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Abstract. We consider typical manipulation tasks in terms of a service robot
framework. Given a task at hand, such as "Pick up the cup from the dinner table”,
we present a number of different visual systems required to accomplish the task.
A standard robot platform with a PUMAS60 on the top is used for experimental
evaluation. The classical approach-align-grasp idea is used to design a manipu-
lation system. Here, both visual and tactile feedback is used to accomplish the
given task. In terms of image processing, we start by a recognition system which
provides a 2D estimate of the object position in the image. Thereafter, a 2D track-
ing system is presented and used to maintain the object in the field of view during
an approach stage. For the alignment stage, two systems are available. The first
is a model based tracking system that estimates the complete pose/velocity of the
object. The second system is based on corner matching and estimates homog-
raphy between two images. In terms of tactile feedback, we present a grasping
system that, at this stage, performs power grasps. The main objective here is to
compensate for minor errors in object position/orientation estimate caused by the
vision system.

1 Introduction

Robotic visual servoing and manipulation has received significant attention during the
past few years. Still, most of the existing systems rely on one visual servoing control
strategy or one sensory modality. This commonly limits the system to concentrate on
one of the approach-align-grasp steps. It has been pointed out that one of the key re-
search areas in the field of visual servoing is the integration of existing techniques,
regarding both the estimation and control, [1].

In terms of robotic appliances for service robotics, it is of inevitable importance
to observe the complete robotic task. Assuming basic fetch—and—carry tasks, there are
varying demands for precision and degrees of freedom in control depending on com-
plexity. As proposed in [2], a key to solving robotic hand-eye tasks efficiently and ro-
bustly is to identify how precise control is needed at a particular time during task execu-
tion. The required level of precision should then be matched with appropriate sensory
input. This is also one of the main ideas pursued in our work.

We consider three levels for an object manipulation sequence, see Fig.1:
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— Transport considers motion of the robot platform and/or the robot arm to the vicin-
ity of the object. From this position, the arm should be able to reach the object
without moving the base.

— Alignment of the hand with the object such that a grasp can be performed.

— Grasping of the object which can be performed using tactile feedback or in a pre-
defined open—loop manner.
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Fig. 1. Robot control versus sensory feedback hierarchy. The required complexity and type of
feedback depends on the current step of a manipulation task.

Our main goal is to present a number of different techniques that allow robots to
perform manipulation tasks in real world scenarios according to the above. We will
show how visual and tactile feedback can be used together with a number of visual
servoing strategies to manipulate simple, everyday objects. We do not offer a general
solution from a system point of view, rather a first step towards it. Compared to our
previous work [3], where the main consideration was the overall control framework
and systems integration, here we concentrate on the actual building blocks. In particular,
visual and tactile feedback and underlying servoing strategies are studied. We believe
that our approach is relatively easy to build upon - each of the individual techniques can
easily be extended and combined to perform more complex tasks. Similarly, in human
physiology there is a differentiation between identification of the object, balistic motion
to the proximity of the object, preshaping of the hand, alignment, and interaction. Here,
the identification and ballistic motion are fused into a signle task for convenience.

The paper is organized as follows. In Section 2 basic control strategies for visual
servoing are presented together with commonly facilitated camera/robot configurations.
In Section 3 image processing algorithms currently used in the system are briefly pre-
sented. The strategies for using tactile feedback for grasping are discussed in Section 4.
The experimental platform and few experiments are presented in Section 5. And finally,
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Section 6 discusses the current limitations of the system and provides topics for future
research.

2 Visual Servoing

In terms of the design of visual servoing systems, there are three major issues that have
to be considered: i) the choice of control law, ii) camera-robot configuration, and iii)
the choice algorithms used to provide the feedback for the control loop. We will touch
upon the first two issues briefly in Section 2.1 and Section 2.2. Section 3 outlines the
image processing algorithms currently available in our system.

2.1 Control design

There are two basic approaches to visual servo control [4]: i) image—based visual ser-
voing (IBVS) and position—based visual servoing (PBVS). In IBVS, an error signal is
measured in the image and then mapped directly to robot motion commands. In PBVS,
features are extracted from the image and then used to compute a partial or a complete
pose/velocity of the object. An error is then computed in the task space and thereafter
used by the control system. To overcome the problems of IBVS and PBVS systems,
several hybrid systems have been proposed [10], [11]. In general, these systems de-
couple the translational and rotational part of the control signal achieving the desired
stability of the system even for cases where the difference between the start and desired
pose of the robot is significant. In our system, all three strategies are used.

2.2 Camera-Robot Configurations

Fig. 2 shows some of the most common camera-robot configurations typically used in
visual servoing systems. In our system, according to the figure, we are using a combina-
tion of VM1 and VM4 which is a special case of VM5. The available configuration usu-
ally determines the design of the feedback system. For example, an eye—in—-hand camera
configuration commonly requires fast image processing (since the image changes with
each motion of the arm) as well as the flexibility in terms of scale. Since there is a
significant difference between the start and the destination pose, 2 1/2 D approach is
commonly adopted control strategy [10], [12]. A stereo stand—-alone system requires
less features per image and, for the case of static targets, the appearance of the features
may remain almost constant throughout the visual servo sequence.

There are numerous examples where one or the other control approach or config-
uration will perform better. To that end, we have decided to use a number of different
systems and use them depending on the task at hand and at the level of detail/complexity
needed to perform the given task.

3 Transportation and Alignment

The following sections give a short overview of the image processing methods currently
exploited in the system.
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Fig. 2. Most common camera—robot configurations: monocular eye—in—hand, monocular stand—
alone, binocular eye—in—hand, binocular stand—alone and redundant camera system. In our sys-
tem, we are using a combination of VM1 and VM4 which is a special case of VM5.

3.1 Recognition

The object to be manipulated is first recognized using the view-based SVM (support
vector machine) system presented in [7]. The recognition step delivers the image posi-
tion and approximate size of the image region occupied by the object. This information
is then used i) either by the tracking system to track the part of the image, the window
of attention, occupied by the object while the robot approaches it, or ii) by the stereo
system to provide a rough estimate of the object’s 3D position. Recent research on hu-
man vision has clearly demonstrated that re-cognition of prior known objects can be
efficiently modeled as a view based process [16], [17], which motivates our use of an
SVM based approach to recognition.

3.2 Region tracking

Our tracking system is based on integration of multiple visual cues using voting, [5].
The visual cues used are motion, color, correlation and intensity variation. Cues are
fused using weighted super-position and the most appropriate action is selected accord-
ing to a winner-take-all strategy. The advantage of the voting approach for integration
is the fact that information of different cues can be easily combined without the need
for explicit models as it is for example is the case in Bayesian approaches. Lots of per-
ceptual experiments support the idea that when it comes to aspects of visual scenes,
people most likely mention color, form and motion as being quite distinct. There is a
believe that information about form, color, motion and depth is processed separately in
the visual system. However, it has also been shown that the segregation is not complete
and there is a cross-talk among different cues [18].

3.3 Pose estimation and tracking
Our model-based tracking system integrates the use of both appearance based and ge-
ometrical models to estimate the position and orientation of the object relative to the

camera/robot coordinate system, [6]. There are basically three steps in the system:

— Initialization - here, Principle Component Analysis (PCA) is used to provide an
approximation to the current object pose.
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— Pose Estimation - To estimate the true pose, the initialization step is followed by a
local fitting method that uses a geometric model of the object. This is made possible
by the fact that we deal with an object that has already been recognized and thus its
model is known. The method used here was proposed in [8].

— Pose Tracking - If the object or the camera start to move, the system will provide a
real-time estimate of the object pose. Again, the method proposed in [8] is used.

It has been shown in [20] that visuo-motor actions such as grasping, use the actual size
of the object and that the position and orientation are computed in egocentric frames of
reference. Thus, human reaching movements are planned in spatial coordinates, not in
joint space. If an accurate pose of the target is available together with a good arm model
(which is true in our case), one can use the ideas proposed in [19] to generate human—
like arm trajectories. In our case, both IBVS and PBVS are used as demonstrated in

[5].

3.4 Homography based matching

Using a stored image taken from the reference position, the manipulator can be moved
in such a way that the current camera view is gradually changed to match the stored
reference view (teach—by—showing approach). Accomplishing this for general scenes
is difficult, but a robust system can be made under the assumption that the objects are
piecewise planar. In our system, a wide baseline matching algorithm is employed to
establish point correspondences between the current and the reference image [12]. The
point correspondences enable the computation of a homography H relating the two
views which is then used for 2 1/2D visual servoing.

4 Grasping

The following sections give a short overview of the current grasping strategies where
tactile and force-torque feedback are considered. The grasping system is still in its
initial phase and does not perform any intelligent grasp planning. The main objective
here was to design a system which will be able to perform a grasp even if the pose of
the object is not perfectly known. Therefore, the current implementation considers only
power grasps.

4.1 Grasp modeling

After the arm (hand) is aligned with the object, grasping can be performed. Using the
available pose estimate and tactile feedback, the grasping system compensates for mi-
nor errors in the pose estimate. The grasping strategy is formulated using finite state
machines (FSM) [14]. Using the general idea proposed by [15], the basic states, g; of
a FSM are shown in Fig.3. These states basically mimic the human grasping proce-
dure. In addition, Fig.3 shows the actions, a;, needed to execute the grasp. Also, basic
conditions, e; under which the actions, a; are running are outlined.

For the control of grasping, ourthree--fingered Barrett hand has been equipped with
two types of tactile sensors. The palm is equipped with a touch pad for detection of palm
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g0  Hand opened

gl  Approaching towards object

g2  Checking sensors

g3  Grasping binocular
vision

G4 Hand closed

g5  Checking grasp quality

e3/a0 g6  Optimum grasp

q7  Object lifted Yorick head +—

a0 Open hand
al  Movearm force-torque
a2 Check sensors sensor

a3 Close hand eye-in—-hand
a4 Check grasp quality camera

a5 Lift object

e0  Good contact Barret hand
el  No good contact
e2  Good grasp

e3  No good grasp or
No object grasped

Fig. 3. Left) Minimized abstract representation of the grasping process, and Right) XR4000
equipped with an eye—in—hand camera, stereo head, JR3 force--torques sensor, and Barret hand
with tactile sensors.

contacts. In addition, each link of the three fingers have basic sensors for detection of
contact. In addition, the arm has a force torque sensor for overall sensing of hand forces.
The details of the setup are described in Section 5.1. To achieve the desired flexibility
of the system, ideas from behavior-based planning were used, see [13] for details.

5 Experimental evaluation

In this section, a few examples are presented to demonstrate the system. Since the task is
given (i.e. “Robot, pick up the raisins.”), the object to be dealt with is known in advance
as well as the transport-align-grasp strategy to be used. This is explained in more detail
with each of the examples.

5.1 Experimental platform

The experimental platform is a Nomadic Technologies XR4000 equipped with a Puma
560 arm for manipulation (see Fig. 3). The robot has two rings of sonars, a SICK laser
scanner, a wrist mounted force/torque sensor (JR3), and a color CCD camera mounted
on the gripper (Barrett Hand). On the robot shoulder, there is a Yorick robot head pro-
viding a stereo visual input. The palm of the Barrett hand is covered by a VersaPad
sensor. The Versa Pad was designed to be used as a touch pad on a laptop. It reports the
following: i) a Boolean value if the pad is active (contact occurred), ii) the coordinates
of the contact point , and iii) pressure at the contact point. On each finger link, an An-
droid sensor is placed. It reports the pressure applied on the link. The wrist mounted
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JR3 force—torque sensor is here primarily used as a “safety—break” for the system: if
the contact occurs on the VersaPad’s “blind” spot, it can still be felt by the JR3 sensor.

5.2 Example 1.

This example shows the basic idea for “Robot, pick up the raisins” task. The object is
first located in the scene using the recognition system, see Fig. 4. The object is poly-
hedral and in this case a homography based approach is used during the align step.
The current image is compared with the stored image of the object as presented in Sec-
tion 3.4. 2 1/2 D visual servoing is the used to control the motion of the robot. After the
hand is aligned with the object, an open—loop grasp strategy is performed to pick-up the
object. A few example images during servoing onto and grasping a package of raisins
are shown in Fig. 5.

]

RUSSIN

Fig.4. a) and b) Images observed by the left and right head camera, respectively. The windows
show the position of the raisins package estimated by the recognition system. c) image observed
by the eye—in—hand camera, and d) destination image used for 2 1/2 D visual servoing.

Fig. 5. A few example images during servoing onto and grasping a package of raisins.

5.3 Example 2.

Fig.6 shows an example where model-based pose estimation/tracking system is used to
estimate the complete pose of the object and then align the gripper with it. After that,
the the object can be grasped. Since the model of the object is available, it is enough to
use one camera during the whole servoing sequence.
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Fig. 6. The basic idea of our approach: after the object is recognized, 2D tracking is used to
approach the object. After that, the appearance based approach followed by a local fitting stage
is used to estimate the current pose of the object. After that, simple grasping can be performed.

5.4 Example 3.

Fig. 7 shows the image position of two example objects (a soda bottle and a cleaner
item) estimated by the visual recognition system. Using the knowledge of the head
camera intrinsic and extrinsic parameters, an approximate 3D position of the object is
estimated. It is assumed that the object is in vertical position. The arm is then aligned
with the object so that the palm of the hand is facing the object, see Fig.8. Finally, the
hand is moved towards the object in the direction orthogonal to the palm plane.

Fig. 7. a) and b) The position of a soda bottle, and ¢) and d) the position of a cleaner bottle in left
and right head camera images estimated by the recognition system.

Fig. 8. a) Approaching the bottle, b) Grasping, and c) Lifting.
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5.5 Example 4.

Fig.9 shows an example grasping sequence where the Android sensors on the hand’s

fingers are used during grasping. Here, a contact with one of the fingers occurs before
the contact with the palm. The hand is driven in the horizontal plane to center the object

inside the hand. The hand is moved until contact with each of the fingers is reported. If
no contact is reported from one of the sensors, the principle described in the previous

experiment is used.

Fig. 9. Grasping a cleaner bottle (see text for detailed description).

6 Conclusionsand Futurework

We have discussed major building blocks of a typical manipulation tasks in terms of a
service robot. Assuming a task such as "Pick up the cup from the dinner table”, we have
presented a number of different visual systems required to accomplish the task. The
classical transport-align-grasp strategy was used to choose between available feedback
systems. Both visual and tactile feedback were used to accomplish the given task.

In terms of image processing used during the transportation step, we have presented
a recognition system which provides a position estimate of the object, and a 2D track-
ing system used to keep the object in the field of view. For the alignment step, two
systems are available. The first is a model based tracking system that estimates the
complete pose/velocity of the object. The second system is based on corner matching
and estimates homography between two images. In terms of tactile feedback, we have
presented a grasping system that currently performs power grasps. The main objective
here was the design of a system capable of compensating for minor errors in object
position/orientation estimate caused by the vision system.
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