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ABSTRACT
An approach to dialogue based interaction for resolution of
ambiguities encountered as part of Human-Augmented Map-
ping (HAM) is presented. The paper focuses on issues re-
lated to spatial organisation and localisation. The dialogue
pattern naturally arises as robots are introduced to novel en-
vironments. The paper discusses an approach based on the
notion of Questions under Discussion (QUD). The presented
approach has been implemented on a mobile platform that
has dialogue capabilities and methods for metric SLAM. Ex-
perimental results from a pilot study clearly demonstrate
that the system can resolve problematic situations.
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1. INTRODUCTION
In human-augmented mapping (HAM), a human and a robot
interact to establish a correspondence between how the hu-
man perceives the spatial organization of the environment,
and what the robot autonomously learns as a map [22]. This
helps to bridge the difference in perspective: robots usually
construct metric maps, whereas humans adopt a more topo-
logical perceive of spatial organization. Being able to over-
come this difference is crucial for interactive, mobile service
robots.

Existing dialogue-based approaches to human-assisted map-
ping usually implement a master/slave model of dialogue:
the human speaks, the robot listens. Such dialogues are
sufficient when the only goal is for the human to tell the
robot the names of different locations. However, situations
naturally arise in which interaction should be more flexible,
allowing also the robot to take the initiative in the dialogue.

We present an approach that enables the robot to initiate a
subdialogue to clarify an issue. This is one important form
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of mixed-initiative interaction, to enable a robot to recognize
when help is needed from a human user, and learn from this
interaction [5, 6, 17]. In human-assisted mapping, several
situations may arise that require clarification, for example:

Uncertainty in automatic classification: Doorways pro-
vide important knowledge about spatial organization,
but are difficult to recognize robustly and reliably.

Inconsistency between classification and description:
The semantic classification of a location which a robot
can automatically establish [19] may be inconsistent
with the description provided by the human user.

Diagnosed faults in perception: One source of faults lies
in the localisation system, which may not always gen-
erate classifications for new locations, or the robot may
enter into areas that only appears to be novel. Another
source of faults are odometric errors, which may cause
slippage in mapping. Finally, the robot may be un-
able to perceive certain obstacles with its given suite
of sensors, e.g. doorsteps.

Clarification dialogues can help to improve the quality of
the representation that the robot constructs of the spatial
organization of the environment, and to increase the robot’s
robustness to dealing with uncertain or incomplete informa-
tion. The contribution of this paper is that we present an
approach that enables a robot to carry out clarification dia-
logues, triggered by the types of situations described above.

For our method for clarification we start from an approach
that is concerned with questions and clarifying communica-
tion in multi-modal dialogue systems for information-seeking
tasks [15]. Applying it in human-robot interaction yields the
novel situation that modalities other than communication
actually can trigger a need for clarification. Although the
need for robots to be able to take initiative when requiring
help has been acknowledged [6, 17], existing systems that
allow for mixed-initiative either focus on issues in control
(“adjustable autonomy”) using mostly graphical interfaces
[5], or do not have the rich perceptual input our system deals
with [20]. Our approach is similar to [20] in that we also
adopt a planning-based model of dialogue, which is more
flexible than the finite-state methods employed in e.g. [12,
11].

An overview of the paper is as follows. In §2 we present



our approach, discussing how clarification dialogues are trig-
gered, and how they are processed at the levels of com-
munication and mapping. §3 presents the implementation
iin an integrated architecture, including the communication
subsystem, the mapping & localization subsystem, and the
mediation between these subsystems. In §4 we present the
results of a pilot study, in which we investigated the viabil-
ity and effectiveness of cross-modal integration we achieved
between communication, and mapping & localization. The
results clearly demonstrate the potential for the approach
to increase the quality of the maps the robot creates, but
also raise several -still outstanding- issues. The paper closes
with a discussion of possible extensions of the approach in
§5, and conclusions.

2. GROUNDING AND CLARIFICATION
To solve the issues that arise in the situations sketched
above, we propose to conceive of these issues as ground-
ing problems which require clarification. Contemporary di-
alogue systems use clarification mechanisms primarily to
address communicative grounding problems. A grounding
problem arises when the hearer has a problem figuring out
what the speaker’s utterance meant. This may be due to
e.g. a lack of perception or understanding regarding what
the utterance seems to refers to, ambiguity in the under-
stood meaning of the utterance, or conflicts between the
hearer’s beliefs and the understood meaning. The situations
we deal with in this paper can also be seen as grounding
problems, which require clarification – except that in our
case grounding problems arise outside (and sometimes irre-
spective) of the current dialogue. They represent a problem
with grounding the robot’s own unmediated perceptions, rel-
ative to an intended representation that relates to the per-
spective of a human user.

We adopt an approach to dealing with questions and their
function in grounding inspired by Ginzburg, and Larsson,
who define for information states-based dialogue manage-
ment a datastructure QUD (Questions Under Discussion) to
keep track of open questions or issues that still need to be
handled, cf. [15]. Similarly, we define a structure XMQUD
to store issues that have been raised by a modality other
than communication, and which need to be addressed cross-
modally. XMQUD is an ordered set, with ordering based
on recency, in which each question has a unique identifier
provided by the issuing modality.

If processing in a modality (e.g. mapping) runs into a ground-
ing problem, it can submit a question to the XMQUD. Ab-
stractly, we can think of a question as having the following
form: ?x.content(u, x), meaning there is some aspect x of
the content u which is under discussion. We call x the scope
of the question, and u the restrictor : x is what the ques-
tion is about, i.e. we are looking for an aspect x that is
circumscribed by the content of u.

For the purposes of this paper, we are interested in two
kinds of scopes, namely over things (e.g. locations “where
is the desk?” or objects “what is near me?”) and over the
truth of a proposition (e.g. “is there a door here?”). This is
represented as in Example 1: (a) specifies for a question q1 a
?-scope over x being of sort location, and (b) gives a ?-scope
over the statement of a state s being true for a question q2 .

(1) a. q1= ?x : location

b. q2= ?true(s : state)

The restrictor we specify as a relational structure, consisting
of a conjunction of elementary predications [13]. The most
basic elementary predication is an identifier nj , which may
be sorted as illustrated in Example 1, with a proposition p
that holds for that identifier:

@nj (prop), “at nj , prop holds”.

We specify a feature f with value v for nj as

@nj (〈f〉v).

Finally, a relation 〈R〉 holds between two identifiers ni and
nj . For example,

@d1 : doorway(door
∧ 〈Location〉(n1 : region ∧ near

∧ 〈Proximity〉proximal
∧ 〈Dir:Anchor〉(i1 : person ∧ speaker)))

represents a doorway d1 being a door, which is in a location
n1 in that is proximal to an anchor i1, being the speaker –
i.e “door near me/here”.

Example 2 illustrates then the two types of questions we are
interested in. The question in (a) scopes over things near
the speaker (“what is near me?”), whereas (b) is after the
truth of the statement that there is a door near the speaker
(“is there a door near me/here?”).

(2) a. q1 =?x : thing.
@x : doorway(〈Location〉(n1 : region ∧ near

∧ 〈Proximity〉proximal
∧ 〈Dir:Anchor〉(i1 : person ∧ speaker)))

b. q2 =?true(d1).
@d1 : doorway(door
∧ 〈Location〉(n1 : region ∧ near

∧ 〈Proximity〉proximal
∧ 〈Dir:Anchor〉(i1 : person ∧ speaker)))

When a modality submits a question to the XMQUD, the
question is stored with its identifier. For the purposes of this
paper, there is no planning involved in how to deal with a
question: we always request the communication subsystem
to try and resolve the question, through a dialogue with
the human. (See also §5 for how this can be extended.)
The communication subsystem plans a communicative goal
and the content to express the question, and returns the
XMQUD an identifier for the utterance that is being planned.
The XMQUD establishes a connection between the question
to this identifier (fusion).



Figure 1: Architecture (partial) with communica-
tion, mapping & localization, mediation subsystems

The robot subsequently plans a communicative goal (i.e. ask
the human), and the content to realize this goal. The robot
then generates a string expressing this content, utters it, and
at the same time adds the planned content to a model of the
dialogue context, to record the fact that the robot has asked
a question. After the robot has posed the question to the
human, we can assume that the human answers the question.
Once the robot has parsed the answer, it tries to interpret
the answer in the current dialogue context: That is, we try
to establish a rhetorical relation between the answer, and a
question that has been raised in the dialogue.

The result of this analysis is a relational structure, connect-
ing the content of the answer to that of the question the
robot beliefs it is an answer to. Now this analysis is passed
back to process that maintains the XMQUD. The identi-
fier of the question the answer was bound to is resolved
against any outstanding questions on the XMQUD. Pro-
vided a matching question on the XMQUD is found, the
modality which raised the question is informed of the an-
swer, so that it can (intra-modally) resolve the outstanding
issue.

3. IMPLEMENTATION
We have implemented the approach of §2 in a distributed
architecture for integrating different perceptual and delib-
erative skills that deal with a variety of modalities. The
architecture is inspired by multi-level distributed cognitive
architectures like [21].

Figure 1 illustrates the relevant aspects of the architecture:
the communication subsystem, the mapping subsystem, and
the BDI-based mediation between the different subsystems.
By saying that beliefs mediate we mean that they provide
a common ground between different modalities, rather than

Figure 2: Simultaneous Localization And Mapping

being a layer on top of the different modalities. Beliefs pro-
vide a means to perform forms of global information fusion
[23], in its minimal form by co-indexing references to infor-
mation in individual modalities. Furthermore, it is at this
mediating level that we deal with requests to clarify issues
that have arisen in a particular modality, through commu-
nication or through another modality.

3.1 Communication
The communication subsystem consists of several compo-
nents for the analysis and production of natural language.
It has been implemented as a distributed architecture us-
ing the Open Agent Architecture [7], following the idea of
agent-based models for multi-modal dialogue systems [1].

On the analysis side, we use the Sphinx4 speech recogni-
tion engine1 with a domain-specific JSAPI speech gram-
mar. The string-based output of Sphinx4 is then parsed
with OpenCCG2. OpenCCG employs a combinatory cate-
gorial grammar [3] to yield a representation of the linguistic
meaning that the string (i.e. the utterance) represents. We
represent linguistic meaning as an ontologically rich, rela-
tional structure (see also §2) in a description logic-like for-
malism. Finally, in structural dialogue analysis we relate the
linguistic meaning of an utterance to the current dialogue
context, in terms of how it rhetorically and referentially re-
lates to preceding utterances. This yields an updated model
of the (situated) dialogue context [2, 4].

On the production side, we use dialogue planning to enable
flexible, contextually appropriate interaction. Based on a
need to communicate, established either by the current di-
alogue flow or by another modality, the dialogue planner
establishes a communicative goal. In turn, we plan the con-
tent to express this communicative goal, possibly in a multi-
modal way using non-verbal means (pose, head moves) next
to verbal communication. In these planning steps, we can
inquire the models of the situated context (e.g. dialogue con-
text, visually situated context) to ensure that the content we
plan is contextually appropriate [14]. We realize verbal con-
tent using the OpenCCG realizer, which generates a string
for the utterance, and then synthesize this string using a

1http://cmusphinx.sourceforge.net/sphinx4/
2http://openccg.sf.net



text-to-speech engine3.

For example, let us consider the case that the mapping
subsystem informs the BDI Mediator that it system is un-
certain about the presence of a door in a particular loca-
tion. The mapping system sends a content specification (e.g.
@d1 : doorway(door) and the status of this content in the
model that the mapping system maintains of the environ-
ment. In our architecture we classify this status as known,
ambiguous to indicate the uncertainty of an already made
interpretation.

The BDI mediator in turn informs the dialogue planner of
this content, its status, and the modality it originates in.
The dialogue planner generates a communicative goal for
resolving the issue, by determining the question type that
needs to be communicated: We have built an ontology of
abstract assertion, command, and question types that me-
diates between linguistic content and content in other high-
level cognitive processes. The utterance planner then con-
structs the logical form which expresses this type of question,
using the content and information about the modality.

An important aspect of the resulting subsystem is that it
interacts in a distributed fashion with other modalities (cf.
also [1, 20]), instead of playing a centralized controling role
in the overall architecture [4]. Backed by the flexibility that
dialogue planning offers over e.g. scripted responses in a
finite-state approach, we can exploit this distributed inter-
action to enable other modalities trigger a need for commu-
nication – e.g. for clarification.

3.2 Mapping and Localization
The subsystem for SLAM uses a feature based representa-
tion where the main features are lines, typically correspond-
ing to walls in the environment. The underlying feature rep-
resentation is flexible and other types of features can easily
be incorporated [9]. The basis for integrating the feature
observations is the extended Kalman filter (EKF).

A feature based map is rather sparse and only captures
structures that fit the predefined feature description (e.g.
lines). One cannot distinguish free space from areas where
the structures do not fit the feature model. There is thus no
explicit information about where there is free space such as
in an occupancy grid. Here we use a technique as in [18] and
build a navigation graph (also called routegraph) while the
robot moves around. When the robot has moved a certain
distance, a node is placed in the graph at the current posi-
tion of the robot. Whenever the robot moves between two
nodes, these are connected in the graph. The nodes repre-
sent the free space and the edges between them encode paths
that the robot can use to move from one place to another.

On top of the navigation graph there is a graph where each
area corresponds to one node and the edges tell which ar-
eas are connected. The graph is automatically generated
from the navigation graph by labeling the nodes into differ-
ent areas and thus partitioning it. Our strategy rests on the
simple observation that the robot passes a door to move be-
tween rooms. Therefore, whenever the robot passes a door a

3http://mary.dfki.de

node marked as a door is added to the navigation graph and
consequetive nodes are given a new area label. Currently,
door detection is simply based on detecting when the robot
passes through a narrow opening. The fact that the robot
has to pass through an opening removes a lot of false doors
that would result from simply looking for narrow openings.
However, this alone will still lead to some false doors in clut-
tered rooms. Assuming that there are few false negatives in
the detection of doors we get great improvements by enforc-
ing what was stated above, i.e. it is not possible to change
room without passing a door. For example, while moving
around in a room the robot may detect a narrow passage
and falsely assume that a door was passed. It will initially
put a door label on that particular node. The robot con-
tinues to move around in the room and eventually reaches
the nodes from before adding the false door. These nodes
will then have different room labels, that is, the room has
changed without passing a door. If this happens, an incon-
sisteny is found and a dialogue with the user is triggered to
clarify the situation.

Note that our method for constructing the topological graph
is independent of the representation used for the rest of the
map. The estimate of the robot position can come from any
source. Furthermore, the sensors needed to detect when the
robot is standing in a narrow opening can be very simple.
In [8] a feature based map is also used for localization. How-
ever, for generating the topological map an occupancy grid
has to be constructed. In [10] the topological graph is also
extracted from an occupancy grid. Constructing the occu-
pancy grid is computationally intensive. An alternative to
the grid based method is presented in [19] where Boosting is
used to train classifiers to recognize different types of envi-
ronments, such as doorways, corridor and rooms from laser
data. The boosting method would make a suitable compli-
ment to the method used in this paper. The integration of
the two methods is therefore underway.

4. PILOT STUDY
Using the implemented system, we have performed a pilot
study to investigate the viability and effectiveness of cross-
modal integration between communication, and mapping &
localization. The results, discussed below, clearly demon-
strate the potential for the approach to increase the quality
of the maps the robot creates. We discuss results on the ba-
sis of sample interactions, and we outline still outstanding
issues.

4.1 Investigations
The pilot study consisted in repeated runs through two types
of indoor environment: connected cluttered spaces, in the
form of an office and a laboratory connected through a door-
inbetween and a corridor; and a large open space, in the
form of a lobby. In the experiments, we focused on using
clarification to ensure the proper classification of nodes in
the route-graph as door or room. We used an ActivMedia
PeopleBot as our mobile platform, equipped with a SICK
laser range finder.

In the first experimentation setting, connected cluttered spaces,
the robot travelled approximately 20 meters through an of-
fice, a laboratory, and a corridor. The route graph for the
map has on the average 22 nodes, 3 of which correspond to



Figure 3: Sample interaction timeline to clarify mapping issue

doors; see Figure 4. Both the office and the laboratory were
cluttered with several larger objects, e.g. a P3-AT robot as
illustrated in Figure 5.

Figure 4: Sample route graph for cluttered spaces

The timeline in Figure 3 shows a prototypical interaction
sequence between the tutor and the robot. When entering
a new room, the tutor describes the room to the robot, e.g.
“This is the office.” (A). Adopting a collaborative model
of dialogue, the robot duly acknowledges that it has under-
stood.

While travelling through the office, the robot introduces new
nodes into the route graph. The green star indicates the
most recently added node. (B) corresponds roughly to the
scene in Figure 5, with the position of the green star being
near the white square to the right behind the P3-AT.

When the PeopleBot passes through the narrow opening be-

Figure 5: Real situation for Figure 3

tween the P3-AT and the bags, it wrongly classifies this as a
doorway and consequently adds a door node (the red star).
(C) Because passing through a door means entering a new
room, the robot now assumes it is no longer in the office. It
accordingly labels new nodes in the routegraph with a new
area identifier, indicated by a different color.

Once the robot has arrived at its position indicated in (D),
the robot is able to reconnect the subgraph of the “new
room” with a node it previously visited – which was in a
different room. This, however, means that the robot would
have re-entered the ’previous’ room without having passed
through a door. It is at this point that the mapping & lo-
calization subsystem indicates that there might be an issue
with a node it classified as a door. The robot asks a clar-
ification question, which -in this case- is answered in the
negative. Based on this information, the robot corrects its
map. (E)

The internal processing that happens at stages (D) and (E)
is given in more detail in Figure 6. Once the mapping sub-
system realizes it is uncertain about the presence of a door,
it informs the BDI Mediator that it is unsure about the



Figure 6: Internal processing for Figure 3(D)-(E)

status of location dx99 being indeed a door (known amb
indicates known, ambiguous in the multi-valued ’truth’ sys-
tem we employ). The communication subsystem translates
this complex request into a question of the abstract type
informative.polar.endurant.perspective.spatial, asking after
the truth of locating an object (door) in the given spatial
perspective (here). The utterance planner in turn plans a
logical structure to realize this communicative goal, by con-
structing the logical form for a polar question of the form
“is there 〈object〉 〈spatial perspective〉?” Once we have con-
strued the logical form has been construed, its identifier is
returned to the BDI Mediator to indicate that this is the
question posed to resolve the issue, we store it in the dia-
logue model, and we realize the logical form as a string using
the OpenCCG realizer.

Then, when the human tutor provides an answer, we try to
resolve that answer against outstanding questions in the dia-
logue model (i.e. performing a basic form of rhetorical reso-
lution). As answer to a polar questions we need an assertion
that expresses a valuation, possibly with a correction. Our
example just gives the simplest case, namely “No”. In the
dialogue model, we then state that content of this assertion
provides an answer to the previously asked polar question.
This information (i.e. answer, plus antecedent question) is
then passed on to the BDI Mediator for further processing.
Since in the BDI Mediator we kept track of the identifier of
the question that was communicated to resolve the raised
issue, we can now return the assertion provided as answer
to the modality that raised the QUD.

We repeated the experiment 5 times. In total, 105 route-
graph nodes were generated. 22 nodes were classified as
doorways, 14 of them being correct door nodes, and 8 being
false positives. We only had one false negative, i.e. a node
wrongly classified as a room whereas it should have been
a door. Clarification detected, and helped resolve, 7 out
of the 8 false positives. Hence, after clarification, 15 nodes
remained classified as doors, 14 of them being correct. In
percentages, 77.78% of the misclassified nodes over all runs
were reclassified, resulting in an increase from 92.38% to
98.10% nodes correctly classified.

We performed a similar experiment in the lobby of our build-
ing. The lobby is a large space with several relatively static
landmarks, e.g. an information board, and reception desks.
Like the loose objects in the previous experiment, these
landmarks often yielded false positives which could be accu-
rately recognized, and corrected through clarification ques-
tions.

4.2 Issues
Human-augmented mapping can clearly improve the quality
of a map that the robot automatically acquires – provided
though the robot itself can recognize false positives, and
that there is a human tutor to answer the questions. As we
already described for the sample interaction in Figure 3, in
our system the robot only properly recognizes false positives
if it is able to “close the loop” in a graph. It needs to explic-
itly realize it has returned to a -presumably different- area
it was in before, without having passed through a doorway.

Figure 7: Non-looping
subgraph with misclassi-
fied doornodes

If there is no loop, the
robot does not recog-
nize it has returned to
the same room without
having passed through a
door. Instead, it will
consider the falsely rec-
ognized doors as posi-
tive evidence for passing
through doorways to get
to different rooms. Fig-
ure 7 ilustrates such a sit-
uation, where we have an
extremely narrow, clut-
tered room with a turn-
ing space of less than one
meter.

Moreover, even if the route graph does loop, it is not guaran-
teed that false positives can be recognized. Figure 8 shows
the situation of a conference room where the small space
between rows of chairs and cupboards was often recognized
as a doorway. Although the robot did close the loop, we had



Figure 8: Looping subgraph with misclassified
doornodes

the same self-delusion as in the previous example: there were
too many false positives, making the robot wrongly believe
it indeed had passed through doors.

It is interesting though to consider, what the interaction be-
tween the robot and the human would look like should the
robot be able to recognize the false positives in Figure 8: Ev-
ery other meter, the robot would ask the human “Is there
a door here?” We would like to avoid such tedious interac-
tions, e.g. asking seemingly endless sequences of questions
about wrongly recognized doors in rapid succession. One
way to deal with this is to provide the robot with more lin-
guistic capability (“There are no doors here!” – i.e. do not
ask until you are explicitly told you are in a new room). An-
other way is to mix in other modalities, e.g. the robot can
try to verify visually whether there is a door, or whether it is
still in the same room, before asking a clarification question.
(At the same time, the quality of visual recognition would
obviously affect false positives and false negatives due to
differences in reliability of vision across situations.)

A final issue raised in the experiments was the possible in-
appropriateness or ambiguity of “here” in clarification ques-
tions like “Is there a door here?”. The robot will only raise
an issue once it has closed a loop. If that loop covered a
large area, then “here” is clearly inappropriate, because the
robot is not likely to be in the vincinity of the questionable
node. But even if the robot is, there may be a problem for
the speaker to resolve “here”. For example, in the situation
illustrated in Figure 5 and Figure 3, the robot closed the
loop at a point where it was close to the door leading out of
the office. In this case, the tutor could interpret the question
“Is there a door here?” to refer to the office door, and thus
wrongly answer “Yes, there is a door here.” In other words,
the robot needs to use a deictic reference that can properly
be resolved by the human.

5. EXTENSIONS
We are currently investigating several means for improving
the automatic classification and verification of locations, so
that the robot needs to rely less on a human tutor to be
present. As we noted earlier, Boosting may be used to train
classifiers to recognize different types of environments from
laser data (based on the polygonal shape of the frontier),
such as doorways, corridors and rooms. We would like to
use this approach to complement the methods we are cur-
rently using to classify areas and doorways – complement,
because although it may improve the recognition of door-

ways, it may also introduce novel errors such as semantic
misclassifications of locations.

Another approach we are investigating is the use of visual
feedback. Using a SIFT-based approach to visual recogni-
tion [16], the robot can dynamically construct a short-term
memory of scalable visual models that characterize a local
situation. Each time the tutor tells the robot it enters a new
room, the robot looks around and constructs three models
representing visual perspectives on the room. Then, as long
as the robot travels on a similar heading as it enters the
room, it can try to use the models it constructed to recog-
nize whether it is still in the room. Provided visual recog-
nition yields a high enough confidence score, this is an easy
and fast way to verify whether it has just passed a door
or not. When a significant change in heading occurs, the
robot needs to construct additional models. Preliminary
experiments show that visual models of perspectives tend
to be useful for about four meters of (straight) travel, and
that learning new models takes about two seconds including
moving the pan/tilt unit.

All these extensions help us continue along the main ideas
we discussed in this paper. Namely, how do we go beyond in-
tegrating communication and mapping & localization, gen-
eralizing to n modalities, so that we can equip the robot
with efficient cross-modal clarification strategies?

6. CONCLUSIONS
In this paper we presented an approach to clarification,
which enables a robot to initiate a dialogue with a human to
clarify an issue that has arisen in one of its modalities. We
focused on issues that can arise in mapping & localization
in novel environments, and discussed a pilot study which
showed that clarification can clearly contribute to increas-
ing the quality of the maps that a robot constructs. The
pilot study also identified several issues for future research,
such as the need to complement communication with other
modalities that can assist in clarifying an issue, and to have
flexible and intelligent dialogue strategies to avoid repetitive
interactions. At the end of the paper, we pointed out how
recently developed techniques in automatic location classi-
fication (Boosting) and visual recognition (SIFT) could be
used to extend our approach to clarification with additional
modalities for verification.
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