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Abstract

In this paper we describe and test how information
from multiple sources can be combined into a robust
visual servoing system. The main objective is inte-
gration of visual cues to provide smooth pursuit in a
cluttered environment using a minimum or no calibra-
"tion. For that purpose, voting schema and fuzzy logic
command fusion are investigated. It is shown that the
integration permits detection and rejection of measure-
ments outliers.

1 Introduction

Closed loop control enables increased robustness in
robotic manipulation. Vision is a particularly power-
ful sensory modality for feedback control. When ap-
plied in closed loop control it is referred to as visual
servoing. One of the most common tasks in visual ser-
voing is to maintain a desired visual pose of a moving
target, i.e. an end—effector of a robotic arm.

Both monocular and stereo vision approaches [1,
2, 3, 4] have been facilitated to solve this task. Ob-
ject (end—effector) tracking is a necessary precursor to
many tasks in visual servoing. It can, for example, be
used for positioning the gripper with respect to known
or unknown object in the workspace. However, al-
most all of the existing techniques facilitate either a
model based information that requires an off-line sys-
tem initialization or special markers/fiducial points on
a robotic arm. :

The performance of feature-based visual servoing
depends on the robustness and uniqueness of the fea-
tures used. The feature selection problem has been
discussed extensively in the literature [5, 2, 6]. How-
ever, most tasks require sophisticated image process-
ing to extract the target and in that case we can limit
processing to small windows. '

‘To enable vision to be used in real-world applica-
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tions an added degree of robustness must be intro-
duced to facilitate use of natural features for visual
tracking. In a natural environment no single cue is
likely to be robust for an extended period of time and
there is thus a need for fusion of multiple cues. Rather
than solving a task by building several modules that
have to perform good in unforeseen situations, we are
interested in constructing reliable cues or behaviors
from a multitude of less reliable ones (7, 8]. The cues
can contribute to the control of the system in a num-
ber of different ways. They can vote for alternative
commands and their votes can then be fused. An-
other approach is that one cue can trigger the next
cue until the final objective is achieved. Either way, a
particular command is generated that is used to con-
trol the system. v
The idea we propose is a development of a modular
system that consists of simple and in—expensive visual
cues that are used for the control. By using the in-
formation from multiple cues we will be able to make
manipulation tasks more robust and to perform them
in a cluttered environment without tailoring the pro-
cess in any special way.

The paper is organized as follows. In Section 2, visual
cues used for the integration are presented. Those cues
can be viewed as redundant behaviors since they have
.an identical task objective. In Section 3, we present
techniques for fusion of visual cues, while in Section 4
we describe the control algorithm. Initial experimen-
tal results are shown in Section 5. Finally, a summary
and issues for future research are presented in Sec-
tion 6.

2 Visual Cues

We combine disparity, motion, color, edges and nor-
malized cross correlation to achieve the robustness de-
manded by real world applications.



2.1 Stereo Model

For a pinhole camera model and a parallel axis
stereo system where we assume that the image planes
are rectified and internal camera parameters same, we
can express the coordinates of the left image plane in
the coordinate system of the right image plane as [9]:

a 0 Xo—-Xg X 0
0.8 Yo-YL _ 0
a 0 Xo-Xp 7 | Ba
0 B Yy-Yr 0

The following notation has been used:

® Xp1,Yg L are the image coordinates of a point

for the right and left image plane

e Xo,Yp represent image center

e X,Y,Z are world coordinates of a point
e a and § are internal camera parameters
e B is the baseline distance

The system is solved using a least square method.

2.2 Motion Cue

The absolute difference image of the intensity com-
ponent (I) of consecutive images is computed as:

MY (X) = H(|I' (x,t) — I'"(x,t — 1) ~ T)
where I' is a fixed threshold and H is the Heavy-
side function. To remove isolated pixels and high-
light those that have a number of direct neighbors,
a median filter is used. ‘We segment the scene into
static and moving regions since only objects having a
non-zero temporal difference change position between
frames. However, the motion cue responds not only
to all moving regions but also to the strong changes
in the illumination. In addition, we have to compen-
sate for the egomotion of the camera head itself before
computing the motion cue. Egomotion estimation is
based on encoder readings of the pan-tilt unit and in-
verse kinematics.

2.3 Color Cue

We represent our images in the HSV space since this
representation is less sensitive to variations in illumi-
nation. Therefore, the color detection of the robot’s
end-effector is based on the hue (H) and satumtwn

" (S) components of the color histogram values.
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Saturation is a measure of the lack of whiteness in
the color, while the hue is defined as the angle from
the red color axis.

;(R-G) +(R-B)]

H = acos VEB-GZ+ (R-B)G-B)
3 . ha
S=1-EraT B R oD

V=%(R+G+B)

To achieve real-time performance the color to be
recognized has been selected a priori. Color training
is done off-line, i.e. the known color is used to com-
pute its color distribution in the H-S plane. In the
segmentation stage all pixels whose hue and satura-
tion values fall within the set defined during off-line
training and whose brightness value is higher than a
threshold are assumed to be object of interest.

2.4 Normalized Cross Correlation

The idea is to track the object of interest in the
part of the image by searching for the region in the
image that looks like the desired object defined by
some mask or sub-image (template). The image tem-
plate describes color, texture and material that the
object is made from. This kind of modeling includes
assumptions about ambient lightning and background
color that are not object’s features and, therefore, will
effect the performance of the cue.

Template matching is done by normalized cross corre-
lation (NCC). The region providing the maximal sim-
ilarity measure is selected as the location of the ob-
ject in the image. To decrease the computation time
the template matching algorithm is initialized in the
region where the object of interest was found in the
previous frame. .

In addition, the loop short—circuiting, the heuristic
best place search beginning and spiral image traversal
pattern as described by [10] are used to optimize the
search.

2.5 Disparity Map

‘For a particular feature in one image, there are usu-
ally several matching candidates in the other image.
For computing the disparity map we used grey level
values correlation based stereo technique. It is usually
necessary to use additional information or constraints
to assist in obtaining the correct match [11]. We have



used the epipolar constraint, uniqueness and ordering
constraint. We implemented dynamic programming
that is based on matching of windows of pixel inten-
sities, instead of using windows of pixel intensities of
gradient values. A maximum likehood cost function
is used to find the the most probable combination of
disparities along a scan-line. This cost function takes
into account the ordering and uniqueness constraints.
The complexity of finding a unique minima is greatly
reduced by dynamic programming. The size of the
correlation mask was 9x9 pixels.

2.6 Edges

Since at this stage we are mostly interested in clus-
ters of edges, we use a sunple gradlent based edge
detector operator.

3 Implementation

Each of the cue employed in this experiment will
perform different in different situations and degrade
the performance in various’ ways. Many of sug-
gested methods were implemented in pattern recogni-
tion [12, 13] and the dominating method in computer
vision has been Bayesian estimation [14, 15]. Most
of these methods employ a model based (phenomo-
logical) approach that relate the cues to the external
word. The models have a limited application domain
and it is difficult to design models that can operate in
rich environments.

Our approach is a model-free approach to fu-
sion [16]. First, the data from individual modules has
to be transformed into a common representation and
then combined so that the final output can be used in
a control algorithm. We denote visual modules as cue
estimators.

. Bach cue estimator, presented in Section 2, is a
functlon that operates on a.certain region (reglon of
interest) and delivers the binary answer [0, 1] whether
or not a certain pixel satisfies the conditions of the
given function. In the case of voting schema, the vot-
ing space, ©, is the image plane.

As presented in (Fig. 1), in the case of the fuzzy
fusion, we integrate the information from n-sample
histograms. Here, n is the number of cue estimators.
Each cue estimator delivers a histogram where the val-
ues on the apscisa present the pixel number in the z-
horizontal image direction and the ordinata presents
the sum of the pixel values from different cue estima-
tors for a certain z in the y—vertical image direction.
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Figure 1: Schematic overview of the system.

3.1 Fusion Using Voting Schemas

The basic idea in voting is to combine (binary) deci-
sions from several cue estimators to improve the prob-
ability of making a correct decision [7]. There are sev-
eral different classes of voting schemas [16] including
majority, mean, and plurality voting.

We have implemented a weighted plurality voting,
which chooses the action that has received the maxi-
mum number of votes. This schema can be expressed
as follows:

= i wim; (9)
i=1

where § represents approval voting scheme for a n
number of cue estimators mi,ma2,...m, and w is a
weighting factor. 6 is a part of the image that is cur-
rently observed (ROI). The most appropriate action
is selected according to:

0’ = max{6(0) | 6 € ©}
where © is the voting space (image plane in our case).

3.2 Fuzzy Command Fusion

Fuzzy systems belong to the class of knowledge
based systems that aim to implement human know-
how or heuristic rules in the form of a computer pro-
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gram [17]. Fuzzy logic provides a mathematical for-
malism for this goal. Fuzzy controllers model human
experience in the form of linguistic if-then rules; a
fuzzy inference engine computes the control actions
for each given situation.

In this approach we will consider that sample his-
tograms as fuzzy relations defined on different product
spaces [17] and we will combine them by the operation
” composition” ,as defined by Zadeh [18]:

KRyoRz0..0R, = Max{min(pg,, LR, --1R,)}

where pg; are the outputs of cue estimators.

4 Active Tracking and Control

The discipline of active vision was developed in the
80’s by (19, 20, 21]. The objective is that a vision
system should not spend time on obtaining the max-
imum information from individual images but rather
concentrate on particular information related to the
task at hand [22]. Our camera head has two degrees
of freedom: the pan and the tilt angles. Control of the
two angular velocities (i.e. velocities of the pan and
tilt angle) can be expressed as [2]:

dz zy =f-2*
[2]-] e &[]
 FREE T

Here, f is the focal length of the camera’s lens, sub-
script ¢ denotes the relation to the camera frame and
z and y are the image coordinates. The error signal is
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defined as a difference between the target image posi-
tion and some reference position which is in our case
the center of the image. We are using a P—controller
to recenter the target in the image.

5 Experiments

The aim of the experiments was to investigate the
hypothesis that fusion of information from multiple
sources can lead to improved reliability. We have also
investigated which of two different techniques for fu-
sion gives better results for our task. A series of the ex-
periments were performed and we present the results
from two of them. In the conducted experiments, we
tested different weighting factors for each individual
cue.

5.1 Experimental Setup

In this project an external camera system is em-
ployed with a pair of color CCD cameras arranged
for stereo vision, see (Fig. 2). The cameras view a
robot manipulator and its workspace from a distance
of about 2m. The camera pair is mounted on the
pan-tilt unit with 2DOF and together they make up
the “stereo head”. The size of the original image was
320x240 pixels. In the experiments presented here, the
object being tracked is a PUMAS60 robotic arm. The
movement of the arm was under external control.

5.2 Experimental Results

The arm moved on a straight path for about 100cm.
The distance of the arm relative to the camera was in-
creasing from about 75 to 100cm. The rotation of the
end-effector was about 20°. Three images from the
two presented experiments can be seen in (Fig. 7) and
(Fig. 8). During arm movement, visual cues were ex-
tracted as presented in Section 2. Those results are
fused as explained in Section 3 and then fed to the
control algorithm as presented in Section 4. The re-
sults are presented with the measure of relative error
in Table 1 and Table 2 separately for the X-horizontal
and Y-vertical image components to determine which
of these components gives stronger contribution to the
overall result.

Relative error is the difference in pixels between
the position of the tracked object obtained by a cue
estimator and the ground truth value. The ground
truth value, i.e. the position of the end-effector in
the image, is analyzed manually on the sequence of
recorded images.



5.3 Experiment 1:

This experiment demonstrates the performance of
the implemented system for a regular scene. Most of
the cues had resonable performance, see Table 1.

....... MOTION
COLOUR}.
FUSION

Module X | STD X Y |STDY | (X,Y) | STD %
Color |-0.44| 384 -786| 164 8.74]1.59 X i
Motion | 0.44 | 229 -482| 272 552|231 /2
Disp. | 7.03| 446|1379| 2.32] 15.92]3.30 o T
Edges |-165| 239 -410| 254| 5.00|2.55 | %%+ =
NCC | -375| 331 1.82] o065| 4.70|2.56 , "

Figure 3: Distance error in the X-
Voting | -2.17 4.09 | -0.20 1.42 4.01 | 2.65 horizontal direction for the Experi-
Fuzzy |-0.34| 393 -534| 369 7.27|2.00 ment ;;n?trhzh: dfgl:’;m‘;i“ss‘:’::i'tyﬂzgg

ule are not presented.

Table 1: Relative error presented by the mean distance error and
standard deviation for the Experiment 1.Main results are high-

lighted.
----- IcC ‘
-------- MOTION
_ - B R vl 3}_% ..... p
Module X | sTDX Y |STDY | (X,Y) | STD —— Fusion
Color | 3.10 3.63 | -5.55 6.05| 8.88|3.18/_
Motion | 1.89 1.65 | -4.17 3.78 | 5.59 | 2.53 3
Disp. | 11.37 4.63 | -6.51 393 | 13.75 | 3.76 |*©
Edges | 1.31 2.20 | -5.65 346 | 6.56 | 2.68
NCC -3.27 3.48 | 0.17 321 | 4.29|3.81
Voting | 1.27 2.87 | -3.55 214 | 491|162 _ i : . .
Fuzzy 1.24 432 | -5.00 3.68 | 6.77 | 3.49 e

Table 2: Relative error presented by the mean distance error and
standard deviation for the Experiment 2.Main results are high-

lighted.

Due to the lack of texture on the target object, the
disparity cue deviated significantly. As we can see in
(Fig. 5.3) and (Fig. 5.3), higher weight on the correla-
tion implies that the voting schema heavily relied on
this particular cue. In the case of the fuzzy integra-
tion, all the cues had the same welghtmg factor whlch
resulted with unstable performance.

5.4 Experiment 2:

In this experiment, we introduced multiple moving
targets and occlusion. ' The aim was to test"how the
integration will perform in the case where the NCC
or the motion cue fail to detect the target-or give an
incorect response. As it can be seen in Table 1, the
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Figure 4: Distance error in the Y-
vertical direction for the Experiment 1.
For the clarity reasons, the results from
the edge and dlsparlty module are not
presented.

NCC gave better results regarding the overall mean

eerror. However, see (Fig.5) and (Fig.6), both NCC and

motion cue completely fail to detect target in certain
frames. This means that it is impossible to rely just
on one of this cues in the case of continious tracking.
Considering the performance 6f the fuzzy integration,
we realized that fuzzy approach to cue integration was
not of the desired quality for this kind of task.
Presented results illustrate that the integration of
multiple cues facilitates continious tracking perfor-
mance in the case of clutter and multiple moving tar-
gets. Our future work will consider a better reasoning
on a choice for a particular cue used in the integra-



Error in X [pixels]

NCC T

MOTION

COLOUR|

FUzZzy : :

L L 1 i

10 15 20 25
Frame Nr.

30

Figure 5: Distance error in the X-horizontal direction for
the Experiment 2. For the clarity reasons, the results from
the edge and disparity module are not presented.
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Figure 6: Distance error in the Y-vertical direction for the
Experiment 2. For the clarity reasons, the results from the
edge and disparity module are not presented.

tion.

6 Conclusion and F\jture Work

We have presented a vision-based techniques for
tracking a robot end—effector. We have experimen-
tally shown that reliable and robust tracking can be
performed by integration of individual cues. In our ap-
proach there is no need for building detailed models
of the environment or using the a priori information
about the object to be tracked.

We proposed two different integration techniques:
fusion using voting schemas and fuzzy command fu-
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sion. Experimental results showed that the vot-
ing schemas performed better in presented scenar-
ios. However, more appropriate fuzzy inferencing tech-
niques should be investigated as they might improve
the tracking performance.

In the future we aim to perform the visual servo-
ing tasks without using special markers on the end—
effector and without need to manually initialize the
tracking region. We will investigate the performance
of the system in positioning the end-effector with an
object in the environment. In addition, further experi-
ments will investigate how the initial guess of the posi-
tion of the end—effector influence the the performance
of each individual module as well as the performance
of the proposed integration techniques.
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