps can be seen in the second column and object hypotheses in third. The last column shows the estimated pose.

8.2. Monocular CCH recognition and pose
estimation

Fig. 10 shows two examples of recognition and
pose estimation based on monocular CCH. Here, object
recognition and rotation estimation serve as the initial
values for the model based pose estimation and track-
ing modules. With the incomplete pose calculated in
the recognition (first image from the left) and orienta-
tion estimation step, the initial full pose is estimated
(second image from the left). After that, a local fitting
method matches lines in the image with edges of the
projected object model. The images obtained after con-
vergence of the tracking scheme is shown on the right.
It is important to note, that even under the incorrect
initialization of the two other rotation angles as zero,
our approach is able to cope with significant deviations
from this assumption. This is strongly visible in the sec-

ond example where the angle around camera’sZ-axis
is more than 20◦.

8.3. Robustness of disparity based figure-ground
segmentation

As mentioned in Section4, object location hypothe-
ses are found slicing up the disparities into a binary map
of pixels located within a given depth range. There are
some evident disadvantages associated with such a pro-
cedure. First of all, an object might be tilted and extend
beyond this range. This can be seen in the upper left
image inFig. 11—but it does not occur in the second
image on the same row. However, since a more accu-
rate localization is found through the focused attention
process, a saccade is issued to the approximately same
location. This is shown in the last two images on the
upper row.

F t): (i) th er three
fi

ig. 10. From object recognition to pose estimation, (from lef
tting iterations, (iv) the estimated pose of the object.
e output of the recognition, (ii) initial pose estimation, (iii) aft
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Fig. 11. The imperfect segmentation does not effect the final pose estimate of the object. The examples show when: (upper) Only a fraction of
the object was segmented, and (lower) Two hypotheses are overlapping.

Another challenge occurs if two nearby objects are
placed at almost the same distance, especially if the
background lacks sufficient texture. Then the objects
might merge into a single hypothesis, which is shown
on the second row ofFig. 11. In our experiments
this seemed more common when a global disparity
method Kolmogorov and Zabih[23] was used and is
the reason why we normally use simple area correla-
tion. The global optimization methods tend to fill in
the space between the two objects, falsely assuming
that rapid changes in disparities are unlikely and thus
should be suppressed. In practice, it is preferable if
the textureless area between the objects are left unas-
signed. The right two images on the last row show
that pose estimation is still be possible, even when

hypotheses are merged. Depending on the density of
foveal features, one of the two objects is automatically
selected.

8.4. Robustness of SIFT based recognition toward
occlusions

In a cluttered environment, a larger fraction of ob-
jects are likely to be occluded. These occlusions affect
most involved processes, in particular those of recog-
nition and pose estimation. The first two images inFig.
12show a scene in which the sugar box is partially oc-
cluded behind a bottle. In the first case, the recognition
fails because not enough foveal features are available,
while successful recognition and pose estimation is

F bject of ever result
i

ig. 12. The system is able to cope with situations where the o
n incorrect pose estimation (lower center).
interest is significantly occluded. Too much occlusion can how
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Fig. 13. From object hypotheses (upper left) the orientation of an object is estimated (upper middle/upper right). Pose estimates after three
iterations for orientations 20◦, 40◦ and 60◦ (lower).

possible in the second case as shown in the third image.
However, even if recognition is successful, the pose ini-
tialization might still fail when not enough edges are
clearly visible. This can be seen in the last two images
of Fig. 12. As it is apparent from the fourth image that
a failure does not necessarily mean that the results are
useless, since the location of the object in 3D space is
still available.

8.5. Robustness of pose initialization toward
rotations

Since, in SIFT based recognition, only one view was
available for each object, the sensitivity of the system to
rotations was expected to be high. It is already known
that for efficient recognition using these features, the
relative orientation between query image and object
model ought to be less than about 30◦. Likely because
our model set only consisted of eight objects, our study
indicated that slightly larger angles were in fact possi-
ble. In the three columns ofFig. 13an object was rotated
about 20◦, 40◦ and 60◦, respectively. The rise package
was correctly recognized at a score higher than 70%.
However, the break-point turned out to be highly ob-
ject dependent. For example, for an object like the tiger,
the breakpoint was as low as 20%. For a more thorough
analysis on the SIFT recognition performance we refer
to Lowe[24].

As can be seen in the last two images on the up-
per row ofFig. 13, larger rotations tend to be under-
estimated when the pose is initialized. However, these
errors are still below what is required for the pose es-
timation to finally converge. The lower row shows the
estimated pose after a few initial iterations. Even at an
angle of 60◦ the process will converge, but at a some-
what slower rate. For 40◦ and below convergence is
reached within three frames.

9. Conclusions

In this paper, different visual strategies necessary
for robotic hand-eye coordination and object grasping
tasks, have been presented. The importance of cam-
era placement and their number have been discussed
and their effect on the design and choice of visual al-
gorithms. For realistic, domestic settings we are inter-
ested in designing robots that are able to manipulate
both known and unknown objects and it is therefore
important to develop methods for both cases. We have
shown strategies that support both cases.

Reflecting back toFig. 1, different scenarios can be
arranged in a hierarchy depending on prior informa-
tion. Even if a particular task is given, it is possible to
shift between different scenarios and therefore, the un-
derlying strategies used. For example, if the command
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“Pick Up This Cup” is given, but the system fails to
verify the existence of the cup, the execution may still
continue as if “Pick up The Cup” was given. A vice-
versa example is if the command “Pick Up This Ob-
ject” was given and the system realizes that the ob-
ject is, in fact, a known box of raisins. Then, the sys-
tem automatically changes the task to “Pick Up The
Raisins”. In the future, we want to develop a more
formal description for the above, in order to design
a visual system framework for robotic manipulation in
general.
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