
Graphical SLAM using Vision and the
Measurement Subspace∗

John Folkesson, Patric Jensfelt and Henrik I. Christensen
Centre for Autonomous Systems
Royal Institute of Technology

SE-100 44 Stockholm
[johnf,patric,hic]@nada.kth.se

Abstract— In this paper we combine a graphical approach for
simultaneous localization and mapping, SLAM, with a feature
representation that addresses symmetries and constraints in the
feature coordinates, the measurement subspace,M-space. The
graphical method has the advantages of delayed linearizations
and soft commitment to feature measurement matching. It also
allows large maps to be built up as a network of small local
patches, star nodes. This local map net is then easier to work
with. The formation of the star nodes is explicitly stable and
invariant with all the symmetries of the original measurements.
All linearization errors are kept small by using a local frame.
The construction of this invariant star is made clearer by the M-
space feature representation. The M-space allows the symmetries
and constraints of the measurements to be explicitly represented.
We present results using both vision and laser sensors.

Index Terms— SLAM, Vision, Graph, Features

I. I NTRODUCTION

Simultaneous localization and mapping, SLAM, is a central
problem in mobile robotics. As a robot moves through an
environment it builds a map and uses this partially built map
to remain localized. Here a map is assumed to be composed
of a relatively limited number of high fidelity features. These
features need to be characterized in a way that allow them to
be used for localization. Thus the geometry of the features
takes on a central role in SLAM. Other characteristics can be
important for matching the measurements to the features.

Many of the SLAM algorithms have their roots in the
seminal work by Smith, Self and Cheeseman [1] where the
stochastic mapping framework is introduced. In stochastic
mapping, an extended Kalman filter (EKF) is used to estimate
the pose of the robot and the feature parameters. Two prob-
lems with the standard EKF solution are, i) the complexity is
O(N2) whereN is the number of features and ii) decisions
cannot be reversed once made. The first of the problems has
been the driving force behind much of the work on SLAM.
The CEKF [2], FastSLAM [3] and SEIF [4], [5] are all recent
examples of methods that build upon the EKF framework and
address the complexity problem. The problem of not being
able to revert a decision once it has been made is intimately
linked with the problem of data association, i.e. how to
associate measurement data to map data. Methods that deal

∗This research has been sponsored by the Swedish Foundation for Strate-
gic Research through the Centre for Autonomous Systems.

with this problem have typically been working offline with
the whole data set. Examples of this are [6] and [7].

Another key issue in SLAM is the ability to close loops.
In addition to detecting when a loop is closed, the algorithm
also needs to be able to deal with potentially large corrections
to the map as a result of the loop closing. Combinations of
topological and metric approaches such as [8] address this.
This paper describes a graph based technique that addresses
all problem mentioned so far. Others have used graphs for
SLAM. In [9] the graph consists of places connected to
one another by scan matching. In [10] the graph represents
a Gaussian belief state implied by the measurements. That
graph is closely related to SEIF as is our graph. The main
differences between our method and SEIF are that in SEIF
one commits to linearization and data association at once, as
in EKF. In our method these commitments are softer and
delayed. Also in SEIF one must prune weak edges from
the graph to maintain sparseness. We achieve spareness by
chosing to not carry the elimination of state variables as far as
in SEIF. We thus never create the fill that destroys sparseness.

The feature representation used in this paper is similar to
the SP-model [11]. In the measurement subspace representa-
tion, M-space, [12], we can represent the measured parts of
the geometry of the feature. The dimensionality of features
might increase over time as the accumulated measurement
information changes their observability. The symmetries of
the measurements are preserved by the representation. Ad-
ditionally, constraints on the features such as shared corner
points between features or horizontal constraints on lines can
be made explicit. At the same time the transformation rules
under translation and rotation of the coordinate system are
well defined. Furthermore, the graphical SLAM implemen-
tation could be done without specifying the type of features
and sensors that would be used. To verify the utility of our
approach we present results using various combinations of
camera and SICK laser scan data.

II. T HE MEASUREMENTSUBSPACEREPRESENTATION

We begin with a quick review the main points of the M-
space feature representation [12]. See Appendix for more
details. In our previous work we claimed that our represen-
tation allows easy interchange of SLAM algorithms. There

we presented an EKF implementation. Here we support our
claim with a Graphical SLAM algorithm.

A feature is represented by a set of coordinates,{xf}
(i.e. sets of points) that have well defined transformation rules.
The M-space is an abstraction of the information gathered on
the feature as measurement data while the robot moves about.
This information tells us that some directions of change in
the {xf} obey a known probability distribution. While other
directions are as yet not well known. A projection matrix,
B(xf), is used to project out these ’known’ directions. The
B matrices are non-linear functions ofxf . The change in
the M-space is denoted byδxp. The main idea is to calculate
changes in the M-space,δxp, through measurements and then
propagate these to changes in the feature coordinates,δxf .
The fundamental relations are:

δxp = B(xf)δxf , (1)

δxf = B̃(xf)δxp, (2)

Ipp = B(xf)B̃(xf). (3)

Denote the coordinates of the feature relative to the robot
by xo. Theδxf transform intoδxo under a coordinate change
to a robot framexr as:

δxo = Jofδxf + Jorδxr. (4)

HereJof andJor are the Jacobians from the transformation
function xo = xo(xf ,xr) with respect toxf and xr. The
features are parameterized by a set of coordinates. These
coordinates have well defined Jacobians. Thanks to the M-
Space representation it is a simple matter of combining partial
Jacobians for the coordinates that parameterize a certain
feature to derive the above Jacobians.

III. G RAPHICAL FORMULATION OF THE SLAM PROBLEM

Our graphical SLAM method was introduced in [13]. Here
we review the ideas there and then expand on them to incor-
porate the M-space. In our previous work we concentrated on
the problem of closing a large loop. Here our concentration
is on the features and their symmetries. We therefore use
a wider variety of sensors and features. We also show here
how to include multiple passes through the mapped area, as
opposed to the single pass of our previous paper. We show
how we can create junctions of different robot paths in the
graph.

We will give an overview of the graph starting with the
nodes. The nodes come in two basic types, state nodes and
energy nodes. The state nodes are either pose nodes represent-
ing some pose that the robot visited and took measurements
from or feature nodes that are associated with a feature. The
state is then given byxf and the measurements define the
M-space changesδxp. For the robot pose we definexf as
the 3-D coordinates plus the three Euler angles andδxp are
the parts that are considered unconstrained, in our case x, y

andθ1. We often distinguish robot pose coordinates by using
an r as subscript rather than p.

The energy nodes represent the probabilistic information
from the measurements. The simplest are the measurement
nodes that calculate anenergy, E, based on the current state of
a pair of state nodes. This energy and its derivatives are non-
linear functions of the state and are re-calculated as needed.
The energy is given by:

E(xf ,vi) = − log(P (vi|xf)) − Λκi, (5)

whereκi is 1 if the measurement is matched to an existing
feature and 0 otherwise. Thevi is a measurement that
may, for example, be odometry between two pose nodes or
the measurement of features from some robot pose. TheΛ
parameter is used similarly to a threshold on the Mahalanobis
distance. It gives a lowering of the energy for a match to an
existing feature. So if the increase in energy from the first
term in eq. (5) is less than this matching gain, the match is
considered correct.

Fig. 1. Small part of a graph. The red/darker nodes are energy nodes. These
can be either odometry nodes or measurement nodes. The measurement nodes
connect a pose node with a certain feature node i.e. the data association. The
lighter nodes are state nodes, whereP denotes pose nodes andF feature
nodes.

Figure 1 illustrates a small part of a graph. Typically we add
a pose node to the graph connected via an odometry energy
node to the previous pose node. Then we add any measure-
ment nodes connecting this pose node to existing features,
relaxing the graph after each addition. If any measurement
nodes increase the energy we delete them, i.e. we reject that
data association. For measurements to new features we create
new feature nodes.

We will later see how to minimize the energy in the
graph. To do so requires the derivatives of the energy. One
normally has a Gaussian model for the feature measurements.
We can denote the Gaussian innovation byη(vi,xo) which
has expectation value of 0. An incremental change in the
innovation can be written:

δη =

(
Jηv︸︷︷︸

measurement

JηoJor︸ ︷︷ ︸
robotpose

JηoJof B̃f︸ ︷︷ ︸
feature

) δvi

δxr

δxp

 .

(6)

1In any actual implementation there would need to be some additional
robot to sensor transformation. This could even include a pan tilt unit. All
that can and was included in the pose node state without any problem. We
ignore these points in the text for clarity.

The J’s are all Jacobians and are evaluated at the linearization
point. For normal measurement nodes all these non-linear
terms are re-calculated each time the relevant states change.
The covariance ofη due to the measurement errors inv
becomes;

Rηη = Jηvσ2
vvJT

ηv (7)

The coordinate dependent part of the energy then looks like:

E =
1
2
η(xo)T · R−1

ηη · η(xo) (8)

and the gradient of energy is,

G = η · R−1
ηη

(
JηoJor JηoJof B̃f

)
(9)

A similar expression can be written for the Hessian of the
energy. Here we made the assumption thatη is small and
so we can drop all the terms that look like derivatives of
the Jacobians. This assumption is not necessary. We have
investigated both ways and there is no major difference.
However, this choice leads to positive semi-definite Hessians
which is an advantage.

IV. M AP UPDATES

In the previous section we saw how one could calculate
an energy for the graph. We would like this energy to be
minimized. One way to drive the graph towards lower energy
is to chose a state node and relax it. This relaxation is
performed by holding all other nodes fixed, so here we refer
to only this one state node. The change in state∆xp can be
found from:

Hpp∆xp = −Gp (10)

whereHpp andGp are the Hessian and gradient of the energy
with respect to this one state node. They are calculated by
adding up the contributions from each energy node connected
to this state node.

One can move systematically through a selection of nodes
relaxing each node in turn and repeating until no significant
change in energy is achieved. This is similar to doing a
Gauss-Seidel iteration on a linear system. We organize this
by examining the energy nodes. If the energy of an energy
node changes by a significant amount after an iteration we
include all its attached state nodes in the next iteration. Thus
the selection will naturally move through the graph to the
areas most in need of relaxation.

There is a way to speed up the convergence which worked
well. This was to solve the sub-system of the chain of pose
nodes going back from the current node while keeping the
features fixed. This Hessian has a simple block tridiagonal
form with 3x3 blocks. One could then relax a chain of poses
to agree with the features in one step2.

2A short note on implementation: First change variables to the changes in
coordinates between pose nodes. The Hessian is then no longer tridiagonal
but has a special form so that the complexity of solution is the same. The
advantage is the Hessian is now strongly diagonally dominant.

V. STAR NODES

As the measurements become mature they can be combined
together by linearizing them around an appropriate state. Part
of the linearization will then be frozen at the chosen state. We
show here how to take a set of energy nodes and combine
them to form a star node with the correct invariances. The
formed star node will be an energy node with edges to all
the state nodes of the original energy nodes (see Figure 2).
So in this section we restrict the state,xf , to only these state
nodes.

We start by considering the gradient term of the energy
calculated by adding up all the gradients from the set of
energy nodes evaluated at the current state3.

E = E(x̄f) + G(x̄f) ·
(

δxb

δxq

)
+ (11)

Here we have split the state permutation vectorδxp into
δxb and δxq. The δxb is the special robot pose to become
the ’base’ pose of the star andδxq are the other pose and
feature coordinates. The bar on thex̄f is to indicate that this
is the linearization point. Now consider the transformation of
all δxq coordinates to the base frame so that they become
δxo. We can write the following identity:

I =
(

I 0
−BJ−1

of Job BJ−1
of

)(
I 0

Job Jof B̃

)
(12)

Using eq. (4) we can write:(
δxb

δxo

)
=
(

I 0
Job Jof B̃

)
·
(

δxb

δxq

)
(13)

G

(
δxb

δxq

)
= G

(
I 0

−BJ−1
of Job BJ−1

of

)(
δxb

δxo

)
.

(14)
The B and Jof matrices in eq. (14) are block diagonal

matrices with blocks for each state node that is connected
to the set of energy nodes. TheJob is a column of blocks.
So far we have only algebra. Now we argue that the energy
of this set of energy nodes cannot change whenδxb 6= 0
if δxo = 0. This is due to the fact that the original set of
measurements was invariant under transformation of all the
state coordinates to a new coordinate frame. In other words
moving the base of the star without changing the positions of
any states relative to the base should change nothing. Thus
the result of multiplying G by the first column of the matrix
above must be zero and we can remove part of the gradient
without loss of information.

Gp =
(

Gb Gq

)
= Gq

(
BJ−1

of

) (
Job Jof B̃

)
(15)

3The Hessian term is also needed but we only show the details for the
linear part as the quadratic part is the same thing done from both sides of
the Hessian.

We defineQ = BJ−1
of and Q̃ = (Job, Jof B̃). Further we

now have separated out the invariant part from G (inside the
{} below),

Gp(x̄) = {Gq(x̄)Q(x̄)}Q̃(x̄). (16)

Similarly,

Hpp(x̄) = Q̃(x̄)T {Q(x̄)T Hqq(x̄)Q(x̄)}Q̃(x̄). (17)

Next we need to choose the best value ofx̄ to calculate
the values ofHqq and Q to save. We choose the value that
givesGq = 0 by solving the linear equation, moving the state
nodes temporarily to the star equilibrium point, recalculating
the values and repeating the process if needed. Thus, we can
linearize the set of energy nodes at the state that this set
indicates is best.

We can see thatHqq is the Hessian at the linearization point
without the rows and columns of the base node. This matrix
is in general singular which compels us to do a singular value
decomposition of it keeping only the positive eigenvalues.

Hqq =
m∑

k=1

UkλkUT
k (18)

Hereλ andU are the eigenvalues and eigenvectors for the
m positive eigenvalues. We can project the equilibrium point
and the current state into the eigenvector subspace,

ūk = UT
k Qx̄o, uk = UT

k Qxo (19)

We save ūk, λ and Q. We define ∆uk = uk − ūk.
The energy at any new point can be calculated by first
transforming to the base frame and then projecting outuk

to get:

E = E(ūk) +
m∑

k=1

λk

2
(∆uk)2 (20)

(a) (b)

Fig. 2. Introduction of a star node. a) initial state, b) Star nodes are
introduced in the graph between every other pose node. The stars are
connected to all state nodes that the energy nodes it replaced were connected
to.

This is then the star node energy equation which gives the
energy as a function of the currentxf variables. We can re-
center around any state. So for the re-centered gradient atxf

we get,

Gp(xf) =
m∑

k=1

λk

2
(∆uk(xf))UT

k Q(x̄)Q̃(xf) (21)

One only needs to recalculate all of̃Q(xf) if there has
been significant changes.4

VI. GRAPH REDUCTION

Having shown how a set of energy nodes can be combined
into a star node we can now reduce the complexity of our
graph. We also show how new information collected upon
returning to a region can be absorbed into the previously
created star node. Thus multiple passes through a region will
produce a path that is connected directly to the previous path,
as opposed to via feature nodes. This would be important if
one needed to impose global constraints on the system using
the method in [13]. Here we do not need to impose the global
constraints as all the loops are small enough to close naturally.

We start by observing that if a state node has only one edge
and that edge is to a star node then the state of that node can
be solved for in terms of the other nodes connected to the
star. That is, the variables describing the state of the node
can be expressed in the other node variables. The node can
then be eliminated from the star. In practice one eliminates,
(and deletes), any such nodes at the time the star is formed.

We can then select a pose node and form a star out of all
its attached energy nodes, (Figure 2). The result will be that
the pose node is eliminated (see Figure 3a-b) and the graph
simplified. We begin reducing the graph by eliminating every
other pose node. Then we getlevel 0 star nodes, (i.e. made
from simply energy nodes). These then are separated by pose
nodes. By again taking every other one of these pose nodes
and forming a star we get level 1 stars, made out of level
0 stars (see Figure 3b-c). We try to reduce the graph by
combining two stars at a time when they have the same level.
In this way we get a more symmetric procedure which is
better numerically and is more efficient computationally.

(a) (b) (c)

Fig. 3. Graph reduction. a) Initial state of graph from Figure 2. b) Pose
nodes connected to only one star node can be reduced. c) Two star nodes of
level l can be combined into one star nodes of levell + 1.

We can limit the size of the stars either by placing a maxi-
mum on the level or more fundamentally on M-dimension of
the star node. The M-dimension is the total of the dimension
of δxp for all the attached state nodes. The M-dimensions

4In practice some rows, (i.e. those for the angle of lines), ofQ(x̄) need to
be rescaled when there is significant change to the feature coordinates. One
can even recalculate the wholeB part of Q but that is seldom necessary.

becomes a problem when forming the star if the eigenvalue
problem eq. (18) takes too long to solve. We begin to have
some problems for 40 or so dimensions. Most stars need not
exceed 20 dimensions.

When the robot returns to a region previously visited we
would like merge the stars from the previous path with those
currently being formed to simplify the graph. Formally this
is no problem as we can make a star out of any set of energy
nodes. There are however some practical considerations. One
is the size of the star node as we just mentioned. Another is
that there must be enough feature nodes in common to specify
the relative pose between the two base poses of the stars.
Without that the two stars are essentially independent and the
result of merging them will be a star with two disconnected
blocks. In the case of a forward facing sensor this requirement
might mean two stars formed when the robot was at the same
location but facing opposite directions cannot be combined
since the same features were not observed.

It can happen that small loops in the graph develop where
there are two pose nodes connecting the same two star nodes.
When this happens we chose to eliminate one of the pose
nodes. We do this by a trick illustrated by Figure 4. We
imagine that the pose node attached to the first star has only
one edge and can thus be eliminated there. We then do the
same at the second star node. This can be seen to be a good
approximation so long as the star nodes are not under too
much tension. In cases where there is a lot of tension the two
disconnected nodes will snap far apart and the approximation
becomes bad. Again this trick is applied at the time of star
formation, as soon as the situation has arisen.

(a) (b) (c)

Fig. 4. Elimination of small loops between two star nodes.

VII. G ROWING FEATURE DIMENSIONS

The M-space features have the ability to be partially
initialized. This means that theB matrix might go from
having 0 to 1 row and then after more data,dense information,
is gathered on the feature it might be able to grow to 3 rows.
For example, a line on the ceiling assumed to be horizontal
can be used almost immediately for orientation, 1 dimension.
After the robot moves enough perpendicular to the line its
position can be determined and it will grow to 3 dimensions.
The dense information in this case could be the image position
of the line at different camera positions.

We can attach features to our graph at the very first
observation. They will then have 0 dimensions. If the feature
is later initialized these earlier measurements will begin to

contributed automatically. We must go back and check the
match for these at that time.

While the dense information is being collected it is impor-
tant that the sensor movements between the observations be
smoothly estimated. This is an advantage of the graphical
method over methods such as the EKF. Using an EKF
estimated pose does not work well when the filter makes
large corrections to the current pose as there is no way to
correct the collected dense information. For that reason the
dense information must be collected in the dead-reckoning
frame and needs to be discarded when the dead-reckoning is
carried out over too long a distance.

With the graphical method one can continually correct the
dense information as the entire path of the robot is being
updated, so the dense information need not be discarded until
the pose node is reduced away by forming a star node. For that
reason, it is important to adaptively change the length of the
tail, (see figure 7), the path back to the last star node. The tail
consists of pose nodes that still have the original measurement
nodes and are connected by the odometry energy nodes. It is
the along the tail that the exact non-linear calculations are
being done. Therefore, the updates of the graph are faster for
shorter tails. However, when dense information is still being
collected the tail is kept as long as needed to allow correction
to the dense information. If the feature succeeds to increase
its dimension then all the measurement nodes along the tail
can begin to use the additional measurement dimensions to
adjust the state nodes. This is in contrast to the EKF which
cannot use new measurement information for old poses.

When the features attached to a pose node are not accu-
mulating dense information, because they either are not being
currently observed or have reached full dimensionality, the
pose node should be reduced and the tail made shorter.

VIII. E XPERIMENTS

We have tested these ideas using a robot equipped with a
camera pointing straight up at the ceiling and a SICK laser
scanner pointing forwards. The camera mounting was chosen
to take advantage of the structures on the ceiling as vision
features.

Odometry and laser data was also collected throughout
the path. Lines were extracted from the laser data. Images
were collected at 10Hz and had size 320x240. The camera
was calibrated using standard camera calibration software.
Each image was undistorted as a first step. Two types of
vision features were extracted using the OpenCV library,
lines and points. The lines were extracted using the Hough
Transform and the points corresponds to circular lamps with
high image intensity. Figure 5 shows example images from
the environment with the extracted features highlighted. In
some parts of the environment a relatively large number of
false line measurements are produced due to the fine grid
structure in the ceiling (top right image in Figure 5). The
data was the same as used in [12].

Figure 6 shows an example map. The robot was driven
through several rooms and then turned back on its path

Fig. 5. Snapshots of the ceiling along the path showing the line detection
output.

following it to the starting position. The path starts in the
lower left room, moves out into the corridor and then into the
second door of the room above the first. It then completes a
small loop and continues up to the third room.

We could create an accurate map using the walls and
the SICK scanner and the vision features, both taken seper-
ately and together. The comparison with the previous EKF
implementation[12] for this data is that the maps look equally
good but took 2-3 times longer to do the calculation which
is not surprising. The graphical method takes longer on
iterations that require reconciling new measurements of fea-
tures observed from previous sections of the path, the usual
situation in these experiments. On the other hand extending
the map into new areas goes fast. The EKF can reconcile the
measurements with a closed formula and is thus quite fast
in the first situation but works just as hard when in the easy
situation.

As these are really rather small maps and the graphical
method’s calculation time for an iteration is independent of
the size of the map one expects that the graphical method
would be faster than EKF on larger maps. This is the next
step in our research.

One can see that the graph ends up with a rather intricate
topology as many stars from the return path and the small
loop were merged with the original path’s stars, Figure 8.
This shows that information can be added to stars successfully
upon return to a region previously visited.

Using the laser we were able to include 2 corner points on
the walls (the green square connecting two lines just above the
loop on the left side of Figure 8). These walls then shared
the point with measurements from both walls effecting the
location. We also were able to use partial information on
all features. We succeeded in matching the features upon
returning to the starting position.

Fig. 6. This this the map obtained using only the vision features. The
walls of the building are shown for reference. The final graph has 78 pose,
49 feature and 25 star nodes. 3,377 pose nodes were eliminated by graph
reduction which also formed 3 loops. It took 2.5 times as long as the EKF.

Fig. 7. Here it is shown how the tail needs to be left long while the long
line on the ceiling is still accumulating dense information (moving up). As
soon as the line become 3 dimensional the tail can be reduced and the entire
path can use the full 3-D feature (moving down).

Fig. 8. Here we see that two star nodes have been combined when closing
the small loop. We can see a 4-pose star. We can also see the inclusion of
a corner point between two walls found using the laser. The final topology
of the graph becomes rather intricate upon returning to this region two more
times. One sees that stars near each other but with the robot facing the
opposite direction were not combined.

IX. CONCLUSION

We have demonstrated Graphical SLAM with a variety of
sensors and features by combining the two ideas of Graphical
SLAM and M-space features into a single formalism that
allows us to abstract away many of the details. We show that
the M-space is indeed a versatile way to represent features.
It allowed us to reuse most of the code from our EKF
implementation when implementing Graphical SLAM.

We show how to properly linearize the energy in a way that
preserves translation and rotation invariances, as well as all
symmetries and constraints on the features. This coupled with
the fact that all linearization is done in local frames helps to
maintain consistency of our approximations.

We demonstrate that the graphical method is not limited
to a single pass through an environment. Information can be
added to an existing graph energy node. Furthermore, we were
able to use any combination of vision and laser data to build
maps.

Future work will include making much larger maps with
more complicated topologies. We can then see how a graph
can be used to solve constraint equations upon closing multi-
ple large loops. We would also like to investigate more closely
some of the approximations in the updates of the graphical
method.

APPENDIX: M-SPACE

The M-Space, or measurement subspace, is an abstraction
of the measured subspace of the feature space. The M-Space
can deal with constrains and symmetries. Ifxf denotes the
feature coordinates, we letxp denote the corresponding M-
Space coordinates. To go between the feature space and the
M-Space, we use a projection matrixB(xf) according to
eq. (1)-(3). It is important to note that we only use the
M-Space coordinates as a means to get to the change in
the feature coordinates. That is, the measurements tell us

something about the changes in M-Space coordinates and
then using eq. (2) we can calculate the corresponding change
in feature coordinates. The absolute values of the M-Space
coordinates are thus not known.

Parameterization

The parameterization of a map feature in the M-space
framework consists of sets of coordinates of three different
kinds, i) 3-dimensionalx3D, i) 2-dimensionalx2D and iii)
scalarxS . Any number of the three types can be combined
for a certain map features type. It is also possible to share
coordinates between features to represent situations such as
two walls sharing a corner point. The parameterization for
some different feature types are summarized in Table I.

Varying M-Space Dimensionality

A common issue when dealing with feature based SLAM
is that it is often not possible to measure all dimensions of a
feature at first sight. Take a line extracted from a wall with
a laser scanner for example. If the wall is long, the position
of both end points can typically not be determined. What can
be measured is the distance and the orientation of the line. In
this scenario the dimension of the M-Space for this wall line
feature would be 2. As more information is gathered and the
location of the end points become known they can be added
and the M-Space dimensionality increase first to 3 (one end
point) and then 4 (both end points).

To add some defense again spurious measurements it is also
common not to add a new feature to the map immediately.
In the M-Space framework we can model this as giving the
feature M-Space dimensionality 0 and not initialize the first
dimensions until enough evidence of its existence has been
collected.

Feature Parameterization min(dim(M)) max(dim(M))

Point xf = {x3D} 3 3

HLine xf = {x3D
S ,x3D

E } 1 3

Wall xf = {x2D
S ,x2D

E } 2 4

TABLE I

PARAMETERIZATION OF SOME DIFFERENT FEATURES. ALSO SHOWN IS

THE MINIMUM AND MAXIMUM DIMENSIONS OF THE M-SPACE WHEN THE

CORRESPONDING FEATURE IS INITIALIZED.

Feature Types

In this work we us two types of vision features, points
and horizontal lines and one type feature extracted from laser
data, lines.

Point Feature: The point feature is the simplest of the
features to describe. It is parameterized by a single 3D-point,

xf = {x3D}.

The point feature is initialized directly to 3 dimensions (its
full dimension). The M-space coordinates are the same as the

feature coordinates which gives a B-matrix that is the identify
matrix (see Table II).

Horizontal Line Feature: The horizontal line feature
(HLine) is parameterized by two 3D points,

xf = {x3D
S ,x3D

E },

the end points of the line. This feature illustrates the power
of the M-space representation in that it can constrain the
two points that have the same height. Another advantage is
that theHLine can be initialized almost immediately with 1
dimension corresponding to the direction of the line, before
its location is known. This is important when traveling along
a corridor for example. Lines along the corridor are often
difficult to find the position of as the robot typically moves
down the corridor and thus parallel to the line. However,
being able to use the direction of the line helps reduce
the accumulation of uncertainty significantly. Table II shows
the B-matrix for theHLine when it has reached the full
dimension. Initially only the first row is used, corresponding
to the direction of the line. When the position of the line can
be triangulated the dimension goes up to 3, the full dimension.
Note that the position tangential to the line is not measured
in our work.

Wall Line Feature:The wall line feature is parameterized
by two 2D points,

xf = {x2D
S ,x2D

E },

the end points of the line. The 2D points can be seen
as vertical lines in 3D, i.e. extending between plus/minus
infinity. This comes from the fact that the line is assumed to
be on a plane, the wall. When the sensor observing the line is
rotated the length will appear to change. The wall is initialized
as having 2 dimensions in the M-space, corresponding to the
distance to and direction of the line. This results in the first
two rows in the B-matrix shown in Table II. The third row
in the B-matrix in Table II corresponds to the start point and
the fourth to the end point. The dimensionality of a wall line
can thus be 2 (no end points), 3 (one end point) and 4 (two
end points).

REFERENCES

[1] R. Smith, M. Self, and P. Cheeseman, “A stochastic map for uncertain
spatial relationships,” in4th International Symposium on Robotics
Research, 1987.

[2] J. E. Guivant and E. M. Nebot, “Optimization of the simultaneous
localization and map-building algorithm for real-time implementation,”
IEEE Transactions on Robotics and Automation, vol. 17, no. 3, pp.
242–257, June 2001.

[3] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “Fastslam:
A factored solution to the simultaneous localization and mapping
problem,” inProc. of the National Conference on Artificial Intelligence
(AAAI-02), Edmonton, Canada, 2002.

[4] Y. Lui and S. Thrun, “Results fo outdoor-slam using sparse extended
information filters,” inProc. of the IEEE International Conference on
Robotics and Automation (ICRA03), vol. 1, 2003, pp. 1227–1233.

[5] S. Thrun, Y. Liu, D. Koller, A. Ng, Z.Ghahramani, and H. Durrant-
White, “Simultaneous localization and mapping with sparse extended
information filters,”International Journal of Robotics Research, vol. 23,
no. 8, pp. 690–717, 2004.

Feature B-matrix

Point B =

1 0 0

0 1 0

0 0 1

HLine B =

cos γ

L
√

2

sin γ

L
√

2
0 − cos γ

L
√

2

− sin γ

L
√

2
0

cos γ√
2

sin γ√
2

0 cos γ√
2

sin γ√
2

0

0 0 1√
2

0 0 1√
2

Wall B =

cos γ

L
√

2

sin γ

L
√

2

− cos γ

L
√

2

− sin γ

L
√

2

cos γ√
2

sin γ√
2

cos γ√
2

sin γ√
2

− sin γ cosγ 0 0

0 0 − sin γ cos γ

TABLE II

SOME B-MATRICES FOR DIFFERENT TYPES OF FEATURES WHEN THEY

HAVE REACHED THEIR FULL DIMENSION. THE PARAMETERγ IS THE

NORMAL TO THE LINE IN THE XY-PLANE.

[6] F. Lu and E. Milios, “Optimal global pose estimation for consistent
sensor data registration,” inProc. of the IEEE International Conference
on Robotics and Automation (ICRA’95), 1995, pp. 93–100.

[7] S. Thrun, D. Fox., and W. Burgard, “A probalistic approach to concur-
rent mapping and localization for mobile robots.”Autonomous Robots,
vol. 5, pp. 253–271, 1998.

[8] M. Bosse, P. Newman, J. Leonard, and et al., “An atlas framework for
scalable mapping,” inProc. of the IEEE International Conference on
Robotics and Automation (ICRA03), vol. 1, 2003, pp. 1899–1906.

[9] U. Frese and T. Duckett, “A multigrid approach for acceler-
ating relaxation-based slam,” in”Proc. of the IJCAI-03 Work-
shop on Reasoning with Uncertainty in Robotics (avail at
http://www.aass.oru.se/Agora/RUR03/”), 2003.

[10] M. A. Paskin, “Thin junction tree filters for simultaneous localization
and mapping,” inProc. of the 18th Joint Conference on Artificial
Intelligence (IJCAI-03), G. Gottlob and T. Walsh, Eds. San Francisco,
CA: Morgan Kaufmann Publishers, 2003, pp. 1157–1164.

[11] J. A. Castellanos, J. Montiel, J. Neira, and J. D. Tardós, “The spmap:
a probabilistic framework for simultaneous localization and map build-
ing,” IEEE Transactions on Robotics and Automation, vol. 15, no. 5,
pp. 948–952, Oct. 1999.

[12] J. Folkesson, P. Jensfelt, and H. I. Christensen, “Vision slam in the
measurement subspace,” inProc. of the IEEE International Conference
on Robotics and Automation (ICRA05), 2005.

[13] J. Folkesson and H. I. Christensen, “Graphical slam - a self-correcting
map,” in Proc. of the IEEE International Conference on Robotics and
Automation (ICRA04), vol. 1, 2004.

