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Abstract

This paper describes an accurate and robust algo-
rithm for Simultaneous Localization and Map Building
(SLAM). The objective of SLAM is to enable a mo-
bile robot to build an internael representation (Map) of
an unezplored environment while simultoneously using
that map to navigate. An EKF filter approach is used
to process the informetion acquired by the sonar sen-
sors mounted on the robot. A method for recovering
from failures of the SLAM ualgorithm is presented for
increasing the robustness of the gencral EKF method.
Real experiments are presented considering a Nomadic
SuperScout mobile robot navigating in a domestic en-
vironment,

1 Introduction

The objective of this work is to enable an au-
tonomous robot to navigate in a domestic environ-
ment without relying on e priori maps and without
using artificial landmarks. Navigation in a domestic
setting is essential for performing tasks. The error
growth rates of dead-reckoning is usually unaccept-
able and sensing is therefore needed. Different sen-
sory modalitics are available for mobile robots, such
as ultra-sonic sonar, laser systems, infrared systems
and vision. Sonar, even if it is not the most accu-
rate sensor, is the preferred solution due to its limited
cost and its limited computational requirement for ex-
tracting information from the environment, which is
a great advantage if the robot is intended to have an
accessible price. Accurate positioning is crucial for
the safety of the robot and the performance of the
task it performs. There is, thercfore, a need for au-
tomatic mapping and methods for safe navigation in
such settings. The problem of Simultaneous Localiza-
tion and Map Building is a significant open problem
in mobile robotics which is diflicult because of the fol-
lowing paradox: to localize itself the robot needs the
map of the environment, and, for building a map the
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robot location must be known precisely. This problem
has been studied in the past few years by different re-
searchers. One solution was provided by Smith, Self
and Cheesman (1] who developed an EKF approach
for building a “stochastic map” of spatial relation-
ships, Moutarlier and Chatila [2] have implemented a
framework similar to the one presented by Smith et al.
using laser range data. Due to the high computational
complexity of stochastic maps (in a two-dimensional
environment containing n geometric features the com-
plexity of the EKF is G(n3)[3]) real time performance
becomes impossible for environments with more than
a few hundreds features. Therefore methods for re-
ducing the computational requirements have been pro-
posed. Failures of strategies which- ignore the corre-
lations has been demonstrated by Uhlmann et al. [4]
and Castellanos et al. [5]. Leonard and Feder [7] de-
veloped a method for splitting the map into multiple
globally-referenced sub-maps keeping the complexity
bounded, Durrant-Whyte, Dissanayake and Gibbens
[8] presented a method for choosing the best features
in the environment to best maintain the performance
of the SLAM algorithm.

In our work we de not worry about the complexity
of the EKF approach to the SLAM problem since the
environment in which the robot performs its task is
relatively small and the number of feature extracted
is small encugh to run the algorithn in real time. This
paper studies the possibility of using SLAM for auto-
matic mapping in combination with methods for au-
tomatic initialization and recovery from failures.

In Section 2 the standard EKF approach to the
SLAM problem is described. In Section 3 of this pa-
per we describe the method used for extracting natural
landmark features from the environment. In Section 4
a method for detecting and recovering from failures of
the algorithm is proposed. In Section 5 some experi-
mental results are presented.



2 Stochastic mapping

The two seminal research effort in feature-based si-
multancous localization and mapping were performed
by Smith Self and Cheesman [1] and Moutalier and
Chatila [2] who respectively published the stochastic
mapping algorithm and provided the first implemen-
tation with real data. Other implementations of varia-
tions of stochastic mapping were presented by Castel-
lanos et al. [5] and Chong and Kleeman [9]. Stochastic
map is a special way of organizing the states in an Ex-
tended Kalman Filter for the purpose of feature rela-
tive navigation. The measurements are used to create
a map of the environment which, in turn, is used to
localize the robot. In our implementation we use

Xpjre = Xg + 1 (1)

to represent the full system state vector x

BT xT %3 .. x%]T, where x, = [z, yr0,]7 is the es-
timate of the robot position and x; = [z;3:]7 is the

estimate of the landmark state. The estimate error
covariance, Py, = E[nenl), of the system state is
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Py = . . (2)
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The sub-matrices, P,., P; and P;; are, respectively,
the robot to robot, robot to feature and feature to
feature covariances. The robot and the map are rep-
resented by a single state vector x with the relative
estimate error covariance P at each time step. Given
the system equations

Kpp, = F(Xp,up) + Qs (3)

and

= Xij-

4)

An EKF is employed to estimate the state x and
the covariance P given the measurement z. The esti-
mation gccurs through a prediction step

Kipgr

RS R E [f(xk’uk” ’ (5)
Peapg = JPepd? + Qp, (6)
(7)

where Q;, = E[q.qf ] and J, is the Jacobian of f with
respect of X evaluated at xg,1jx- And an update step
which is done when a feature is re-observed, defining

T = T — Trigye A0 T = Ui — Yoy the
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observation model for the feature 1 takes the form
Tikdl | _ VE Y o
Bik+1 arctan %I‘L -6 =
hi(Xppqpe) + 0z
(8)

The noise process n,; is assumed to be white Gaus-
sian with covariance R;. If the N features are observed
the observation model becomes

Zig+1
Tk41|k

[ Z1k+1
Bt = : 9)
L ZNk+1
b
h = :

| b
[ R, 0

Risr = : :
L 0 Ry

With the Jacobian of h given by H. the update step
of the EKF becomes

Xerprl = Xeaife + Koo (2o — h(Xegax)),(10)
Pipijesr1 = (F - Key1He)Prsag, (11)
Kit1 = PrpyeHI(HoPry g HY + Riy)7112)

When a new feature Ly, = [r 0] is observed and
validated the new feature state xy41 is incorporated
in the system vector state

XN4+1 = M(Xpppk+1s Lnew)

_ [ Trypien T TC?S(QWH\H: +8) ] (13)
yrh+1\k+l + TSln(grk+1|k+l + 9)
Xty &= | oHIIEH (14)
+h XN+1 ’
PN+1N+1 - JXrPT'"k+uk+1‘]er + JzR‘JzT’ (15)
PrN-i—l = P%«Hr = Pf‘“k+l|k+1‘]"rT' (16)
T T
PN+1ik+1|k+1 = PiN+1k+1|l:+1 = 'Ierfi.HuxH ' (17)

Where Jy, and J, are the Jacobians of m with respect
to the robot state x, and to Ly,

A critical aspect for the SLAM algorithm in a real
world scenario is the data association. The objective



of data association is to assign measurements to the
features from which they originate. In this work the
measurement to feature association is performed us-
ing a gating approach in the innovation space [10}, in-
corporating both measurement uncertainty and robot
uncertainty. The innovation matrix S for the feature
¢ is given by:

_ Pr'r Pri T .
S; =H,, [ P, P, ] H, +R; (18)
Where dhi([ !
iXrXg
™ ] o)

Defining the innovation v; = z; - h;(x;) the validation
gate is given by:

viST <. (20)
For a system with 2 degrees of freedom, a value of
v = 9.0 yelds the region of minimum volume that
contains the measurement with a probability of 98.9%
[10]. Such a validation procedure defines where a mea-
surement is expected to be found. The initiation of a
new feature is performed using a nearest neighbor gat-
ing technique described in [11].

3 Landmark Detection

For extraction of landmarks from the environment
we use a method proposed by Wijk and Christensen
(12} called Triangulation Based Fusion (TBF). This
sensor fusion scheme is a computationally efficient vot-
ing algorithm for grouping together sonar readings
which have hit a mutual vertical edge in the envi-
ronment. The algorithm uses a basic triangulation
technique: consider two sonar readings taken from
different positions during the robot motions (see fig-
ure 1). The readings are assumed to originate from
a vertical edge at position T = {z1,y7). If only one
reading is considered , the physics of the sonar limit
the object position to be somewhere along the cor-
responding beam arc. When using the information
from both the sonar readings the location of the ob-
ject can be extracted by computing the intersection
point T = (zp,yr) between the two arcs. The equa-
tions used for determining the intersection point are:

(x7 — Is.-)2 + (yr — ys.)2 = riz {21)
Yr — Ys, i 6 X 6
arctan P € {’h 2,"/1 + 2] (22}

Where (z,,¥s} denotes the sensor position, r the
range reading, v the sensor heading angle and & the
opening angle of the center sonar lobe. Using such
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Figure 1: Basic triangulation principle.

an approach with a set of readings stored in a tem-
poral buffer it is possible to estimate the position of
invariant features in the environment (Zr,jr). Con-
sidering, furthermore, the model of the Polaroid 6500
sonar sensor, the set of readings associated to a mu-
tual feature are post-processed for extracting the co-
variance matrix Pr of the measurement. See [12] for
details. An additional parameter n; is given by the
TBF algorithm which specifies the number of sensor
readings contributing to the measurement. This pa-
rameters is very important, the higher is the n; value
the higher is the probability that the object measured
is a good landmark. In this work we consider just
measurements with n, > 5 and /p(Pr) < 50 mm.

4 Recovering from failures

There are three basic modes of failure of the
stochastic mapping approach: divergence due to data
association errors, map slippage and unexpected per-
turbation of the robot. The first failure mode occurs
when a measurement is associated to an incorrect fea-
ture, that might happen when features are very close
to each other and the uncertainty in vehicle position
is big. The system state vector is, then, updated with
erroneous data and the error will drift outside the
bound defined by the estimate covariance. The sec-
ond mode occurs when the robot’s position is close
to the error bounds and due to the linearization of
the non-linear transformations all the features are re-
mapped in new locations which are slightly shifted
from the original map. The third mode occurs when
the robot is effected by a strong perturbation, which
drives the actual error outside the error bound. A
simple method for detecting a failure mode is imple-
mented, if the robot does not get any measurements
from a location where a landmark is expected, a warn-



Figure 2: Matching of measurements with landmarks
in the reference map.

ing flag is set and a counter is incremented, whenever
a measurement is matched with a feature the counter
is reset to zero. If the counter reaches a threshold
value A/ the robot considers itself lost, at this point
if the number of landmarks acquired is greater than
a threshold value ¥ (in this implementation # is set
to 5) the initialization procedure is performed, other-
wise the robot starts to build a new stochastic map
from the beginning. The initialization procedure is
divided into a localization step and a restoration step.
The first step consists in an absolute localization by
matching recently collected landmarks against a ref-
erence map of feature [13]. The robots moves per-
forming measurements on a new coordinate system
(', 42N, with the origin chosen in the robot pose
when the failure is detected. Consider now the situa-
tion where the mobile robot has got a reference map

xg)f = {:cgi)fl, . ,z,(,i)f ~} and a set of K landmarks
(2)

recently collected X, = {mgld'l, . ,zfﬂd’f(}. The
reference map , given in the initial system coordinate
(z{1), (1)), contains the estimate of the position of
the features in the environment given by the stochas-
tic map algorithm before the failure occurs. An im-
age of the vector state and of the covariance matrix
(%ref, Prey) is saved whenever the system performs a
matching between measurement and features in the
state vector. Once the robot detects a failure the map
used as reference map for the localization process is
the one stored immediately after a matching with a
consistent feature is performed. The two sets are rep-
resented in two different coordinate systems (see fig.2)
(1,41 and (2@, y@) the relation between these
coordinate systems will be a linear transformation 7
involving a rotation and a translation. Given XE‘B[ and

XEZZ;d’ T is obtained by solving a graph matching prob-

lem. Details of this implementation can be found in
[13]. This step is followed by an additional confirma-
tion procedure which using an EKF checks whether
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the position estimate is consistent or not. If the result
of this check is positive the localization step returns an
estimate of the robot state & with the relative error
covariance Py. otherwise this step is repeated.

At this point it is not possible to simply replace
Xr,,, and Pr. . with Xp and P, because the robot-
to-feature correlation has not maintained during the
localization step and moreover the resulting covariance
matrix can no longer be guaranteed to be positive def-
inite [7]. To overcome this problem a strategy similar
to the one used in [7] is implemented. The restora-
tion step consists of two sub-steps: de-correlation and
updating. In the de-correlation step the robot state
estimate of the reference map is randomized and its
covariance is highly inflated:

xeif = [ 4 | 23

pref + @l Pl

me[_] — re :I (24)
f ref 3
P 2P

where ¢/ is a random value uniformly distributed
over the reference map and ®7¢f represents a covari-
ance larger than the size of the ref. map. The up-
dating step consists of an EKF update using %y as a
measurement with covariance Py

K= P JH'HP™/[-)HT +PL)"", (25)
x+] = x"ef -] + K (&, — Hx™/[-]),  (26)
P(+]= (I-KHP/(-|(I- KH)T + KP,K"27)

where H is the 3 x (3 4+ 2V} matrix {I 0]. Through
these steps the robot can restore the stochastic map
algorithm.

5 Empirical Evaluation

In this section an experimental result is presented.
The test environment is a regular living room set up
in our laboratories at the Centre for Autonomous Sys-
tems. The room is the size of about 5 x 9 meters.

The experiment shows a situation where the robot
performs a recovery from a failure. The robot starts
at the position (3600, 4800), see figure 3-a to explore
the unknown environment, during the run we delib-
erately made an angle perturbation to the robot. As
shown in the figure 4 the x-position error grows going
outside the boundaries. After detecting the failuye the
robot starts the initialization procedure. At the time
iteration 920 (see the correction in figure 3-a the vehi-
cle performs a localization step, it matches landmarks
number 2,12 and 9 (see fig. 3-b} on the reference map,



with a set of latest measurements stored into a tempo-
“fary map. In this case the estimation of the robot po-
sition and the corresponding covariance supplied from
the localization step are:

3723 55237 0 0
%= | 3677 | Py = 0 38088 0
457 0 0 .305

These data are entered into the equations 25-27 and
the restoration step is completed, then the robot con-
tinues with the standard stochastic algorithm. Figure
3-b shows the estimate of the feature position with the
corresponding 2¢ uncertainty. The resulting feature
map results satisfactory with all the features mapped
inside the 20 bounds. Note that features 5,10,15,16,17
in figure 3-b correspond to actual objects not included
in the CAD model of the living room such as mobile
robots and various equipment.

6 Conclusions and future works

This paper describes an implementation of a SLAM
algorithm on a Nomadic SuperScout mobile robot op-
erating in a real domestic environment. A method
for recovering from the failures of the EKF approach,
consisting of a localization step and a restoration step,
is also presented. This method allows to restore the
stochastic map algorithm after a failure is detected.
The performance of this algorithm are shown to be
robust in a medium size room using point features.
The use of line feature will be investigate in future
works for extending the application to corridors and
larger environments. More advanced methods for de-
tecting failures are going to be investigated in order
to improve the robustness of the algorithm.
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Figure 3: Trajectory of the robot in the living room and landmarks position estimate of the second experimental
test.
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Figure 4: Error and the 2¢ bounds of the x-position, y-position and heading.
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