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Abstract

The dynamic systems approach to robot planning and control defines a “dynamics” of
robot behavior in which task constraints contribute independently to a nonlinear vector
field that governs robot actions. We address problems that arise in scaling this approach
to handle complex behavioral requirements. We propose a dynamics that operates in
the space of task constraints, determining the relative contribution of each constraint
to the behavioral dynamics. We find that competition among task constraints is able
to deal with problems that arise when combining constraint contributions. Competitive
dynamics makes it is possible to specify behavioral requirements (i.e. tasks) that are
more complex than simple navigation. To demonstrate the utility of this approach, we
design a system of two agents to perform a cooperative navigation task. We show how
competition among constraints enables agents to execute sequences of behaviors that
satisfy task requirements. In addition, we demonstrate the scalability of our competitive

dynamics approach to the design of complex robotic planning systems.



1 Introduction

Over the past twenty or so years there has been a great deal of research in the field of robot path
planning and control. Much of this work has focused on finding the best or most appropriate space
in which to represent the robot actions during the navigation task. In spite of this effort, however,
the issue of what is the best space in which to represent robot behavior remains an open question.
Geometric representations (e.g. [Schwartz and Sharir, 1983; Latombe, 1991]) model the geometry
of the agent and the external environment. The difficulty with this approach is that it is too static.
Configuration space representations [Lozano-Perez and Wesley, 1979; Murray et al., 1994] include
geometry and kinematics. The difficulty here is that these spaces are extremely complex and so
only simple configurations are computationally feasible. Potential field representations [Khatib,
1986; Koditschek, 1992] build upon configuration space representations, defining a state space over
which a potential field can be defined. Yet these representations too can be extremely complex.
The above approaches rely upon global representations of the world in which the robot operates.
Another possibility is to define a local representation (e.g. [Lumelsky and Stepanov, 1987]) and/or a
representation whose dimensions correspond to robot behavior (e.g. [Brooks, 1989]). The so-called
dynamical systems approach for robot path planning and control uses such a local behavior-based
representation [Schoner and Dose, 1992; Schéner et al., 1996]. In this approach a set of behavioral
variables defines a state space in which a “dynamics” of robot behavior is described. This approach

has the following features.

The level of modeling is at the level of behaviors. The dimensions of the state space correspond

to behavioral variables, such as heading direction and velocity.

e The environment is also modeled at a behavioral level. The environment provides task con-

straints, that provide the system with behavioral information.

e Task constraints are modeled as component forces that define attractors and repellors of a
dynamical system. The contributions are combined into a single vector field by additive

composition.

e Planning and control are governed by a dynamical system that generates a time course of the

behavioral variables. The dynamics is specified by erecting a vector field that governs the



behavior of the system.

Our work, presented in this paper, has been motived by this approach because it is suitable for
modeling the dynamics of the robot’s interaction with its environment in the navigation task. In
our view, this approach has several advantages. First, it does not make unreasonable assumptions,
or place unreasonable constraints on the environment in which the robot navigates. Although it is
a local approach, and therefore is not applicable to optimal path planning (c.f. [Desai et al., 1996]),
it is appropriate for planning and control in dynamically changing environments. In addition, the
fact that a behavior is generated by a nonlinear dynamical system means that we can make use of
properties, such as stability, bifurcation, and hysteresis, that enable planning decisions to be made
and carried out in a flexible, yet stable way. Similar modeling principles have been successfully
applied to develop theories of biological motion [Schoner and Kelso, 1988]. Most importantly, as
we will show, the dynamical systems approach is applicable to the production of behaviors that are
more complex than simple navigation, as long as one can express the requisite behavior in terms
of constraints in the space of behavioral variables.

In spite of its potential advantages, the generation of complex behaviors by nonlinear dynamical
systems poses certain problems. One fundamental difficulty with the simultaneous representation of
multiple constraints in a nonlinear vector field concerns the creation of spurious attractors. Unless
care is taken, as the number of constraints grows, non-independent contributions to the vector field
can combine in such a way that they give rise to attractors corresponding to undesired behaviors.
Spurious attractors may give rise to undesired behaviors such as running into obstacles, or getting
stuck in an area and never reaching a target location. In this paper, we investigate situations in
which non-independent contributions to the vector field can create spurious attractors and cause
related problems. We propose a solution that deals with multiple behavioral requirements using
weighting coefficients that determine the relative contribution of different task constraints at any
given time. The resultant weighted combination of constraints is similar in some respects to certain
connectionist approaches (e.g. [Jacobs et al., 1990; Jordan and Jacobs, 1994]), but it is not learned,
rather it is computed dynamically in response to the current environmental situation through a
competitive dynamics.

Our competitive dynamics enforces competition among task constraints (e.g. targets, obstacles,

other agents, etc.) based upon two factors: the applicability of a particular constraint in the current



situation, which determines its competitive advantage, and the degree to which the constraint is
consistent or inconsistent with other active contributions to the vector field, captured as competitive
interaction. These two parameters are bound to the agent’s current situation through functions
that are engineered by a designer and reflect the nature of the task. Given appropriately chosen
functions that tie these parameters to the environment, we show that this type of competition
solves spurious attractor problems for the case of two constraints, (target and obstacles), and we
demonstrate the scalability of this approach by designing a system of three task constraints. The
three-constraint system is used to control of a pair of cooperating robots (c.f. [Adams et al., 1995]).
Competition among task constraints produces simple and complex sequences of behavior that are
generated opportunistically, in response to specific environmental situations. We propose a set of
general design principles intended to serve as a guideline for the synthesis of systems with more
extensive behavioral repertoires.

This paper is organized as follows. In Section 2 we briefly review the most important concepts
of the dynamical systems approach to path planning and control, discussing potential problems
related to spurious attractors, and scaling to multiple behavioral requirements. In Section 3 we
develop a competitive dynamics solution to the problem of spurious attractors for the case of
two task constraints. We propose a general design methodology for engineering such competitive
dynamics. We show examples of the resultant system solving situations it could not solve before,
and generating simple sequences of behaviors. In Section 4 we apply our design methodology
to a system of two cooperative agents, each operating under three task constraints. We show
more complex behavioral sequences generated by this system. In a final section, we discuss the

implications for scaling of dynamical systems approach to the design of even more complex systems.

2 The Dynamical Systems Approach to Planning and Control

In the dynamic approach behavior is described in terms of a set of variables that define behavioral
dimensions. For the task of autonomous robot navigation one may represent the behavior of the
agent using heading direction, ¢ (—7 < ¢ < 7), and velocity, v [Schoner and Dose, 1992]. In this
paper, we focus on a single behavioral dimension, heading direction. We assume that velocity is
controlled by a dynamics similar to that described by [Neven and Schéner, in press].

Task constraints are expressed as points or parameterized sets of points in the space spanned by



the behavioral variables. For example, in the navigation task, the heading direction ., represents
the direction to the target location, while the direction .55 represents the direction to an obstacle,
as shown in Figure 1. Thus, desired behavioral states (such as moving toward a target) and
undesired behavioral states (such as moving toward an obstacle) are represented in a way that is

invariant to changes in the frame of reference [Schéner et al., 1996].

Figure 1 goes about here

2.1 Behavioral Dynamics

The behavior of the agent is modeled as a time course of the behavioral variables generated by a be-
havioral dynamics that incorporates both planning and control knowledge. For our one-dimensional

system, the dynamics take the following form.

é = f(9). (1)
Task constraints define contributions to the vector field, f(¢), by modeling desired behaviors as
attractors (Figure 1A) and to-be-avoided behaviors as repellors (Figure 1B) of the behavioral
dynamics. Thus, task constraints affect the behavioral dynamics, they do not specify behavioral
patterns directly. Behavioral patterns are generated by the behavioral dynamics.

A desired behavior is modeled as an attractor of the behavioral dynamics (shown in Figure 1A),

Fiyr = —a Sill(¢ - ¢tar)7 (2)

where pht is agent heading direction in world coordinates, and ., is the direction toward the
target location.

A to-be-avoided behavior is specified as a repellor (shown in Figure 1B).

Fobsi = Robsi X Wobsi X Dobsi (3)

The repellor corresponding to an individual obstacle (Figure 1B) is the product of three functions.
One function sets up a generic repellor in the direction of the obstacle,
(60— vi) 1-sn

7 [
Robsi - A’Q/JZ € ) (4)



a second limits the angular range of the contribution,

1
Wobs; = E[tanh(hl(cos(ob — ;) — cos(2A%; 4+ 0))) + 1], (5)
and a third scales the strength of the contribution according to the obstacle’s distance from the
agent.

ri —R;—Ragent

Dobsi = 6_ do (6)

The parameters to these function are, ¢, the heading direction of the agent, 1;, the direction to
obstacle 7, A, the angular range subtended by the obstacle, R;, the radius of the obstacle, and
Rogent, the radius of the agent, and o, a safety margin. The constant dy represents the distance
at which the agent begins to take obstacles into account. Obstacles that are very far from the
agent do not affect the behavioral dynamics, whereas nearby obstacles affect the dynamics quite
strongly. Further details regarding these specific functions can be found in [Schéner and Dose,

1992]. Multiple obstacles are handled by summing the contributions of individual obstacles.

Fobs = Z Fobsz‘ (7)
=1

Finally, the contributions of individual task constraints are combined additively into a single

vector field, specifying the planning dynamics, as illustrated in Figure 1C.

é = Fior + Fops + noise (8)

Because certain constraints are modeled as repellors, the planning dynamics is augmented by a
stochastic term that guarantees escape from unstable fixed points (repellors). This term can also
be thought of as modeling presence of noise, for example in determining obstacle position, or in
controlling effectors. An important feature of this approach is the concept of asymptotic stability
of behavior, brought about by generating behaviors from a dynamics, rather than directly from the
task constraints. Not only is the system robust to noise, it requires the presence of noise.
Qualitative change in behavior arises through change in the number, nature, or stability of

attractors and repellors. Such changes correspond to bifurcations in the vector field, which are



brought about by movement of the agent through the environment. Note, for example, the param-
eters to F,ps:. As the agent moves, the distance to the obstacle, and the angular range subtended
by the obstacle vary. Changes to these parameters cause bifurcations in the vector field that bring

about qualitative changes in the agent’s behavior, modeling planning decisions.

2.2 Superposition of Task Constraints and Spurious Attractors

In the dynamic approach, avoidance of a single obstacle is modeled by adding a range-limited re-
pellor to the vector field, while avoidance of multiple obstacles is modeled by summing multiple
range-limited repellor contributions. This strategy works because linearly dependent contributions
lead, through superposition, to averaging among corresponding constraints, while linearly inde-
pendent contributions allow for the expression of constraints that are incompatible, contradictory,
or independently valid. To understand what this means, consider the two situations depicted in
Figure 2. In Panel A, the agent faces a pair of obstacles that are positioned too closely together for
the agent to pass between them. The constraints represented by the two obstacles lead to a single
repellor in the vector field at their average location: behaviorally a single obstacle. In Panel B, the
agent again faces two obstacles, but this time they are positioned far enough apart for the agent
to pass between. These two constraints are independently valid, and an attractor is formed in the

vector field, behaviorally corresponding to steering between the two obstacles.
Figure 2 goes about here

An important restriction on this approach to combining obstacle constraints is that sensed
obstacles with a high degree of overlap cannot be allowed to contribute separately to the vector
field, because averaging of their contributions can create spurious attractors. Schoner and Dose
[Schoner and Dose, 1992] deal with this problem through a competitive interaction among obstacles.
Sensed obstacles that overlap are forced to compete in such a way the only one “representative”
obstacle is allowed to contribute to the vector field. More recent work has implemented competition
among sensed obstacles using a neural field architecture [Amari, 1977], with the general purpose of
cleaning up noisy perceptual information so that separate contributions to the behavioral dynamics
are guaranteed to have the desired properties [Engels and Schoner, 1995; Schoner et al., 1996]. A

second function of the neural field is that it enables the system to store information about its



environment in the form of a cognitive map. As the system explores its environment, it is able
to add to its knowledge. Through neural field dynamics, sensed and remembered information are
integrated into the vector field so that the system can make use of environmental information even

when it is not being directly sensed.

2.3 Competition Among Task Constraints

Our implementation of the dynamic approach has revealed that competition among obstacle con-
straints does not completely solve the spurious attractor problem. Situations can be created in
which the combination of the target contribution with multiple obstacle contributions creates spu-
rious attractors. Figure 3 shows two such situations. In Figure 3A, two obstacles are situated in
front of the agent in such a way that there is almost, but not quite enough space for the agent
to pass between them. If only the contribution of obstacles to the vector field is considered, a
repellor with a shallow slope is created at their average location. If the target is placed behind the
obstacles, however, so that its attractor contribution to the vector field “collides” with this repellor,
an attractor is created between the two obstacles. This attractor will cause the agent to get stuck

at this location.
Figure 3 goes about here

Figure 3B shows another situation in which the agent has moved down a hallway toward a target
location and has reached a dead-end; it is thus prevented from making further progress toward the
target. Once again, if only the obstacles contribution is considered, a shallow repellor exists that
would cause the agent to turn around and leave the hallway. However, the repellor is contradicted
by the target contribution and the agent is stuck at the dead end.

The reason that spurious attractors are created in these situations is that the relative strength
of each contribution (Fj,, and Flss) to the vector field is determined solely by the fixed time scale
of the individual contributions to the planning dynamics. In order to deal with situations such as
we have described above, we further modify the strength of each contribution with a specific weight

that is assigned to each type of task constraint, target and obstacles.

65 = |wtar|Fta7° + |wobs|Fobs + noise (9)



Weights are assigned through a competitive dynamics that determines the strength of each contri-

bution depending upon the current situation.

w; = a;wi(l — w;‘)) — E'Ww?wi + notise (10)
i#i

The state space of this dynamical system corresponds to the set of task constraints; the first system
we will consider is two dimensional, with state vector [wyqy, wops]. The parameters, o; and 7;;, are
referred to as competitive advantage and competitive interaction, respectively. In our application,
competitive advantage, a;, describes the degree to which constraint ¢ is appropriate to the agent’s
current situation. Competitive interaction, 7;;, is used to describe the extent to which constraint
7 is consistent or inconsistent with constraint ¢ given the current situation.

The first term of the dynamic equation is a normal form for the Hopf bifurcation (e.g. [Guck-
enheimer and Holmes, 1983]). If we consider this term alone then a; is the only parameter. When
a; < 0, w; has a stable fixed point at 0; when «; > 0, w; has stable fixed points at 1 and -1. The
second term specifies competitive interaction from other constraints. The dynamics in the case of
multiple competing constraints is more complex, and will be investigated for the cases of two and
three interacting constraints by stability analyses, described below.

Equation (10) describes a competitive dynamics similar to that proposed in [Schéner and Dose,
1992] for implementing competition among sensed obstacles. For the case of competition among
obstacles, however, the difficulty in applying this competitive scheme was that it meant equating
each obstacle with a dimension of the state space. This required determining, in each simula-
tion cycle, a correspondence between currently sensed obstacles and previously sensed obstacles, a
computationally difficult task [Schéner and Dose, 1992]. Implementing competition in an Amari
field solved this problem, but at the expense of simulating a two dimensional integrodifferential
equation, a computationally intensive proposition. Our use of competitive dynamics (i.e. Equation
(10)) will not be vulnerable to the correspondence problem, however, because we use competition
to determine the weighting of a fixed set of behavioral constraints. Therefore, it is not necessary
to resort to more computationally expensive means. In fact, we will see that this approach scales
nicely, both in terms of computational and design complexity, to the specification of more complex

systems.



In the next section, we use competition to address the issue of spurious attractors in the two
constraint case. In this process, we outline a set of design principles that will be applicable to
the specification with larger numbers of behavioral requirements. We claim that this strategy of
competitive interaction among task constraints, combined with our design methodology, is general
enough to support systems in which the the agent has a rich set of behaviors. In the following
section, we demonstrate scalability by using this methodology to design an agent with three task

constraints.

3 Solving the Spurious Attractor Problem for the Two Con-

straint Case

As introduced above, we will first use competitive dynamics to address the spurious attractor
problem for the two behavior case. Our development will proceed in three stages. First, we perform
a stability analysis that will tell us how relative values of the parameters a; and 7;; determine the
resultant weighting of component behaviors. The second stage consists of a geometrical analysis
in which we identify situations where the two constraints, farget and obstacles are incompatible.
By “geometric” we refer here to the geometry of the state space of the behavioral dynamics.
This leads to the design of functional forms that tie competitive interactions, i.e. the 7;;, to
specific situations. Finally, we perform a behavioral analysis. In this stage we determine which
environmental situations call for the activation of which behaviors. This leads to the design of

functional forms for the competitive advantage, a;, of each constraint.

3.1 Stability Analysis

A linear stability analysis (e.g. [Perko, 1991]) was performed on the system described by Equation
(10) for i € 1,2, i.e. the case of two behavioral constraints. The analysis reveals the qualita-
tive behavior of the competitive dynamics by enumerating the set of equilibrium points for the
two-dimensional system and classifying each equilibrium point according to its stability, i.e. it
determines whether the fixed point is an attractor or repellor of the competitive dynamics. We
assumed a;,7;; > 0. Because the stability of each equilibrium point changes depending upon the

values of the parameters a; and 7;;, we also computed a set of stability conditions, relative values

10



of the parameters that determine the conditions under which each fixed point is stable or unstable.

The results of our analysis are shown in Table 1. There are nine equilibrium points, because
each non-zero point has both a positive and negative value. The positive and negative values have
the same stability conditions, and in addition, the absolute magnitude of each weight is used to
determine the contribution of the corresponding behavioral constraint. Thus, due to symmetry,

these nine reduce to four unique equilibrium points.
Table 1 goes about here

Fach of the four unique equilibrium points corresponds to a different composition of constraints
in the vector field that governs the behavioral dynamics. Thus, each leads to qualitatively different
behavior for the agent. The first point, (0, 0) corresponds to both constraints, (target and obstacle)
being effectively turned off. This point is unstable (a repellor of the competitive dynamics) as long
as Qigr, Qops > 0.

The point (w¢q,, weps) = (0, 1) corresponds to the activation of obstacles, and the deactivation
target. It is stable as long as Yobstar > Qtar. In other words, this point is an attractor of the
competitive dynamics whenever competitive interaction from obstacles to larget is greater than the
competitive advantage of targel. The resultant behavioral composition is appropriate in situations
such as depicted in Figure 2A, in which the additive composition of these two constraints would
lead to the creation of a spurious attractor in the vector field.

The point (wqr, wops) = (1, 0) corresponds to the activation of target, and deactivation obstacles.
It is stable as long as 7¢4r0bs > @ops. In other words, this point is an attractor of the competitive
dynamics whenever competitive interaction between larget and obstacles is greater that the com-
petitive advantage of obstacles. This behavior is appropriate in situations in which there are no
obstacles near the agent.

Note that the above stability conditions are not mutually exclusive. When both conditions are
satisfied, we have bistability, and hysteresis will determine the outcome of the competition. In other
words the behavior that is selected by the competition will depend upon the previous history of
the system. Although we will not see an example of hysteresis in our two constraint system, this
type of solution is appropriate, in general, when the environmental situation is ambiguous.

Finally, the point (wiar, Wops) = (Atar, Aohs) corresponds to the activation of both constraints.

It is stable whenever ayq, > 7Vobs,tar and aops > Yiarobs. This is the so-called “averaging” solution

11



[Schoner and Dose, 1992]. It is an attractor of the competitive dynamics whenever the competitive
advantages of both constraints outweigh the competitive interactions between them. This solution
yields a behavior in which both constraints are combined by additive superposition in the vector

field.

The “averaging” solution, is given by

@0 — 0%

(11)

Q05 = Y4575,
If there is no competition between constraints, 7; ; = 0 V ¢, 7, both constraints are activated at full
strength. In this case the resulting behavioral dynamics reduces to that described in [Schéner and
Dose, 1992]. If there is some competition, both are still active, but at reduced levels. This behavior
is appropriate when the two constraints are both in play and are not in conflict with one another.
In summary, the stability analysis reveals two important facts about the competitive dynamics.
First, it tells us that in a system of two behavioral constraints, target and obstacles, three behaviors
are possible: target seeking alone, obstacle avoidance alone, and the combination, target seeking
plus obstacle avoidance (arising from the the so-called “averaging” solution). We will design our
system so that as the environmental situation changes, parameters to the competitive dynamics
will also change, causing bifurcations in the competitive dynamics. These bifurcations allow the
system to “decide” which of these three behaviors is appropriate in any given situation. Second, this
analysis describes how different values of the competition parameters select categories of behavior.
In the next two sections, we complete our design by choosing functions that bind the values of these

parameters to specific situations in the environment.

3.2 Geometrical Analysis

In this section, we determine the situations in which target is incompatible with obstacles, with the
goal of preventing the creation of spurious attractors. Qur strategy is based on the observation
that whenever an attractor and a repellor collide (see Figure 3), unwanted consequences may
result, because the two contributions are 1) non-independent and 2) contradictory. Thus, our
analysis depends upon the geometry of the behavioral state space. Specifically, we design “fixed
point detectors” that describe the location and stability of the fixed points for each contribution

to the behavioral dynamics. We then use these functions to define competitive interaction between

12



the two task constraints.
Our first task is to design functions that identify attractors and repellors for the individual
contributions to the behavioral dynamics. For the target contribution, we use:
dFta’r

Prar = sgn( do ) etFiarl, (12)

This function has two factors. The first calculates the sign of slope of the vector field contribution.
This determines whether a fixed point is an attractor (negative slope) or a repellor (positive slope).
The second finds fixed points, using a function that has a value of one when the vector field
contribution is equal to zero, and falls to zero as the magnitude of the contribution grows. The
constant ¢; determines the rate of fall off, allowing the specification of a safety margin around the
attractors and repellors if necessary. Pj,, has a value of one at a repellor, minus one at an attractor,
and values approaching zero elsewhere. Thus, it describes the location and stability of the fixed
points of the target contribution to the behavioral dynamics.

The situation is slightly more complicated for obstacles, however. Because individual obstacle
contributions are range limited, i.e. have values near zero outside an obstacle’s range, Equation (12)
may identify these areas as fixed points. Thus, for obstacles, we sum the range-limiting functions
for the obstacles given in Equation (5) (i.e. Weops = > 1y Wops, ), and use this as a multiplicative

factor.

dF s
Py = Wops Sgn(d—(bb) €1 Fovs| (13)

As above, this function has a value of one at a repellor, minus one at an attractor, and values
approaching zero elsewhere. Thus, it describes the location and stability of the fixed points of the
obstacles contribution to the behavioral dynamics.

Next we design the competitive interaction function itself. We use Py, and P,ps to construct a
function describes the competitive interaction between obstacles and target as:

e C2 PriarPops

Yobs,tar = oc2 (14)

The graph of Equation (14) is shown in Figure 4, for the situation depicted in Figure 3A. Note that

it is strongly peaked at the point of attractor-repellor collision. The constant ¢y determines the

13



rate of drop off around the collision. Note also that it also provides a certain level of background
competition that we will later use to help determine the appropriate level of competitive advantage,

Qyqr, for target.
Figure 4 goes about here

Finally, we choose the competitive interaction between target and obstacles. For the current
navigation task, it is never appropriate for targel to deactivate the obstacles constraint. Thus, we
simply choose a low constant value, such as 74,065 = 0.05, allowing this constraint to be activated

whenever the agent approaches an obstacle.

3.3 Behavioral Analysis

In the previous section, we designed functions that capture situations in which target and obstacle
should compete, i.e. when attractor and repellor contribution would “collide”. From the stability
analysis we know how to pick relative values of a; and 7;; in such a way that we can choose the
type of constraint composition that we would like. In this section, we complete the design, choosing
values for the competitive advantages so that, in situations where the two behaviors compete (near
the peak of Equation (14)), we can determine the outcome of the competition.

First, we note that the target constraint should be turned on whenever possible. For example,
we can choose a constant value of @y, = @4, such that whenever obstacles actively competes with
targel, Vobs,tar > @Qtqr and targel will lose the competition. On the other hand, as long as a,,
exceeds the background level of competition created by Equation (14) (see Figure 4), target will be
activated.

Next, we must decide how to set the competitive advantage for the obstacle contribution.
Intuitively, we observe that obstacles should have high competitive advantage when they are nearby
and/or when there are many of them around the agent. We have already encountered a function that
grows exponentially fast as we approach an obstacle, Dys, (Equation (6)), which is a component
of the function Flps,. In order to count the number of obstacles around the agent, the we simply
sum the Dgps,. We then limit the maximum value of the a,s, resulting in the following function

for competitive advantage.

14



a5 = tanh Z Dy, (15)

=1

This completes our design.

3.4 Examples

In section 2.3 we saw two situations in which spurious attractors were created by additively combin-
ing non-independent, contradictory contributions to the vector field. In this section we demonstrate
how competition deals with these situations using output from a graphic simulator. The same sim-
ulator serves as a dynamic planner/controller for a pair of mobile robot platforms in our laboratory.

First, in Figure 3A, a spurious attractor arose when a shallow repellor, created by two obstacles,
was combined with an attractor from the target contribution. Figure 5 shows four snapshots from an
episode in which the agent, using competition among behavioral constraints, successfully navigates
this situation. Figure 5A shows the agent en route toward the target. It is far enough from the
obstacles that it has not yet seen them, thus wy, = 1, weps = 0, and the vector field consists only of
the attractor contribution. Figure 5B shows the situation shortly after the agent has detected both
obstacles. The reader should compare this situation with that of Figure 3A. Unlike in Figure 3A,
however, in Figure 5B the vector field consists solely of the obstacles contribution. This is because
competitive interaction increased, as shown in Figure 4, vops¢ar > Qtqr, and largel is deactivated,
while aops > Yiar,obs, and obstacles is activated. Figure 5C shows the situation a few time steps
later, when the agent has turned away from the target. Competitive interaction has dropped,
so that o, > 7Yobstar and target is turned on, while it is still the case that ags > Yiarobs 5O
obstacles is turned on as well. This is the “averaging” solution, resulting in a composite behavior
that combines the two constraints. Finally, Figure 5D shows the agent as it rounds the leftmost
obstacle, successfully approaching the target. It is the combination of task constraints that causes
the agent to round the obstacle, rather than to simply steer away from the obstacle. Note also that
the agent has produced a sequence of behaviors: a seek behavior, followed by an avoid behavior,
followed by a composite behavior. This simple sequence demonstrates each unique behavior that

arises from the competitive dynamics for the case of two constraints.

Figure 5 goes about here
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Next, we turn to a more complex situation in which the agent is trapped in an enclosure that
is preventing it from reaching the target location. In this situation, depicted in Figure 3B, larget
will be deactivated by competition (see Figure 4) only so long as the agent is pointed more-or-
less directly toward the target location. When the agent turns away, the competitive interaction
(7Vobs,tar) Will drop, and the influence of target will once again cause the agent to turn toward the
target. The problem here is not simply that target and obstacles are contradictory. Rather, in this
situation, farget is not a useful constraint. The agent is trapped in an enclosure from which it must
escape before target seeking behavior becomes useful. In other words, the agent must establish the
intermediate goal of escaping from the enclosure.

This is the type of situation in which it is appropriate to temporarily disable target, until the
agent has escaped from the enclosure. We can characterize this general type of situation heuristically
by observing that the agent is 1) surrounded by obstacles, and 2) has no line-of-sight path to the

goal. Thus, we rewrite the expression for competitive advantage of the target as:

Qiqr = Qtgr — (1 - ‘/75117”)@“17"&065 (16)

Here, a4y, is the competitive advantage for target, as described above. a.5 is the competitive
advantage of obstacles, which increases as obstacles get close and/or increase in number, and Vi,

takes on a value of 0 when there is no line-of-sight path to the target location:

0 if obstacle between agent and goal
Viar = (17)

1 otherwise

Thus, the second term of Equation (16) implements a heuristic “enclosure detector”, and ayq, =2 0
when the agent is trapped. This is an example of a situation in which the behavioral situation itself,
rather than the contradictory nature of behavioral constraints, temporarily rules out a particular

behavioral contribution. For the examples below we choose a;,, = 0.4.
Figure 6 goes about here

Figure 6 shows an example of the agent successfully negotiating the hallway trap using the
competitive advantage described by Equation (16). In Figure 6A it travels to the end of the hallway.

Both the constraints are active, because the agent is avoiding the walls, thus the contribution of
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obstacles forms an attractor dead ahead, consistent with the direction to the target. In Figure 6B
the agent has encountered the dead-end and has begun to turn away. If the collision of an attractor
and repellor were the only factor in deactivating target the agent would quickly turn back toward
the target. However, because oy, falls below the background level of competition target is turned
off regardless of active competition from obstacles. Next, Figure 6C shows an interesting, and less
obvious, case in which an attractor and a repellor collide: when the attractoris supplied by obstacles
and the repellor is contributed by target. Here the agent must move directly away from the target in
order to escape from an enclosure, and make further progress toward the target. Note that asq, > 0
(the agent no longer senses the obstacles between itself and the target) yet wy,, = 0; this is again
due to increased competition from the collision of an attractor with a repellor. Finally, Figure
6D shows the agent successfully making its way out of the enclosure and toward the target. Once
again, we have seen a behavioral sequence arise due to competition among behavioral constraints.
We have also seen a situation in which the behavioral situation itself, rather than the contradictory
nature of task constraints, temporarily rules out a particular contribution. We will encounter more
complex sequences in the next section.

In summary, we have described a method of weighting behaviors that precludes the creation of
spurious attractors in the vector field through competition amongst individual contributions. The
basic idea is that the competition equations detect situations in which non-independent contribu-
tions to the vector field are contradictory, and sets the parameters of the competition in such a way
that one of the contributions is turned off. We have shown that this method works well in the case
of the simple two-constraint system. In addition, in the process of constructing the above system,
we outlined a design methodology: stability analysis, geometrical analysis, behavioral analysis. In
the next section, we design a system of three task constraints to demonstrate how this approach

scales when system requirements are more complex.

4 A Case of Three Constraints

In this section, we consider the case of a more elaborate system. We have two agents, and we define
an extension of the navigation task as follows. First, both agents must obey the same constraints
as in the above system, target, and obstacles, i.e. they must perform the navigation task. Second,

we impose the additional constraint that the two agents must remain near one another as they
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make their way toward the target location. We will call this additional constraint other. Thus,
each agent must respect three behavioral requirements.

We begin by making some simplifying assumptions. First, both agents’ behavior is governed
by the same behavioral dynamics, with the same parameter values. Thus, the behavior of each
individual agent is described by identical equations, but generated independently, by the time
course of its own behavioral variables. Second, target seeking and obstacle avoidance are to operate
as in single agent case, described above. Third, if the agents come too close to one another, they
are to avoid collision in the same way as they would avoid stationary obstacles.

Next, we consider the additional constraint of staying near the other agent. Similarly to target

seeking, we model this constraint as a global attractor.

Foup = —asin(¢on) (18)

The contribution of other is weighted and added to the composite vector field:

é = |Wiar| Frar + |Wobs| Fobs + |Worn| Foth + noise (19)

The potential problem with combining these three constraints lies in the composition of target
and other, as depicted in Figure 7. In Figures 7A and B, we see a situation in which two agents
are headed toward the target, yet one is considerably ahead of the other. In Figure 7A we look at
the situation from the point of view of Agent 2 (bottom). The composition of the target and other
contributions sum in such a way the the agent is to move straight ahead. This is acceptable for
Agent 2, since both the target and the other agent are lie in the same direction. In Figure 7B we
see the situation from the point of view of Agent 1 (middle). The target and the other agent lie
in opposite directions, and the composition of these two contribution cancel one another entirely.
This is clearly not acceptable. A different situation is depicted in 7C, shown from the point of
view of Agent 2 (bottom). The target is to the right, and the other agent is to the left. The two
contributions sum such that a single attractor lies in their average direction. This situation may
also be unacceptable. Thus, the problem with the composition of target and other, is that summing
these non-independent contributions averages the corresponding constraints. In some cases (Figure

7TA) this yields appropriate behavior, in other cases (Figures 7B and C) is does not.

Figure 7 goes about here
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Our task will be to design the competitive dynamics so that both agents will behave in a sensible
manner when these three constraints are combined. We proceed according to the design methodol-
ogy outlined in Section 3. First, we perform a stability analysis to determine the equilibrium points
of the competitive dynamics and their associated stability conditions. Second we decide when the
behaviors are consistent/inconsistent to determine appropriate competitive interaction functions.
Finally, a behavioral analysis determines which constraints are appropriate in which situations,

yielding the competitive advantages.

4.1 Stability Analysis

As in the case of two constraints, we performed a stability analysis to determine the unique equi-
librium points of Equation (10) for three behaviors. As above, we assumed «a;,7;,; > 0. The results
of the analysis are shown in Table 2, revealing eight unique equilibrium points, seven of which are
stable for some parameter regime. The stability analysis also reveals distinct classes of solutions.
Thus, rather than describe each behavior individually, we describe only each class of stable fixed
points. This will make the job of understanding the competitive dynamics easier. It will also

illustrate important features regarding the scalability of this approach.
Table 2 goes about here

The first class of solutions corresponds to one constraint being activated, and the others de-
activated. Let us refer to the active behavior as behavior ¢. This solution is stable so long as
Yi; > oj, ¥ j # 1. In other words, behavior 7 is the sole winner of the competition whenever it is
active, and simultaneously inhibits all other behaviors.

The second class of solutions corresponds to two constraints being activated and the third
deactivated. Let ¢ and j be the activated constraints, and k& be the deactivated constraint. Then
this solution is stable whenever a; > 7;; and a; > 7;;. Additionally, it must be the case that
Yijk > o or 7 > ap. The latter condition says at least one of the active constraints must be
inhibiting behavior k. The former condition is equivalent to the condition of the averaging solution
for the case of two behaviors. Furthermore, the averaging solution itself is the same as it would be
in the two-constraint case, i.e. it is given by Equation (11).

Note that, similarly to the two-dimensional case, the above stability conditions are not all

mutually exclusive. In cases of bistability, equilibrium points will be determined by hysteresis, thus
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the resultant behavior of the agent will be determined by its past history. As we shall see below,
this provides a type of behavioral stability that is useful in ambiguous situations.

The final class of solutions consists of a “3-constraint averaging” solution, where all three
contributions are active. This point is stable so long as a; > v;,; for all j # 7. While it is possible
to write down a closed form for this solution, it is not particularly informative, so it is not included
here.

This analysis points up some interesting properties of the competitive dynamics that have impli-
cations for scaling this competitive strategy to systems composed of larger numbers of constraints.
First, note the stability conditions for each class of behaviors. Summarized, these conditions tell
us that a constraint is deactivated when it is inconsistent with any single active constraint; con-
versely, it is activated only when it is consistent with all other active constraints. Thus, a complex
conspiracy of competitive interactions is not required to activate or deactivate a constraint. The
important implication of this observation is that we can design the competitive dynamics simply
by considering pairs of behaviors, it is not necessary to consider more complex interactions. This
is not obvious simply by inspection of Equation (10), but it is revealed by the stability analysis.

Second, we can count the number of unique behaviors that arise in a n-constraint system. It
is simply the number of ways to chose one active behavior, plus the number of ways to chose two

active behaviors, and so on. In other words, the number of behaviors generated in such a system

]V:(?)+"‘+<Z):g;(7;):2n_l' (20)

This count, N, includes only qualitatively different compositions, it does not consider the con-

is:

tinuously many graded compositions that arise from the “averaging” solutions as unique. Finally,
consider that the straightforward implementation of the dynamics, using Euler integration of Equa-
tion (10), has time complexity O(n?) for each time-step. Thus, although implementation is not
cheap, it is certainly tractable, and it is also vectorizable.

In summary, the stability analysis has revealed important facts about the scalability of this
approach. In an m-constraint system, competition provides 2" — 1 unique behaviors, while simu-
lation of the system has time complexity O(n?) per Euler time step. In addition, designing the

2

system requires at most n? design decisions: n? — n competitive interactions, plus n competitive
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th constraint

advantages. Furthermore, given an existing (n — 1)-constraint system, one adds the n
simply by considering interactions with each of the existing n — 1 constraints. The existing system
will function as previously designed without unwanted interactions caused by the introduction of
the new constraint. Thus, the stability analysis has also revealed how to design the competition
parameters for our three-constraint system: we need only specify the competitive advantage for

the new constraint, other, and the competitive interactions between the new constraint and the

existing constraints, ltarget and obstacles.

4.2 Geometrical Analysis

Next we use the results of the stability analysis to design competitive interactions. Our first goal is
to build upon the previous design. We wish to have each agent behave as in the previous system with
respect to targel and obstacles. As discovered above, we can accomplish this goal by simply leaving
the competitive advantages and competitive interactions for these two constraints the same as in
the previous design. Our new constraint will not interfere with the existing system of constraints.
Therefore, we simply design the competitive interaction between our new constraint and the two
existing constraints.

Next we add the new constraint, that of staying near the other agent. As described above, this
behavior is modeled as a global attractor centered in the direction of other agent. The primary
difficulty lies in the composition of target and other as shown in Figure 7. Because both constraints
are modeled as global attractors, their respective contributions will always be non-independent, thus
simply summing the contributions to the vector field will cause averaging between the corresponding
constraints. In most situations the resulting behavior will not be appropriate, and we will want
to enforce strong competition between the target and other so that the agent must decide to go
in one direction or the other. However, there will also be some situations when moving in the
average direction does represent the appropriate behavior. When the target and the other agent
are in opposite directions we wish to force a decision, but when they lie in the same direction, both
constraints can be satisfied simultaneously. In general, we can say that when the two goals lie in
approximately the same direction, we allow the averaging solution. When they are in very different
directions, we must force a decision. We can accomplish this type of competitive interaction using

the following function.
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Ytar,oth = Yoth,tar = bl(tanh(_bQ COS(¢ta7’ - ¢oth) + b3) + 1) (21)

Equation (21) is graphed in Figure 8. Note that competition is high except for a certain region
around an angular difference of zero. The size of this region can be adjusted using the constant
b3, while the slope of the boundary is adjusted using b;. The parameter by sets the overall level of

competitive interaction.

Figure 8 goes about here

4.3 Behavioral Analysis

Next we need to decide upon the competitive advantage of other. In terms of competitive advantage,
other is somewhat different from target. Because we simply want the agents to remain “near” one

another, we want to deactivate other when the agents are close enough. Thus we choose:

Toth

ed1 - (1 - ‘/oth)aothaobs (22)

Qoih, = oy, tanh

Here, 7,4 is the distance to the other agent, and the constant dy determines how close we wish the
agents to be. For simplicity, we choose di = dp + 1, where dy is the distance at which the agent
begins to consider one another as obstacles to be avoided (see Equation (6)). Thus, the agents will
try to maintain a maximum distance of dy between one another. If they get farther away than
dy, they will activate the other constraint, if they get closer than dy, they will activate obstacles.
The constant, a.s1,, determines the maximum level of advantage for other. The second term of the

equation enables implements an “enclosure detector” similar to that defined for target in Equation

(16).

Figure 9 goes about here

4.4 Examples

In this section, we examine two examples of the cooperative behavior. First, we look at the situation
depicted in Figure 7A and B, in which two agents approach a target, but with one far in front of the

other. We look at the situation both from the perspective of Agent 1 (above in the configuration;
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top 3 panels) and Agent 2 (below in the configuration; bottom 3 panels). Notice that initially,
Agent 1 must decide whether to move toward the target or toward Agent 2. In Figure 10A Agent
1 begins to come about because other wins the competition with target. Below, Agent 2’s other
and target constraints are both activated, because these two constraints are consistent with one
another, according to Equation (21), and thus they do not compete. In Figure 10B we see that
the agents have moved close to one another. Agent 1 (top) has deactivated its other constraint,
while obstacles has just become activated, and the agent begins to veer away from collision with
Agent 2. Agent 2 (bottom) has activated all constraints, because there is some competition among
all three, yet all competitive advantages are stronger than all competitive interactions. Finally, in
Frame C, Agent 1 has reversed course yet again, this time accompanying Agent 2 to the target.
The two agents are close, so other is deactivated for both, whereas obstacles is still active, as they
avoid collision with one another en route to the target.

This episode illustrates a different behavioral sequence for each agent, but generated from
identical dynamical equations. Different behaviors arise because the individual agents face different
situations from moment to moment, and these situations are reflected in the parameters of the
competition dynamics for each agent. The agents navigate cooperatively because the functions that
tie the competition parameters to specific situations select behaviors that satisfy an appropriate
set of behavioral requirements. Note that these two cooperative sequences displayed an example of

each class of behavior that was identified in the stability analysis of Section 4.1.
Figure 10 goes about here

Next, we look at a new situation. In Figure 11A, two agents are moving together (Agent 1, right;
Agent 2, left) as they come upon a wedge-shaped configuration of obstacles designed to drive them
apart. We display the behavioral dynamics and competition for Agent 1 only, due to the symmetry
of the situation. In Figure 11A, as they move forward both target and obstacles are active because
they take account of one another as obstacles; other is not active, because the agents are near one
another. In Figure 11B, the agents are driven apart. Notice that the agents are quite far apart
and the competitive advantage of other is quite strong, stronger, in fact, than that of target. Yet
target is active, while other is not. This is a hysteresis effect. Both competitive advantages are less

than the competitive interaction between these two constraints, and target wins the competition
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because it was previously active. In this situation, the previous history of the system determines
its behavior. As the two agents round the wedge (Figure 11C), the competitive advantage of other
increases above the level of competitive interaction from target (i.e. oo > Ytaroth), thus it acquires
enough strength to deactivate target, and the agents move toward one another. Figure 11D, shows

the situation after the agents have come together resumed their original course.
Figure 11 goes about here

This sequence is not as complex as the previous sequence, displaying only alternation of two-
constraint behaviors. Nevertheless, it displays some interesting properties of our competitive dy-
namics solution. First, is displays the flexibility of this approach to cooperative navigation. Initially,
the agents navigate toward the target location together, but the unknown environment forces them
apart. The agents are able to make decisions such that they flexibly respond to the demands of a
new and unforeseen situation, coming together once again when the environment allows. Second,
in this situation hysteresis allows for a special kind of behavioral stability. In Panel B the two
agents were far from one another, but there is was no line-of-sight path toward one another. This is
an ambiguous situation: it is not clear whether they should continue toward the target, or give up
that goal and try to find one another. In this situation, the agents continue to do what they had
been doing previously, moving toward the target. This behavior was due to hysteresis, a simple
kind of memory that determines system performance according to its past history.

In summary, these two example have demonstrated how flexibility, arising from bifurcations in
the competitive dynamics, allows a system to generate simple and complex sequences of behaviors
that enable a pair of autonomous agents to satisfy the behavioral requirements of a cooperative
navigation task. Behavioral complexity arises from two sources, the number of individual behaviors
available for each agent to satisly requirements, and the existence of two agents working together,
generating different sequences, to satisfy the constraints. Thus, these examples serve to demonstrate
that the addition of a competitive dynamics, operating in the space of task constraints, allows
us to scale the dynamic systems approach to planning and control beyond simple navigation to
cooperative navigation. Furthermore, our analysis of the competitive dynamics indicates that even

more elaborate systems are possible.
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5 Discussion

We set out to examine the issues of representation for agent/environment interaction in navigation-
like tasks. We have taken care to separate non-physical, context dependent, socio-cultural con-
straints that determine appropriate planning and control of robot actions from physical and geo-
metric models of the agent and its environment. Nevertheless, we have adopted a physics-based
model, i.e. the so-called dynamical systems approach [Schéner and Dose, 1992; Schéner et al., 1996],
that has been successfully employed in modeling behavior in biological systems. In this approach
the level of modeling is at the level of behaviors. A “dynamics” of behavior is defined over a state
space of behavioral variables. The environment is also modeled in these terms, by representing
task constraints as attractors and repellors of the behavioral dynamics. Attractors and repellors
are combined additively into a vector field that governs the agent’s behavior. Qur main concern
has been to investigate how this approach scales to the design of systems when behavioral require-
ments extend beyond simple navigation. The problem we encountered was that simple additive
composition does not scale nicely to handle complex behavioral requirements. Qur contribution
has been to show how combinations of constraints can be dealt with by adding a second “layer” of
dynamics that is capable of managing task complexity at the behavioral level. The state space for
this dynamic layer is the space of task constraints.

The current investigation has three major implications for the dynamic systems approach to
planning and control. First, competitive interaction among task constraints is able to deal with
problems, such as spurious attractors and constraint averaging, that arise when non-independent
contributions to the vector field dynamics are combined by additive composition. Qur competitive
dynamics enforces competition among task constraints (e.g. targets, obstacles, other agents, etc.)
when their respective vector field contributions are inconsistent with one another. The winners
of the competition are determined based upon which constraints are most applicable in the cur-
rent situation. Thus, compelilive interaction is determined by functions designed to detect when
individual contributions are inconsistent, while competitive advantage in tied to the environment
through functions that implement heuristic judgments about when particular constraints are more
or less critical.

Second, the competitive dynamics makes it is possible to specify behavioral requirements (i.e.

tasks) that are more complex than simple navigation. This ability arises from the ability to de-
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termine which constraints should contribute to the behavioral dynamics, i.e. which behavior is
appropriate, in any given situation. We defined a “behavior” as a qualitatively unique combination
of task constraints that defines a particular set of contributions to the behavioral dynamics. Each
combination of task constraints arises as an asymptotically stable fixed point of the competitive
dynamics, providing a number of interesting properties. First, each behavior is stable in the sense
that it is robust to the presence of noise in the system. This property arises from the stability of
the fixed points that generate the behaviors. Second, each behavior is stable in the sense that it is
robust to ambiguity in the environment. This property arises due to hysteresis — when more than
one fixed point is stable, the past history of the system determines performance. Third, the agent
is able to flexibly determine which behavior is appropriate at any given time. This property arises
due to bifurcations in the competitive dynamics: As new situations arise, parameters change, old
fixed points disappear, and new fixed points appear.

The latter point implies that in attempting to satisfy a complex set of behavioral requirements,
the agent will execute a sequence of behaviors. Here the sequences are not explicitly programmed
responses to stereotypical situations, rather they arise as the competitive dynamics chooses among
different behaviors. The decision to execute a new behavior is modeled as a bifurcation in the
competitive dynamics, that arises as the competition parameters adapt to the surroundings; thus
sequences are generated opportunistically. It is also possible to explicitly program behavioral
sequences using dynamics similar to that which we have described here (c.f. [Steinhage and Schoner,
1996]).

Finally, the competitive dynamics solution scales nicely to the design of complex systems. We
have shown that an n constraint system gives rise to 2" — 1 unique behaviors. Also, the stability
analysis revealed that in order to design such a system, the designer needs make n? design decisions,
designing competitive advantage functions for each individual behavior, and designing competitive
interaction functions between each pair of behaviors. This also implies a very nice type of scalability:
given an existing system, one can add behavioral requirements without disturbing the operation of
the previously designed system. The designer must consider how each new constraint will interact
with each of the existing constraints, but need not reconsider the design of the entire system.
In this paper, a relatively simple system of three behavioral requirements allowed us to design a

cooperative navigation system, one in which two robots navigate independently, yet cooperatively,
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through an environment. In ongoing research we are designing more elaborate systems with larger
numbers of task constraints for each agent.

We have shown that, for a single robot or a pair of cooperative robots, decision making and
planning can be modeled almost entirely using continuous nonlinear differential equations. The
theoretical relationship between discrete automata (traditionally used for modeling planning and
decision making) and dynamical systems (traditionally used for control) has been studied by others
(e.g. [Brockett, 1994]). Here we have investigated the possibility of developing a design methodology
for building robotic planning systems using dynamical systems in a way that scales to the modeling
of complex systems of behavioral requirements. In this way we hope to combine the advantages
of the dynamical system approach (stability, flexibility, robustness, etc.), with the ability to plan
and carry out complex sequences of behavior to achieve well-defined goals. We have seen that the
competitive dynamics approach to managing task complexity offers a number of advantages in this
regard, including scalability. The primary input from the designer is in setting the priorities between
competing behaviors. This should not be too surprising considering, that these priorities depend
on the situation, context, social order, and so forth. In other words, not only those aspects of
control that are physical/geometric are represented in a continuous fashion, but even the switching
between different control strategies, which comes from the difference in the prioritization schemas
that are less physical and more social and/or cultural, can be captured within the framework of

continuous differential equations.
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Figure Captions

Figure 1. Task Constraints and Behavioral Dynamics. (A) An agent, a target, and the corre-
sponding vector field. The target constraint is expressed as a heading direction (zero corresponds to
the current heading of the agent). The desired behavior of heading toward the target is expressed
as an attractor (negative slope) in the vector field that governs agent heading direction. (B) An
agent, an obstacle, and the corresponding vector field. The obstacle constraint is also expressed as a
heading direction. However, the undesired behavior of heading toward the obstacle is expressed as
an repellor (positive slope) in the vector field. (C) A more complex configuration. The target and
obstacle constraints are combined into a single vector field additively. The attractor corresponds

to steering around the obstacle en route to the target location.

Figure 2. Dependent and Independent Constraints. (A) Two obstacles configured so that there is
not enough space between them for the agent to pass through. These constraints are dependent, and
superposition of their contributions to the vector field creates a repellor at their average heading
direction, effectively modeling a single obstacle. (B) Two obstacles configured so that there is
enough space for the agent to pass between them. These constraints are independent, and an

attractor is formed in their average direction, allowing the agent to steer between them.

Figure 3. Spurious Attractors. (A) Two obstacles dead ahead provide almost, but not quite
enough space for the agent to pass between them. The obstacles contribution to the dynamics
reveals a shallow attractor. Yet when the target also lies straight ahead, its attractor contribution,
combined additively with the repellor, creates a spurious attractor in the composite vector field.
This will cause the agent to get stuck at this location. (B) A hallway trap. Once again, the obstacles
constraint creates a shallow repellor. However, because the target lies directly beyond, adding its
contribution creates a spurious attractor in the composite vector field. Once again the agent is

stuck.

Figure 4. Competitive Interaction between obstacles and target for the spurious attractor example

of Figure 3A.

Figure 5. Competition avoids the creation of a spurious attractor. Each panel shows the current

configuration (bottom), and the corresponding vector field (top left). Heading direction is plotted so
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that ¢ = 0 corresponds to the agent’s current heading direction. The current competitive situation
is also shown (top right): Competitive advantage, a; (dashed lines), and the current weighting,
w; (solid lines), are shown for each constraint. Competitive interaction is not shown. (A) The
agent approaches two obstacles that it cannot pass between. (B) This situation could create a
spurious attractor (compare with Figure 3A), but it does not because competition deactivates
target; competitive interaction for this situation is shown in Figure 4. (C) Once the agent has
turned away from the obstacles, target is reactivated. (D) The agent rounds the leftmost obstacle,

steering toward the target location.

Figure 6. The agent successfully negotiating the hallway trap. Fach panel shows the current
configuration (bottom), and the corresponding vector field (top left). Heading direction is plotted
so that ¢ = 0 corresponds to the agent’s current heading direction. The current competitive
situation is also shown (top right): Competitive advantage, a; (dashed lines), and the current
weighting, w; (solid lines), are shown for each constraint. Competitive interaction is not shown.
(A) The agent moves down the hallway toward the target. (B) The agent faces the spurious
attractor situation shown on Figure 3B. Competitive advantage, ay,,, drops below the background
level of competition created by Equation (14), allowing the agent to turn away from the dead-end.
(C) The agent moves out of the hallway, due to active competition between obstacles and target.

(D) The agent successfully leaves the trap.

Figure 7. Non-Independent Constraints. When constraints are dependent, additive composition
results in constraint averaging. (A) From the point of view of Agent 2 (bottom), the target and the
other agent are in the same direction, so constraint averaging is acceptable. (B) From the point of
view of Agent 1 (middle), the target and the other agent are in opposite directions, so constraint
averaging is clearly unacceptable. (C) From the point of view of Agent 2 (bottom), the target and
the other agent lie in different directions. Averaging may be unacceptable, although this judgment

depends somewhat on the task specification.

Figure 8. Competitive Interaction between Target and Other, Yiaroth = Yoth,tar, for by = 0.25,
by = 4.0, b3 = 3.0. Competition is maximum except when the target and the other agent lie in

approximately the same direction, i.e. when 4, — %o, is near zero.

Figure 9. Competitive Advantage of Other, for ay, = 0.6, d; = 3, and Vy, = 1. As distance
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to the other agent increases beyond dy, competitive advantage, a,;p, increases beyond competitive

interaction from target (see Figure 8).

Figure 10. An example of cooperative navigation. Fach panel shows the current configuration
(bottom), and the corresponding vector field (top left). Heading direction is plotted so that ¢ = 0
corresponds to the agent’s current heading direction. The current competitive situation is also
shown (top right): Competitive advantage, a; (dashed lines), and the current weighting, w; (solid
lines), are shown for each constraint. Competitive interaction is not shown. The top row of Panels
shows vector field and competition for Agent 1 (above in configuration); The bottom row of Panels
shows vector field and competition for Agent 2 (below in configuration). (A) Agent 1 reverses
course to join Agent 2. (B) The agents meet one another and Agent 1 reverses course again. (C)

The agents move toward the target together.

Figure 11. A second example of cooperative navigation. Each panel shows the current configura-
tion (bottom), and the corresponding vector field (top left). Heading direction is plotted so that
¢ = 0 corresponds to the agent’s current heading direction. The current competitive situation is
also shown (top right): Competitive advantage, o; (dashed lines), and the current weighting, w;
(solid lines), are shown for each constraint. Competitive interaction is not shown. Vector field
and competition are shown for Agent 1 (right). (A) The two agents navigate toward the target
together. (B) They are driven apart by obstacles, but continue toward the goal. (C) The agents

pass the obstacles, and move toward one another. (D) They continue toward the target together.
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Table 1 Fixed points and stability conditions for two-constraint competition

Wiar Wohs Stability
0 0 Unstable g, aops > 0
0 +1 Stable Yobs,tar > Qtar
+1 0 Stable Viar,obs > Olobs
Ay 0bs | £Aoks,tar | Stable Qobs > YVtar,obs
and Qiar > Yobs,tar
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Table 2 Fixed points and stability conditions for three-constraint competition

Wigyr Wobs Woth Stability
0 0 0 Unstable  aiqp, Qops, Qotp > 0
+1 0 0 Stable Ytar,j > @, ¥ 5 # tar
0 +1 0 Stable Yobs,j > @, V J # obs
0 0 +1 Stable Yoth,j > 0, ¥ j # oth
T Asar,obs T Aoks tar 0 Stable Qtar > Yobs,tar
and Qlobs > Vtar,obs
and Yioth > Qoth, 1 € {tar,obs}
A5 otk 0 Aotk tar Stable Qiar > Yoth,tar
and Qoth > Ytar,oth
and Yiobs > Qobs, 1t € {lar,oth}
0 T Aobs 0tk A hops | Stable Qobs > Yoth,obs
and Qoth > Yobs,oth
and Yitar > Otqr, © € {0bs,oth}
L Asar obs,oth | TAobstaroth | TAoth tarobs | Stable Qiqr > Yitar ¥V J # tar
and Qobs > Yiobs ¥ J 7 0bs
and Qoth, > Vioth ¥V J # oth
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