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Abstract— In recent years, a number of visual servo control
algorithms have been proposed. Most approaches try to
solve the inherent problems of image-based and position-
based servoing by partitioning the control between image and
Cartesian spaces. However, partitioning of the control often
causes the Cartesian path to become more complex, which
might result in operation close to the joint limits. A solution
to avoid the joint limits is to use a shortest-path approach,
which avoids the limits in most cases.

In this paper, two new shortest-path approaches to visual
servoing are presented. First, a position-based approach is
proposed that guarantees both shortest Cartesian trajectory
and object visibility. Then, a variant is presented, which
avoids the use of a 3D model of the target object by using
homography based partial pose estimation.

I. INTRODUCTION

Visual servo control of robot motion has been introduced
to increase the accuracy and application domain of robots.
Closing the loop using vision allows the systems to control
the pose of a robot relative to a target also in the case of
calibration and measurement errors.

The development of different servoing strategies has
received a considerable amount of attention. In addition
to the convergence of the control law, the visibility of the
servoing target needs to be guaranteed to build a successful
system. To guarantee the visibility of the target, many
of the proposed control strategies control the motion in
a partitioned task space, where the task function of the
control is defined in terms of both image and 3D features.

A characteristic that is often neglected is the Cartesian
trajectory of a servo control law. This is partly due to the
partitioned control, which makes the analysis of the tra-
jectory difficult. However, the knowledge of the Cartesian
trajectory is essential to avoid the joint limits.

We are interested in shortest path servoing, because it
is predictable and its consequent straight line trajectory
avoids trying to move outside the robot workspace in
most cases. We present a visual servoing strategy which
accomplishes two goals: it uses straight line trajectory
minimizing the path length and also keeps the target object
in the field of view at all times.

The rest of the paper is organized as follows: The
research is first motivated by surveying related work in
Section II. In Section III, position-based visual servoing
is outlined. Section IV presents our servoing strategy for
position-based control. In Section V the same strategy
is applied to servoing based on a planar homography

estimated from image features. The strategy is evaluated
and compared to previous shortest path approaches in Sec-
tion VI. Finally, the results are summarized and discussed
in Section VII.

II. RELATED WORK

Vision-based robot control is traditionally classified into
two types of systems [1]: position-based and image-based
systems. In position-based visual servoing (PBVS), full 3D
object pose is estimated using a model of the object, and
the control error is then defined in terms of the current and
desired poses [2]. PBVS makes it possible to attain straight
line motion resulting in a minimum trajectory length in 3D.
The computational complexity of pose estimation has been
earlier considered a disadvantage of this method. Another
well-known problem, pointed out by Chaumette [3], is that
PBVS poses no contraints on the visibility of the object.
That is, the object which is used for pose estimation may
move outside the field of view of the camera.

In image-based visual servoing (IBVS), the control error
is expressed in the 2D image plane. This error is then
transformed into Cartesian space using the inverse of image
Jacobian. While this guarantees the visibility for all feature
points, it results in convergence problems due to local
minima of the error function and possible singularities of
the image Jacobian [3]. In addition, the Cartesian trajectory
is very unpredictable, which may result in reaching the
joint limits. This approach was supposed to be tolerant
against errors in depth estimates required to estimate the
image Jacobian. However, a recent study shows that the
convergence region is not very large [4].

Recently, a new group of methods has been proposed,
called partitioned visual servoing. These address some
of the problems mentioned above by combining tradi-
tional image Jacobian based control with other techniques.
Chaumette et al.[5], [6] have proposed a method called
2.5D visual servoing, which decouples translation and
rotation control. It addresses the visibility problem by
controlling the movement of one feature point in the
image plane, and does not require a full 3D model as a
planar homography is used for partial pose estimation. The
Cartesian trajectory is likely to be reasonable as the range
to the object is controlled, but nevertheless not very easy
to predict.

Deguchi [7] has proposed a decoupled control scheme
which uses planar homography or epipolar geometry for



partial pose estimation. The translation is controlled along
the shortest path in Cartesian coordinates, while the rota-
tion is controlled using the image Jacobian. A problem
of this method is that the Jacobian may suffer from
singularities as in the case of 180 degree rotation around
the optical axis [8].

Corke and Hutchinson [9] have noticed that an IBVS
problem of camera retreat can be solved by decoupling the
z-axis translation and rotation from the image Jacobian and
propose to control them using simple image features. They
also address the visibility problem by using a repulsive
potential function near image edges. However, there is
no knowledge about the path length and the image error
function might have multiple local minima.

In addition to the partitioned approaches mentioned,
Mezouar and Chaumette [10] have combined pure IBVS
with potential field based path planning. Path-planning
makes it possible to use IBVS only over short transitions
which solves most problems. This makes it possible to
pose constraints to guarantee the visibility of features and
to avoid robot joint limits. However, it is not clear if the
potential field may have local minima, where the attractive
and repulsive forces cancel each other, and the trajectory
is hard to predict

Gans and Hutchinson [11] have proposed another possi-
ble approach, namely switching between IBVS and PBVS.
Thus, whenever the visibility problem of PBVS is immi-
nent, the control is switched to IBVS. If camera retreat
occurs, the control is again swithced to PBVS. The system
has been shown to be asymptotically stable, but again the
trajectories are difficult to predict.

III. POSITION BASED VISUAL SERVOING

In position-based visual servoing (PBVS), the task func-
tion is defined in terms of the displacement-vector from
the current to the desired position, which can be expressed
using the transformation cTc∗ . The input image is usually
used to estimate the object to camera transformation cTo

which can be composed with the desired pose to object
transformation oTc∗ to find the relation from the current
to the desired pose. By decomposing the transformation
matrices into translation and rotation, this can be expressed
as

cTc∗ = cTo
oTc∗ =
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Then, the translation vector to the desired position in
camera coordinates is ctc∗ . For the orientation the rotation
matrix can be decomposed into axis of rotation u and angle
θ, which can be multiplied to get the desired rotational
movement uθ.

Thus, the proportional control law can be defined as

v = λ

(
ctc∗

uθ

)
(2)

where λ is the gain factor.
This approach has minimum length trajectory in Carte-

sian coordinates. It may, however, lose the visibility of the
target used for positioning.

IV. A NEW POSITION-BASED APPROACH

We present a new approach that has minimum length
trajectory in Cartesian coordinates but does not suffer from
the visibility problem.

The control function is now defined separately for trans-
lation and rotation. To ensure the shortest path, we use the
position based control directly for translation. The three
axes of rotation are controlled as follows: The rotation
around the camera x- and y-axes is controlled using a
virtual point located at the origin of the object frame.
We control this point in such a way that it will always
be visible which ensures the visibility of the target object
used for positioning, provided that the distance to the target
is adequate. Without loss of generality, we can assume
unit focal length. Let cpo = (cXo,

cYo,
cZo)T be the

coordinates of the object frame origin in the camera frame.
That is, cpo corresponds to cto. Then, the coordinates of
this point in the image plane (x, y) are

(
x
y

)
=

1
cZo

(
cXo
cYo

)
. (3)

Now, we can find the image velocity of the point with
respect to the 3D velocity screw of the camera q̇ as
(

ẋ
ẏ

)
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y
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We will now control this point towards the origin, such
that in the final position the origin of the object lies on
the optical axis. Note that this does not constrain the
positioning task, as the origin can be selected arbitrarily.
This allows us to control two-degrees of rotational motion.
The final rotational degree of freedom, namely the rotation
around the optical axis, is controlled using the standard
position based control law, that is, uzθ, the rotation around
the optical axis is driven to zero. Now, we can define the
task vector as e = (cX∗, cY∗, cZ∗, x, y, uzθ)T , the first
three terms denoting components of the desired position
in the current camera coordinate frame ctc∗ . Using a
simplified notation (X, Y, Z)T = (cXo,

cYo,
cZo)T , the

Jacobian of the task function can be written
( ˙cX∗ ˙cY∗ ˙cZ∗ ẋ ẏ ˙uzθ

)T
= Jq̇ =
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q̇,
(5)



or in the terms of the object position
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Proportional control law can now be defined using the
inverse of the Jacobian as

v = −λq̇ = −λJ−1e = λ
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where
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where P = X2 + Y 2 + Z2. From (7) it can be seen that
all translational degrees of freedom as well as the rotation
around the camera optical axis are decoupled.

The determinant of the Jacobian is

|J| =
X2 + Y 2 + Z2

Z2
(9)

which is zero only when all X , Y , and Z are zero, that is
when the camera is exactly at the object origin. Another
degenerate case occurs when the object lies on the camera
image plane. However, this configuration is also physically
not valid.

V. HYBRID APPROACH

We now present a hybrid approach utilizing similar ideas
as presented above, but this approach is not dependent on
information about full 3D pose. Rotation and direction
of translation are instead estimated by decomposing a
homography matrix [12], [13].

Image homography Hi maps projective points which lie
on a plane between two views such that p∗ ∝ Hip. It can
be estimated for example using the method proposed by
Malis et al. [13]. Assuming a camera calibration matrix C
is available, the homography H can be calculated in the
camera coordinates from

H = C−1HiC. (10)

The homography matrix can be written in terms of a
rotation matrix and a translational component as

H = R +
t
d∗

n∗T (11)

where n∗ is the normal to the plane in the goal position
and d∗ its distance. The homography can be decomposed
into R, t/d∗ and n∗ [12]. The decomposition gives two
solutions and the correct one can be selected by using
additional information or time consistency. Thus, the rota-
tion matrix R can be fully recovered, while the translation
vector can be recovered only up to a scale.

The idea of the hybrid approach is to control translation
to the estimated direction, while using a single image point
to control two axes of rotation (around x and y) and control
the final axis of rotation (around camera optical axis) using
the rotation matrix. The translation is compensated in the
rotations around x and y. Thus, the image point will have a
straight line trajectory and will always remain in the field
of view.

Considering the Jacobian in (5), in addition to the
coordinates of an image point, its depth is needed to
compensate for the translational velocity. However, if the
distance to the plane in the desired position is known, this
can be computed using only quantities calculated from the
homography as [13]

1
Z

=
nTp

d∗(1 + nT t
d∗

)
(12)

where p is a point on the plane in current camera coordi-
nates, and n = Rn∗ is the plane normal in current camera
position.

To summarize, the translation is controlled by

vt = λtd̂∗
ctc∗

d∗
(13)

where d̂∗ is an estimate of the distance to the plane in the
goal position, and λt is a gain factor. It should be noted
that errors in the estimate only appear as a gain factor.
Rotation around z-axis is controlled by

ωz = λωzuzθ (14)

where λωz is again the gain factor. Then, rotation around
x- and y-axes is controlled by(

ωx ωy

)T = J−1
ωxy

(s− Jtvt − Jωzωz) (15)

where s is the error of the control point in the image. Jt,
Jωxy , and Jωz are the Jacobians for translation, rotation in
x and y, and rotation in z, respectively.

VI. EXPERIMENTS

We present the simulation experiments where the pro-
posed method is compared to previously known shortest-
path servoing methods, namely standard PBVS and the
method proposed by Deguchi [7]. To compare the servoing
method, we adopt the set of standard tasks and measures
proposed by Gans et al.[8]. They propose the following
control tasks: 1) Optical axis rotation, 2) optical axis
translation, 3) camera y-axis rotation, and 4) feature plane
rotation. In addition, we have a fifth control task which we
call “general motion”.

We adopt also the metrics proposed in [8]. The per-
formance is evaluated based on 1) time to convergence,



2) maximum feature excursion, 3) maximum camera ex-
cursion, and 4) maximum camera rotation. To measure
the time to convergence, a method was considered to be
successful when the average feature point error fell below
one pixel. Maximum feature excursion was measured as
the maximum distance of all feature points to the principal
point (image center) over the entire servoing process. This
metric reveals problems with feature visibility. Maximum
camera excursion was defined as the maximal distance
of the camera from the goal position. This is not very
interesting in the context of shortest-path servoing, where
the maximum excursion should only depend on the starting
position. Maximum camera rotation was tracked by trans-
forming the rotations into axis-angle form and finding the
maximum of the rotation angle. Only the relevant metrics
are presented for each servoing task.

The servoing target consisting of six points can be seen
in Fig. 1. Compared to Gans et al.[8], we have decided not
to use a fully planar target but instead to displace two of the
feature points by a small amount to avoid the singularity
occurring when the points become collinear in the image.
In addition, we use the full pose estimation instead of a
homography to evaluate the method by Deguchi, because
when the points become almost planar, the homography
based estimation approaches a singularity.
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Fig. 1. Servoing target.

Only the new position-based approach presented in
Sec. IV is experimentally evaluated, since the hybrid
approach has exactly the same control function and the
only difference remains in the pose estimation method.
We do not want to evaluate different methods for pose
estimation, because that would divert our focus from visual
servo control. We chose to use the linear pose estimation
algorithm introduced by Fiore [14] due to the suitability of
non-iterative approaches for visual servoing. All simulation
experiments were performed in Simulink with a variable
time-step.

A. Optical axis rotation

Optical axis rotation is known to be problematic task
for IBVS. In addition, other methods which use image
Jacobian to control rotation, such as Deguchi’s method,
are prone to the singularity of the Jacobian.

Figure 2 shows the time of convergence and maxi-
mum feature excursion for optical axis rotation. Deguchi’s
method never converges for 180◦ rotation due to the

singularity problem, and the time of convergence increases
significantly when the rotation angle increases. The method
presented here performs identically to PBVS, the jagged
curve resulting from variable time-step simulation with a
maximum step size of 0.1 seconds. Both the new method
and PBVS rotate the camera only around the optical axis.
Deguchi’s method rotates also other axes because the
servoing target is not symmetric. Thus, it can be expected
to make unnecessary rotations in this case.
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Fig. 2. Optical axis rotation.

B. Optical axis translation

The initial positions for translation along the optical axis
range from 1 m retreated to 1 m advanced. Optical axis
translation is dependent on depth estimation which can
be critical to some methods. Here, all three methods have
essentially the same control law which can be seen from
the results in Fig. 3. The differences are again a result of
the variable time-step simulation.
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Fig. 3. Optical axis translation.

C. y-axis rotation

The y-axis rotation represents rotation of the camera
perpendicular to optical axis. Because even small rotations
cause the features to be lost from the field of view, we
follow Gans et al. and allow an infinite image plane in this
test. Here, Fig. 4 presents all metrics because some results
differ from those given in [8]. The time to convergence
seems to be approximately linear to the amount of rotation
for all methods. The maximum feature excursion is also
identical. These results are consistent with those given
by Gans et al. and the differences are explained by the
different servoing target. Maximum camera translation is
also close to zero as all methods use position based control
for translation which results in zero translational velocity.
The difference from results published by Gans et al. is in



the measurement of the maximum camera rotation. Our
experiments indicate that with all methods the maximal
rotation angle is identical to the initial rotation. Their
graph on rotation has a maximum of approximately 18◦ at
30 degree rotation around y-axis. All of our experiments
show a linear relationship between the initial and maximal
rotations. Otherwise our results agree with theirs.
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Fig. 4. y-axis rotation.

D. Feature plane rotation

In the feature plane rotation the points are rotated about
an axis perpendicular to the optical axis and lying in the
feature point plane. Thus, both rotation and translation
need to be controlled. To compare the methods fairly, we
used the true depths in the image Jacobian for Deguchi’s
method. Figure 5 presents the time to convergence and the
feature excursion. In this task, the method presented in
this paper and Deguchi’s method have similar dependence
between rotation angle and time to convergence. For PBVS,
the time increases slightly faster. For small rotations the
feature excursion is identical, but the differences can be
seen as the point where visual features begin to divert from
the origin. For PBVS this happens at approximately 30◦,
for our method at 45◦ and for Deguchi’s method at 55◦.
However, for all three methods the features remain in the
field of the view of the camera throughout the servoing.
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Fig. 5. Feature plane rotation.

E. General motion

The general motion task combines the rotation around
optical axis with the feature plane rotation. The starting
pose is determined from the goal pose as follows: First,
the pose is rotated by a specified amount around the optical
axis. Then, the pose is rotated by the same amount around
a perpendicular axis on the feature point plane. Time to
convergence and feature point excursion are shown in
Fig. 6. Time to convergence grows slightly faster for PBVS
than for the other two methods. After 50◦ the time increases
slightly faster also for Deguchi’s method compared to the
proposed one. However, the difference is almost marginal.
The real difference of the methods can be seen in the
feature excursion. With PBVS, the features soon begin
to divert far from the optical center. After 50◦ some of
the features leave the camera field of view altogether.
However, in the simulation we have allowed an infinite
image area to better demonstrate this phenomenon. Both
our and Deguchi’s methods control the visibility efficiently
with only marginal difference in performance. The image
trajectories of the methods are shown in Fig. 7. Again, the
trajectories of our and Deguchi’s methods are similar, and
the visibility problem of PBVS can be clearly seen.
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Fig. 6. General motion.

VII. DISCUSSION

In this paper, we have proposed a shortest-path servoing
strategy to visual servo control. The algorithm is conver-
gent in the whole task space except in the degenerate case
when the servoing target lies in the camera image plane.

Simulation experiments were performed to compare the
method to previously introduced shortest-path methods.
The experiment on optical-axis rotation revealed that the
method does not suffer from convergence problems with
large optical axis rotations, unlike the method by Deguchi,
which uses several image points to control the rotation.
The experiment on y-axis rotation, where each of the
methods has a different control function, shows that the
performance is comparable between all methods. In feature
plane rotation, the partitioned methods converge faster
than PBVS. However, for all methods the image features
remain in the field of view throughout the servoing, and
all are therefore able to converge. In the general motion
experiment, PBVS exhibits the problem of image features
leaving the field of view.

Estimation of planar homography requires that feature
points lie in a plane. However, the hybrid method could
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Fig. 7. Trajectories for general motion: a) PBVS, b) Deguchi, c) Kyrki
et al.

also use essential matrix decomposition instead of homog-
raphy, as proposed by Deguchi [7] and Malis [15]. The
use of homography is likely to give more stable results,
especially near the convergence of the system [15].

The straight line shortest-path servoing presented avoids
reaching the joint limits of a robot in most servoing
tasks. However, while guaranteeing that the object origin is
always visible, the camera can get too close to the object so
that point features are lost. Possible solutions include the
use of switching between servoing strategies or repulsive
potential field in the image or 3D. However, the straight
line trajectory can not be attained with these approaches.

Besides the Cartesian path length, other metrics could be
used to evaluate the motion of a robot, for example, time of

convergence or the energy consumption during the servoing
task. However, these metrics are strongly dependent on the
mechanical structure of a robot and its dynamic properties,
and universal approaches seem thus difficult to construct.
In some cases the shortest-path is not sound such in the
case where the starting point is on the opposite side of the
target compared to the goal, and the shortest path would
pass through the target. However, it is unlikely that every
imaginable task can be solved by any one servoing strategy
without shortcomings.
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