
An Architecture for Indoor Navigation 
 

Wenfeng Li  
Dept. of Logistic Engineering, 

Wuhan University of Technology,  
Wuhan 430063, China 

Henrik I Christensen and Anders Orebäck 
Centre for Autonomous Systems 

Royal Institute of Technology 
SE-100 44 Stockholm, Sweden 

Dingfang Chen  
CAD Laboratory, Institute of Computing Technology,  

 Chinese Academia Sinica,  
Beijing, 100080, China 

 
 

Abstract—This paper is concerned with the design and 
implementation of a control architecture for a mobile robot that 
is to navigate in dynamic unknown indoor environments. It is 
based on the framework of Open Robot Control Software @ 
KTH, which is discussed and evaluated in this paper. As a hybrid 
architecture, it is decomposed into several basic components 
which can be classified as either deliberative or reactive. Each 
component can concurrently execute and communicate with 
another using unified communication interfaces. Scalability and 
portability and reusability are the goals of the design.  

Keywords-component; framework; architecture; indoor 
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I.  INTRODUCTION  
A fundamental problem in mobile robotics is the design of 

a suitable architecture for integration of the various 
components in a system. The problem of architectures for 
mobile robotics is by no measure a new problem. It has been 
widely studied for more than 3 decades, and prominent 
architectures include NASREM [1], TCA [2], Behavior-Based 
[3], [4], Dervish [5], CLARAty [13] etc. A good overview of 
the wide variety of architectures available can be found in [6]. 
Today it is widely recognized that the most suitable 
architecture for a mobile robot is the hybrid deliberative 
approach [3], where deliberative and reactive systems are 
combined into a unified framework. Such an architecture 
allows rapid reaction to unexpected situations (the reactive 
layer) and at the same time goal directed behavior and use of 
prior knowledge, such as geometric maps, through the 
deliberative layer situated on top of the reactive layer. While 
there is an agreement on the control paradigm to be used in a 
mobile robot architecture, there is a lack of standard software 
packages for integration of systems. A few popular choices 
include Saphira [7], Mobility by iRobot, TeamBots [8], TCA 
[2], and Berra [9]. Unfortunately most of these systems have a 
number of problems, as for example reported in [10] in terms 
of:  

• Portability to different hardware platforms 

• Easy distribution for use of multiple computers 

• Object oriented design 

• Support for different control models 

To address this problem an open source framework has been 
developed as part of the EU Open Robot Control Systems 
(OROCOS) initiative. Primary design objectives have been 

•  A set of standardized communication patterns 

• Use of existing middleware technology (CORBA)  

• Component based design to facilitate easy integration 

• Support for multiple control paradigms 

• Hardware abstraction. 

One of the objectives of this paper is to design a hybrid 
architecture for a mobile robot to navigate in unknown indoor 
environments. At the same time the system is used to evaluate 
the characteristics of the framework of Open Robot Control 
Software (OROCOS) at KTH [11]. 

In this paper we start by introducing the OROCOS @ KTH 
framework and go on to describe an example system for indoor 
navigation, and finally we draw a number of conclusions as to 
the adequacy of the framework for flexible development of 
mobile robot systems and the features of the navigation 
architecture. 

II. THE OROCOS FRAMEWORK 
OROCOS@KTH  is an application independent framework 

for soft-real-time mobile robots, as a part of the European 
project: Open Robot Control Software. The philosophy of the 
design is: 1) Component based. That is, details of low level 
control and communication, etc. are abstracted and 
encapsulated into modules. Developers only need to design 
application oriented components with these modules. 2) Code 
sharing. It is not bound to specific hardware in a specific lab. 
And the code is open under GPL. Users should be able to 
migrate to the system with limited effort. 3) Support for 
distributed computing. Components can concurrently run and 
communicate in a distributed and heterogeneous environment. 
Figure 1 is the overview of the toolkit.  
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• All components in an application are built on CORBA 
(the Common Object Request Broker Architecture) so 
that they can work in heterogeneous and distributed 
environments. The CORBA specific code is 
encapsulated in a set of base-class (i.e. 
OrocosComponent). All components inherit from this 
class. 

• Its core includes communication patterns. 
Communication patterns are a set of common modes of 
data and event transfer utilizing CORBA. There are 
three patterns designed. 1) Push. It asynchronously 
sends an object to other components, using a one-way 
communication to push an object to other components 
that subscribe. 2) Query. It is a method of retrieving an 
object from a component (pull). 3) Send. It is a one-
way communication to send an object to the server side.  

• The objects transmitted via the communication patterns 
are composed from CORBA valuetypes. A valuetype, 
or an object, is a data structure which parameterizes the 
communication pattern templates. It should be 
predefined from the predefined base-class 
OrocosObject. A communication pattern, when 
bounded with a predefined valuetype object, becomes 
an interface, which can be a client or a server. 
Consequently, a component must inherit from 
communication patterns and define relevant valuetypes. 
With the support of CORBA broker, it decouples other 
components and becomes independent units.  

• To be independent on hardware such as robotic 
actuators, sonar-sensors and laser-sensors, a set of 
classes is developed to provide hardware abstraction as 
shown in shaded areas in Fig. 1. Special hardware 
information can be compiled into a runtime library and 
activated at runtime. 

• To coordinate communication and control resources, a 
group of tools have also been developed: StateThread 
(a basic state-machine for use in a component) and 
Synchronizer(used for synchronizing data from two or 
more components), etc. 

Based on the framework of OROCOS@KTH, an 
application dependent architecture and its components are 
interoperable and portable across specific platforms and 
hardware. 

OROCOS@KTH is currently using the ACE/TAO 
implementation of CORBA. It is programmed in C++. It 
utilizes the CORBA Naming Service for mapping names to 
object references but also has support for using the Trading 
Service. It has its own component model, but the plan is to use 
the CORBA Component Model in the future. Configuration, 
including the wiring of components, is made in XML files.   

There are several other toolkits available for construction of 
robot systems. TCA/Xavier is an indoor navigation system 
built on TCA. It is a layered control architecture and the 
interprocess communication is C/Socket based [2, 14]. The 
Mobility system has been developed by iRobot Co. It is an 
object-oriented and CORBA-based control architecture to 
support code reuse, transportability and extensibility. But it is 
proprietary. Saphira is the standard software environment 
delivered with robots from ActiveMedia. It is C++/shared 
memory and parts of it are in open source. Its shared core, 
named Local Perceptual Space (LPS), allow for easy 
composition of “fuzzy” behavior coordination, but the shared 
memory might be a bottle neck for communication [7]. 
TeamBots is a pure Java-based open source toolkit for multi-
agent and mobile research.  

III. ARCHITECTURE OF THE APPLICATION 

A. Scenario 
Navigation in dynamic and unknown surroundings is a 

widely studied problem. One traditional scenario is “go from 
place A to place B without bumping into an obstacle”.  

One way to avoid obstacles is to move the robot around the 
obstacles with keeping track of them. To do this its sensory 
system must estimate the tangent direction of the obstacle. This 
is often not realistic. Another question is the planning of 
trajectories for realistic robots in real environments. In [12], an 
algorithm of free space detection based on a range scanner,  is 
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Fig. 1  Framework of OROCOS@KTH for hardware in-/dependent 
components. It is based on CORBA and can be used in distributed multi-
agents. And specific hardware information is encapsulated in a runtime 
library. 
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Fig. 2  Scenario of indoor navigation 



presented to provide an experimental approach to online 
sensor-based navigation in unknown indoor environment. In 
order to detect free space, the area in the front of the robot is 
divided into a number of regions, along both the radial and 
angular directions of the range sensor. The robot can move 
from one free block (point) to another adjacent block. Hence, 
the robot in the paper keeps off obstacles with constant interval 
or moves through free space to the target point, rather than 
moving around obstacles. This algorithm is simple and 
efficient, with robot moving from point to point, and has 
reachability to the goal. But information is not fully utilized, 
the trajectory might be coarse and the robot might perform 
excessive turns. 

In the present scenario, as in Fig. 2,  the navigation might 
be composed of tasks: point-to-point navigation, door detection, 
door traversal and obstacle handling. Using these tasks it is 
possible to perform most any-place to any-place navigation 
missions in an indoor environment. The detection of places is 
achieved using a laser scanner, while obstacles might be 
detected by sonar or laser.  The entire system is tested on a 
Pioneer-II system, but the same system can also be executed on 
a Nomadic Super Scout. 

B.  General strategy 
According to above scenario, the robot should have a 

capability to deliberatively reason and detect a “door” with the 
perceptual input from sensors. Meanwhile, it should reactively 
steer clear of obstacles on the way to sub-goals. Therefore, it is 
implemented as a hybrid architecture. The general layout of 
this simple evalution system is shown in Fig. 3. 

C. Specific design 
As shown in Fig. 4, this application is decomposed into 10 

components with the support of OROCOS@KTH. The 
components can be classified into four types: 1) Deliberative 
components: Userinterface and Pathplanning. 2) Monitor 
component: Obstacledetecting. 3) Reactive components: 
Orienting, Obstaleavoiding and Goto. 4) Hardware abstractions: 
RobotBaseServer and LaserServer. Each component and its 
communication are briefly discussed in the following section. 

IV. COMPONENTS 
The components that compose this application system are 

shown in Fig. 4. The communication patterns are shown as 
directed arrows. For example, Component “Userinterface” 
sends GoalPoint object to component “Pathplanning” and 
queries its state with object LogMessage. 

A.  Userinterface 
Through this component the user can enter missions which 

through the Pathplanning are converted into Goalpoints. The 
status of the Pathplanning can at any time be requested through 
the use of the Query pattern, in which case a LogMessage 
object is returned. 

B. Path planning 
Path planning is one of the important functions to realize 

indoor navigation. Here, it is the commander and coordinator 
of a mission. When it receives the coordinates of a target 
(Goalpoint object) from the Userinterface component, it 
actuates Orienting component by sending the object of a 
WorldCoord. It also actuates the component of obstacle 
detection by subscribing to data ObstRead. In parallel it 
actuates the component of DLEdetecting by subscribing to 
DLEdata if necessary to get a sub-target. Finally, it sends a 
WorldCoord object to the component Goto. 

C. DLEdetecting  
This component is designed for door-like-exit detection and 

reasoning. A door-like-exit is an exit, which is 
characteristically like a door in 2D:  

• This is a local opening with a width of at least 800mm. 

• The free space beyond the opening must be at least 
1000mm. 

This component employs a specific Door-like-exit detection 
algorithm to detect sub-targets from the data of online laser 
sensor. The raw data used in this component are subscribed as 
the object of LaserRead from the component LaserServer. 
These sub-targets are abstracted into DLEdata and 
communicated to Pathplanning with Push. 

D. Obstacledetecting  
This component is a monitor to detect if there is any 

obstacle on the way. It also informs the Goto component if 
there is a condition that drives the robot in a dead end. It 
communicates with Pathplanning and Goto using a Push 
method and the objects are of type ObstRead. It subscribes to 
the readings from the sonar ring (object of SonarRead) from 
the component RobotBaseServer. 

E. Goto 
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Fig. 3 A hybrid architecture based on components and hardware abstract



A Goto function is a necessary part for navigation. It 
generates motion commands and sends them to Motionfuser 
with Push and object of MotionCmd. It decides reachability and 
motion gaits. To be convergent, there always is an attractive 
force to a sub-/target. To guarantee smooth movement, it keeps 

moving in the same direction under the monitor of 
Obstacledetecting. It subscribes to the readings from the sensor 
Odometry (Object of Odometry) from the component 
RobotBaseServer to detect if the goal is reached. 
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Fig. 4  Architecture of the application and the communication among the components 
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F. Orienting 
This is another generator of motion commands, rotating the 

robot to a certain degree. The purpose of this component is to 
simplify the structure and implementation of the component 
Goto. In addition, it also enhances the modular level of the 
architecture and the reusability of the components Goto, 
Obstacleavoiding and Motionfuser. Here, it uses the Push 
pattern to send turn commands (object of MotionCmd) to 
Motionfuser. It subscribes to readings from sensor Odometry 
(Object of Odometry) from the component RobotBaseServer to 
detect if the goal has been reached. 

G. Obstacleavoiding 
This component generates a behavior of stay clear of 

obstacles on the way. It subscribes to SonarRead from 
RobotBaseServer to detect if there is an obstacle in front of the 
robot. Given an obstacle, for example, in front of one of the left 
sonar sensor of the robot, it generates a motion command to 
move away from the obstacle along the direction of the sonar 
sensor. Each command has an associated weight, which is 
correlated with the distance and the direction of the obstacle. 
All commands are fused as a weighted vector sum and the 
result is sent as an object of type MotionCmd to Motionfuser 
using a Push. 

H. Motionfuser 
This component is the only one to send motion commands 

to the component RobotBaseServer, which controls the motor 
of the robot finally. It also subscribes to and receives all motion 
commands generated from other components such as Goto/ 
Orienting and Obstacleavoiding, and fuses them into one final 
command. Experiments show that it is the busiest component 
in this application and could be a bottleneck of the system. This 
is partially because all control commands have to flow together 
and be fused into one to control the actuator. The more the 
components which generate control commands, the busier this 
component. Another reason is this component has to 
synchronize all commands. This synchronization greatly 
increases the working time of this component. Therefore, its 
running state must be monitored so that further navigation can 
be implemented only when it is idle and accessible. This 
monitoring function is implemented with the Query pattern and 
LogMessage object sent to Pathplanning. 

I. RobotBaseServer and LaserServer 
LaserServer is a component abstraction on top of the laser 

sensor. RobotBaseServer encapsulates the interfaces to the 
actuator, the odometry and the sonar ring. All components can 
only communicate with hardware through these two 
components. 

V. EVALUATION 
The system was evaluated using experiments on Nomadic 

robot simulator, a Nomadic Scout - Louie and a PeopleBot - 
Goofy (Fig. 5). Both robots have a SICK scanner, which has a 
180 degree field of view, with 361 steps of resolution, an 
odometry sensor and a set of sonar sensors. The systems both 
use differential drive configuration. The operation system is 

Linux RH7.3, with TAO1.3 and ACE5.3. OROCOS@KTH has 
also been installed. 

        
Fig. 5  Robot Louie (Left) and Robot Goofy (right) 

 

The experimental scenario is the living room at the Centre 
for Autonomous Systems (CAS). The tested robots are 
commanded to reach the goal under three cases: in the same 
room, in the corridor, and in another room within the corridor. 
The general scenario is shown in Fig. 2. Below a number of 
issues related to use of the systems is outlined. 

A. Portability  
The system was used on three different platforms with little 

modification. For porting to new platform the hardware 
abstraction modules must be rewritten for the new system. 

B. Behaviors and efficiency 
Because of the introduction of door-like-exits, Robots can 

move almost straight to sub-targets in static environments with 
small path perturbations. They can move in high speed and 
their trajectories are balanced and smooth. The time that 
component DLEdetecting spends door-like-exits is only 
averagely 0.040s per detection. The small system does not 
offer enough complexity to challenge the system in terms of 
efficiency. At present the access to sensor data defines the 
overall speed of the system. 

C.  Coding 
As all components are built on the toolkit OROCOS@KTH, 

their programming is rather easy. Due to the extensive set of 
functionalities available in the OROCOS library, the coding of 
each component is compact. The resulting footprint is however 
rather large. The binary of a component is typically 1.5MB on 
disk. For example, the component Pathplanning has a total of  
551 lines of C++ code, and the binary is 1.59MB. the 
MotionFuser is 334 lines and 1.54MB. A big problem, as in all 
multi-process application programming, is debugging, which 
can be extremely difficult. Another issue is the learning curve. 
To write components one needs to know c++, CORBA, … so 
ther is an investment to get started. 

D. Communication and transparency 
All communication is performed with the three 

communication patterns. This is an efficient and natural model 
of component interaction. The experiments also demonstrated 
that the implementation is robust. There is no failure caused by 
communications themselves. Access to components/objects 



through the CORBA Name Service [15] is efficient and 
provides for transparency in the system.  

E. Resource management and monitors 
For this particular application design, the only point of 

resource synchronization was the Motionfuser, which needs to 
be monitored. This monitor is implemented with Query pattern 
and LogMessage object. However, query is not very efficient 
method for monitoring the working state of a resource. Another 
issue is the capability of synchronizing components, which 
might cause system to clog at component Motionfuser. For 
implementation of more advanced systems it might be useful to 
consider introduction of efficient mechanisms for inter-process 
synchronization. 

VI. SUMMARY 
A hybrid architecture for mobile robots to navigate in 

dynamic unknown indoor environments was presented in this 
paper. The main focus of the paper was not the system 
behavior, but the evaluation of methods for system design. 
Consequently, the system uses 1) incrementally design using 
component technology. It is decomposed into components with 
the support of the common and open framework of 
OROCOS@KTH. Each component has a unified 
communication interface and can be concurrently executed. 
Hence, it is scalable, portable and reusable. 2) a hybrid 
architecture. It take advantage of both deliberative and reactive 
modules. 3) It utilizes an application specific component for 
detection of door-like-exit. This algorithm is encapsulated into 
component DLEdetecting and utilizes 2D features of a door in 
combination with the range data from laser sensor. Cooperating 
with the Goto function and Obstacleavoiding, the algorithm 
and the corresponding path-planning allow robots to move 
robustly, efficiently and smoothly.  

One of main objectives of the work has been to evaluate 
OROCOS@KTH. It examines the characteristics of the toolkit 
in terms of construction of scalable, portable, and easy to 
develop autonomous mobile architecture. A particular design is 
presented. Through use of several platform it is demonstrated 
that a level of portability has been achieved. In addition the 
system has demonstrated adequate efficiency for navigation 
and obstacle avoidance. The experience in term of 
programming is that the toolkit allows for effacing coding, 
though the learning curve might be challenging. In addition the 
footprint is relatively large which primarily is due to the use of 
the ACE/CORBA. Finally the handling of critical resource is 
not as detailed as one might want in real-time control systems. 
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