
An Architecture for Indoor Navigation

Wenfeng Li
Dept. of Logistic Engineering,

Wuhan University of Technology,
Wuhan 430063, China

Henrik I Christensen and Anders Orebäck
Centre for Autonomous Systems

Royal Institute of Technology
SE-100 44 Stockholm, Sweden

Dingfang Chen
CAD Laboratory, Institute of Computing Technology,

 Chinese Academia Sinica,
Beijing, 100080, China

Abstract—This paper is concerned with the design and
implementation of a control architecture for a mobile robot that
is to navigate in dynamic unknown indoor environments. It is
based on the framework of Open Robot Control Software @
KTH, which is discussed and evaluated in this paper. As a hybrid
architecture, it is decomposed into several basic components
which can be classified as either deliberative or reactive. Each
component can concurrently execute and communicate with
another using unified communication interfaces. Scalability and
portability and reusability are the goals of the design.

Keywords-component; framework; architecture; indoor
navigation

I. INTRODUCTION
A fundamental problem in mobile robotics is the design of

a suitable architecture for integration of the various
components in a system. The problem of architectures for
mobile robotics is by no measure a new problem. It has been
widely studied for more than 3 decades, and prominent
architectures include NASREM [1], TCA [2], Behavior-Based
[3], [4], Dervish [5], CLARAty [13] etc. A good overview of
the wide variety of architectures available can be found in [6].
Today it is widely recognized that the most suitable
architecture for a mobile robot is the hybrid deliberative
approach [3], where deliberative and reactive systems are
combined into a unified framework. Such an architecture
allows rapid reaction to unexpected situations (the reactive
layer) and at the same time goal directed behavior and use of
prior knowledge, such as geometric maps, through the
deliberative layer situated on top of the reactive layer. While
there is an agreement on the control paradigm to be used in a
mobile robot architecture, there is a lack of standard software
packages for integration of systems. A few popular choices
include Saphira [7], Mobility by iRobot, TeamBots [8], TCA
[2], and Berra [9]. Unfortunately most of these systems have a
number of problems, as for example reported in [10] in terms
of:

• Portability to different hardware platforms

• Easy distribution for use of multiple computers

• Object oriented design

• Support for different control models

To address this problem an open source framework has been
developed as part of the EU Open Robot Control Systems
(OROCOS) initiative. Primary design objectives have been

• A set of standardized communication patterns

• Use of existing middleware technology (CORBA)

• Component based design to facilitate easy integration

• Support for multiple control paradigms

• Hardware abstraction.

One of the objectives of this paper is to design a hybrid
architecture for a mobile robot to navigate in unknown indoor
environments. At the same time the system is used to evaluate
the characteristics of the framework of Open Robot Control
Software (OROCOS) at KTH [11].

In this paper we start by introducing the OROCOS @ KTH
framework and go on to describe an example system for indoor
navigation, and finally we draw a number of conclusions as to
the adequacy of the framework for flexible development of
mobile robot systems and the features of the navigation
architecture.

II. THE OROCOS FRAMEWORK
OROCOS@KTH is an application independent framework

for soft-real-time mobile robots, as a part of the European
project: Open Robot Control Software. The philosophy of the
design is: 1) Component based. That is, details of low level
control and communication, etc. are abstracted and
encapsulated into modules. Developers only need to design
application oriented components with these modules. 2) Code
sharing. It is not bound to specific hardware in a specific lab.
And the code is open under GPL. Users should be able to
migrate to the system with limited effort. 3) Support for
distributed computing. Components can concurrently run and
communicate in a distributed and heterogeneous environment.
Figure 1 is the overview of the toolkit.

The work has in part been sponsored by the EU OROCOS project and the
Swedish Foundation for Strategic Research

• All components in an application are built on CORBA
(the Common Object Request Broker Architecture) so
that they can work in heterogeneous and distributed
environments. The CORBA specific code is
encapsulated in a set of base-class (i.e.
OrocosComponent). All components inherit from this
class.

• Its core includes communication patterns.
Communication patterns are a set of common modes of
data and event transfer utilizing CORBA. There are
three patterns designed. 1) Push. It asynchronously
sends an object to other components, using a one-way
communication to push an object to other components
that subscribe. 2) Query. It is a method of retrieving an
object from a component (pull). 3) Send. It is a one-
way communication to send an object to the server side.

• The objects transmitted via the communication patterns
are composed from CORBA valuetypes. A valuetype,
or an object, is a data structure which parameterizes the
communication pattern templates. It should be
predefined from the predefined base-class
OrocosObject. A communication pattern, when
bounded with a predefined valuetype object, becomes
an interface, which can be a client or a server.
Consequently, a component must inherit from
communication patterns and define relevant valuetypes.
With the support of CORBA broker, it decouples other
components and becomes independent units.

• To be independent on hardware such as robotic
actuators, sonar-sensors and laser-sensors, a set of
classes is developed to provide hardware abstraction as
shown in shaded areas in Fig. 1. Special hardware
information can be compiled into a runtime library and
activated at runtime.

• To coordinate communication and control resources, a
group of tools have also been developed: StateThread
(a basic state-machine for use in a component) and
Synchronizer(used for synchronizing data from two or
more components), etc.

Based on the framework of OROCOS@KTH, an
application dependent architecture and its components are
interoperable and portable across specific platforms and
hardware.

OROCOS@KTH is currently using the ACE/TAO
implementation of CORBA. It is programmed in C++. It
utilizes the CORBA Naming Service for mapping names to
object references but also has support for using the Trading
Service. It has its own component model, but the plan is to use
the CORBA Component Model in the future. Configuration,
including the wiring of components, is made in XML files.

There are several other toolkits available for construction of
robot systems. TCA/Xavier is an indoor navigation system
built on TCA. It is a layered control architecture and the
interprocess communication is C/Socket based [2, 14]. The
Mobility system has been developed by iRobot Co. It is an
object-oriented and CORBA-based control architecture to
support code reuse, transportability and extensibility. But it is
proprietary. Saphira is the standard software environment
delivered with robots from ActiveMedia. It is C++/shared
memory and parts of it are in open source. Its shared core,
named Local Perceptual Space (LPS), allow for easy
composition of “fuzzy” behavior coordination, but the shared
memory might be a bottle neck for communication [7].
TeamBots is a pure Java-based open source toolkit for multi-
agent and mobile research.

III. ARCHITECTURE OF THE APPLICATION

A. Scenario
Navigation in dynamic and unknown surroundings is a

widely studied problem. One traditional scenario is “go from
place A to place B without bumping into an obstacle”.

One way to avoid obstacles is to move the robot around the
obstacles with keeping track of them. To do this its sensory
system must estimate the tangent direction of the obstacle. This
is often not realistic. Another question is the planning of
trajectories for realistic robots in real environments. In [12], an
algorithm of free space detection based on a range scanner, is

CORBA setting classes: OrocosComponent Server ServerCollection

Odometry LaserRange SonarRange

MotionCommand …
Robot RobotPose GoalPoint

 WorldCoordinate …

Commu. Pattern
Push

Query
Send

Objects

OrocosObject

StateThread
Exception

Thread/Resource Man.
Synchronizer
TimerThread

ServerCollection

Other Toolkits

CORBA Service
Server Client

Orocos Component

So

na
rS

en
H

W

O
do

m
et

ry
H

W

La
se

rH
W

H

ar
dw

ar
eC

on
ta

in

Se
ns

or
H

W

M

otionH
W

H

ardw
areC

ontainer
Serial/FIFO

 Se
ria

l/F
IF

O

Fig. 1 Framework of OROCOS@KTH for hardware in-/dependent
components. It is based on CORBA and can be used in distributed multi-
agents. And specific hardware information is encapsulated in a runtime
library.

Mobile Robot

Goal

Workspace

Obstacles

Sub-targets

Fig. 2 Scenario of indoor navigation

presented to provide an experimental approach to online
sensor-based navigation in unknown indoor environment. In
order to detect free space, the area in the front of the robot is
divided into a number of regions, along both the radial and
angular directions of the range sensor. The robot can move
from one free block (point) to another adjacent block. Hence,
the robot in the paper keeps off obstacles with constant interval
or moves through free space to the target point, rather than
moving around obstacles. This algorithm is simple and
efficient, with robot moving from point to point, and has
reachability to the goal. But information is not fully utilized,
the trajectory might be coarse and the robot might perform
excessive turns.

In the present scenario, as in Fig. 2, the navigation might
be composed of tasks: point-to-point navigation, door detection,
door traversal and obstacle handling. Using these tasks it is
possible to perform most any-place to any-place navigation
missions in an indoor environment. The detection of places is
achieved using a laser scanner, while obstacles might be
detected by sonar or laser. The entire system is tested on a
Pioneer-II system, but the same system can also be executed on
a Nomadic Super Scout.

B. General strategy
According to above scenario, the robot should have a

capability to deliberatively reason and detect a “door” with the
perceptual input from sensors. Meanwhile, it should reactively
steer clear of obstacles on the way to sub-goals. Therefore, it is
implemented as a hybrid architecture. The general layout of
this simple evalution system is shown in Fig. 3.

C. Specific design
As shown in Fig. 4, this application is decomposed into 10

components with the support of OROCOS@KTH. The
components can be classified into four types: 1) Deliberative
components: Userinterface and Pathplanning. 2) Monitor
component: Obstacledetecting. 3) Reactive components:
Orienting, Obstaleavoiding and Goto. 4) Hardware abstractions:
RobotBaseServer and LaserServer. Each component and its
communication are briefly discussed in the following section.

IV. COMPONENTS
The components that compose this application system are

shown in Fig. 4. The communication patterns are shown as
directed arrows. For example, Component “Userinterface”
sends GoalPoint object to component “Pathplanning” and
queries its state with object LogMessage.

A. Userinterface
Through this component the user can enter missions which

through the Pathplanning are converted into Goalpoints. The
status of the Pathplanning can at any time be requested through
the use of the Query pattern, in which case a LogMessage
object is returned.

B. Path planning
Path planning is one of the important functions to realize

indoor navigation. Here, it is the commander and coordinator
of a mission. When it receives the coordinates of a target
(Goalpoint object) from the Userinterface component, it
actuates Orienting component by sending the object of a
WorldCoord. It also actuates the component of obstacle
detection by subscribing to data ObstRead. In parallel it
actuates the component of DLEdetecting by subscribing to
DLEdata if necessary to get a sub-target. Finally, it sends a
WorldCoord object to the component Goto.

C. DLEdetecting
This component is designed for door-like-exit detection and

reasoning. A door-like-exit is an exit, which is
characteristically like a door in 2D:

• This is a local opening with a width of at least 800mm.

• The free space beyond the opening must be at least
1000mm.

This component employs a specific Door-like-exit detection
algorithm to detect sub-targets from the data of online laser
sensor. The raw data used in this component are subscribed as
the object of LaserRead from the component LaserServer.
These sub-targets are abstracted into DLEdata and
communicated to Pathplanning with Push.

D. Obstacledetecting
This component is a monitor to detect if there is any

obstacle on the way. It also informs the Goto component if
there is a condition that drives the robot in a dead end. It
communicates with Pathplanning and Goto using a Push
method and the objects are of type ObstRead. It subscribes to
the readings from the sonar ring (object of SonarRead) from
the component RobotBaseServer.

E. Goto

Deliberative
modules

Reactive
modules

Monitors

Actuator

Sensors

Command
 Fuser

Fig. 3 A hybrid architecture based on components and hardware abstract

A Goto function is a necessary part for navigation. It
generates motion commands and sends them to Motionfuser
with Push and object of MotionCmd. It decides reachability and
motion gaits. To be convergent, there always is an attractive
force to a sub-/target. To guarantee smooth movement, it keeps

moving in the same direction under the monitor of
Obstacledetecting. It subscribes to the readings from the sensor
Odometry (Object of Odometry) from the component
RobotBaseServer to detect if the goal is reached.

Deliberative

Reactive

Robot

Monitor

Hardware abstract

Fig. 4 Architecture of the application and the communication among the components

Server

Query

Query

Send
Push

RobotPose WorldCoord ObstRead
Odometry MotionCmd

Objects

Goto component

SonarRead Odometry MotionCmd

Objects

Obstaleavoiding component

MotionCmd SonarRead
Odometry

Objects

RobotBaseServer component

LaserRead
Objects

LaserServer component

MotionCmd Orometry WorldCoord
Objects

Orienting component

MotionCmd LogMessage
Objects

Motionfuser component

Push

Pu
sh

Pu
sh

GoalPoint LogMessage

Objects

Userinterface Component

LaserRead DLEdata

Objects

DLEdetecting component

SonarRead Odometry WorldCoord
ObstRead

Objects

Obstacledetecting component

RobotPose WorldCoord DLEdata
ObstacleRead LogMessage GoalPoint

Objects

Pathplanning component Send

Send

Push

Pu
sh

 Se
nd

Push

Push

Pu
sh

Client

F. Orienting
This is another generator of motion commands, rotating the

robot to a certain degree. The purpose of this component is to
simplify the structure and implementation of the component
Goto. In addition, it also enhances the modular level of the
architecture and the reusability of the components Goto,
Obstacleavoiding and Motionfuser. Here, it uses the Push
pattern to send turn commands (object of MotionCmd) to
Motionfuser. It subscribes to readings from sensor Odometry
(Object of Odometry) from the component RobotBaseServer to
detect if the goal has been reached.

G. Obstacleavoiding
This component generates a behavior of stay clear of

obstacles on the way. It subscribes to SonarRead from
RobotBaseServer to detect if there is an obstacle in front of the
robot. Given an obstacle, for example, in front of one of the left
sonar sensor of the robot, it generates a motion command to
move away from the obstacle along the direction of the sonar
sensor. Each command has an associated weight, which is
correlated with the distance and the direction of the obstacle.
All commands are fused as a weighted vector sum and the
result is sent as an object of type MotionCmd to Motionfuser
using a Push.

H. Motionfuser
This component is the only one to send motion commands

to the component RobotBaseServer, which controls the motor
of the robot finally. It also subscribes to and receives all motion
commands generated from other components such as Goto/
Orienting and Obstacleavoiding, and fuses them into one final
command. Experiments show that it is the busiest component
in this application and could be a bottleneck of the system. This
is partially because all control commands have to flow together
and be fused into one to control the actuator. The more the
components which generate control commands, the busier this
component. Another reason is this component has to
synchronize all commands. This synchronization greatly
increases the working time of this component. Therefore, its
running state must be monitored so that further navigation can
be implemented only when it is idle and accessible. This
monitoring function is implemented with the Query pattern and
LogMessage object sent to Pathplanning.

I. RobotBaseServer and LaserServer
LaserServer is a component abstraction on top of the laser

sensor. RobotBaseServer encapsulates the interfaces to the
actuator, the odometry and the sonar ring. All components can
only communicate with hardware through these two
components.

V. EVALUATION
The system was evaluated using experiments on Nomadic

robot simulator, a Nomadic Scout - Louie and a PeopleBot -
Goofy (Fig. 5). Both robots have a SICK scanner, which has a
180 degree field of view, with 361 steps of resolution, an
odometry sensor and a set of sonar sensors. The systems both
use differential drive configuration. The operation system is

Linux RH7.3, with TAO1.3 and ACE5.3. OROCOS@KTH has
also been installed.

Fig. 5 Robot Louie (Left) and Robot Goofy (right)

The experimental scenario is the living room at the Centre
for Autonomous Systems (CAS). The tested robots are
commanded to reach the goal under three cases: in the same
room, in the corridor, and in another room within the corridor.
The general scenario is shown in Fig. 2. Below a number of
issues related to use of the systems is outlined.

A. Portability
The system was used on three different platforms with little

modification. For porting to new platform the hardware
abstraction modules must be rewritten for the new system.

B. Behaviors and efficiency
Because of the introduction of door-like-exits, Robots can

move almost straight to sub-targets in static environments with
small path perturbations. They can move in high speed and
their trajectories are balanced and smooth. The time that
component DLEdetecting spends door-like-exits is only
averagely 0.040s per detection. The small system does not
offer enough complexity to challenge the system in terms of
efficiency. At present the access to sensor data defines the
overall speed of the system.

C. Coding
As all components are built on the toolkit OROCOS@KTH,

their programming is rather easy. Due to the extensive set of
functionalities available in the OROCOS library, the coding of
each component is compact. The resulting footprint is however
rather large. The binary of a component is typically 1.5MB on
disk. For example, the component Pathplanning has a total of
551 lines of C++ code, and the binary is 1.59MB. the
MotionFuser is 334 lines and 1.54MB. A big problem, as in all
multi-process application programming, is debugging, which
can be extremely difficult. Another issue is the learning curve.
To write components one needs to know c++, CORBA, … so
ther is an investment to get started.

D. Communication and transparency
All communication is performed with the three

communication patterns. This is an efficient and natural model
of component interaction. The experiments also demonstrated
that the implementation is robust. There is no failure caused by
communications themselves. Access to components/objects

through the CORBA Name Service [15] is efficient and
provides for transparency in the system.

E. Resource management and monitors
For this particular application design, the only point of

resource synchronization was the Motionfuser, which needs to
be monitored. This monitor is implemented with Query pattern
and LogMessage object. However, query is not very efficient
method for monitoring the working state of a resource. Another
issue is the capability of synchronizing components, which
might cause system to clog at component Motionfuser. For
implementation of more advanced systems it might be useful to
consider introduction of efficient mechanisms for inter-process
synchronization.

VI. SUMMARY
A hybrid architecture for mobile robots to navigate in

dynamic unknown indoor environments was presented in this
paper. The main focus of the paper was not the system
behavior, but the evaluation of methods for system design.
Consequently, the system uses 1) incrementally design using
component technology. It is decomposed into components with
the support of the common and open framework of
OROCOS@KTH. Each component has a unified
communication interface and can be concurrently executed.
Hence, it is scalable, portable and reusable. 2) a hybrid
architecture. It take advantage of both deliberative and reactive
modules. 3) It utilizes an application specific component for
detection of door-like-exit. This algorithm is encapsulated into
component DLEdetecting and utilizes 2D features of a door in
combination with the range data from laser sensor. Cooperating
with the Goto function and Obstacleavoiding, the algorithm
and the corresponding path-planning allow robots to move
robustly, efficiently and smoothly.

One of main objectives of the work has been to evaluate
OROCOS@KTH. It examines the characteristics of the toolkit
in terms of construction of scalable, portable, and easy to
develop autonomous mobile architecture. A particular design is
presented. Through use of several platform it is demonstrated
that a level of portability has been achieved. In addition the
system has demonstrated adequate efficiency for navigation
and obstacle avoidance. The experience in term of
programming is that the toolkit allows for effacing coding,
though the learning curve might be challenging. In addition the
footprint is relatively large which primarily is due to the use of
the ACE/CORBA. Finally the handling of critical resource is
not as detailed as one might want in real-time control systems.

ACKNOWLEDGMENT
This work has in part been sponsored by the EU OROCOS

project, the China Scholar Council and the Swedish Foundation

for the Strategic Research through its Centre for Autonomous
Systems. The funding is gratefully acknowledged. Meanwhile,
the experiments were carried out at the Center of Autonomous
Systems (CAS), Royal Institutes of Technology, Sweden. The
authors would also like to thank the anonymous reviewers for
the useful insights and suggestions.

REFERENCES
[1] J. Albus, H. McCain, and R. Lumia, “Nasa/nbs standard reference model

for telerobot control system architecture (nasrem),” Tech. Rep. NBS
Technical Note 1235, Robot Systems Division, National Bureau of
Standards, Gathersburgh, VA, 1987.

[2] R. G. Simmons, “Structured control for autonomous robots,” IEEE
Transactions on Robotics and Automation, vol. 10, no. 1, pp. 34–43,
1994.

[3] R. C. Arkin, “Integrating behavioral, perceptual, and world knowledge
in reactive navigation,” Robotics and Autonomous Systems, vol. 6, pp.
105–122, 1990.

[4] R. A. Brooks, “A robust layered control system for a mobile robot,”
IEEE Journal of Robotics and Automation, vol. RA - 2, pp. 14 – 23,
March 1986.

[5] I. Nourbakhsh, R. Powers, and S. Birchfield, “Dervish: An office
navigation robot,” AI Magazine, vol. 16, no. 2, pp. 53–60, 1995.

[6] R. C. Arkin, Behaviour Based Robotics. Intelligent Robots and Au-
tonomous Agents, Boston, MA: MIT Press, 1998. ISBN 0-262-01165-4.

[7] K. Konolige and K. Myers, “The saphira architecture for autonomous
mobile robots,” in Artificial Intelligence and Mobile Robots (P. B. D.
Kortenkamp and R. Murphy, eds.), ch. 9, pp. 211–242, Menlo Park, CA:
AAAI Press/The MIT Press, 1998. ISBN: 0-262-611376.

[8] T. Balch, Behavioral Diversity in Learning Robot Teams. PhD thesis,
College of Computing, Georgia Tech, Atlanta, Ga. – USA, December
1998.

[9] M. Lindström, A. Orebäck, and H. Christensen, “Berra: A research
architecture for service robots,” in Intl. Conf. on Robotics and
Automation (Khatib, ed.), vol. 4, (San Francisco), pp. 3278–3283, IEEE,
May 2000.

[10] A. Orebäck and H. I. Christensen, “Evaluation of architectures for
mobile robotics,” Autonomous Robots, vol. 14, pp. 33–50, Jan 2003.

[11] OROCOS@kth. http://cogvis.nada.kth.se/orocos/
[12] T. Tsubouchi, T. Yamaguchi, S. Yuta, “Online sensor-based behaviour

decision and navigation of a mobile robot in unknown indoor
environment,” the 8th International Symposium on Experimental
Robotics (ISER '02), Sant'Angelo d'Ischia, Italy, July 2002.

[13] I. Nesnas, R. Volpe, T. Estin, etc., “Toward Developing Reusable
Software Components for Robotic Applications,” Proceedings of the
International Conference on Intelligent Robots and Systems (IROS),
Maui Hawaii, Oct. 2001.

[14] R. Simmons, J. Fernandez, R. Goodwin, S. Koenig, and J. O'Sullivan,
“Xavier: An Autonomous Mobile Robot on the Web.” Beyond
Webcams: An Introduction to Online Robots, K. Goldberg and R.
Siegwart (Eds.), MIT Press, 2002

[15] http://www.cs.wustl.edu/~schmidt/TAO.html

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	header: Proceedings of the 2004 IEEE International Conference on Robotics & Automation New Orleans, LA • April 2004
	footer: 0-7803-8232-3/04/$17.00 ©2004 IEEE
	01: 1783
	02: 1784
	03: 1785
	04: 1786
	05: 1787
	06: 1788

