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Abstract

In this paper, a decision—theoretic approach to mul-
tisensor planning and integration is investigated. The
decision—theoretic framework allows for rational decision
making under uncertainty and furthermore a highly mod-
ular system description that facilitates easy system in-
tegration. FExperiments with a real robot show that the
decision—theoretic sensor planner is capable of making
rational real-time decisions about sensor use in an au-
tonomous mobile robot context.

1 Introduction

In this paper, we are concerned with the issues of
multisensor planning and integration for mobile robot
navigation. Some authors (e.g., [5]) define the sensor
planning problem as selecting the optimal sensor param-
eter values given one or more sensors. This, of course, is
primarily of interest with respect to active sensing. An-
other part of the sensor planning problem is not how to
use the sensors but determining what sensors to use and
when (e.g., [7]). This is also called the sensor selection
problem. It is that part of the problem that is addressed
in this work and subsequently referred to as the sen-
sor planning problem. Regarding the sensor integration
problem, we will adhere to Bozma’s definition [3]: “to
provide an effective model of assembling a system’s mod-
ules together and incorporating the information provided
by each module into the operation of the whole system”.

The autonomous mobile robot domain provides a re-
alistic and challenging context for empirically testing the
obtained results, since this domain requires real-time
response to events in an uncertain environment. This
means that the developed theory/framework should be
fast and capable of dealing with uncertainty.

*Part of this work was done at the GRASP Laboratory, Uni-
versity of Pennsylvania, USA.
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1.1 Sensor Planning and Integration

The nature of the sensor planning/integration prob-
lem depends on the overall task addressed and the ar-
chitecture of the system considered. In this work we
consider a system designed after the purposive paradigm,
where a number of specialised functional modules, also
called purposive modules, are employed to solve the robot
navigation task. We will define a purposive module as
a self-contained entity capable of doing its own sens-
ing, processing, and actuating—all specialised for a sin-
gle purpose. In a system with a number of such modules
operating in parallel two problems arise; the action selec-
tion problem and the sensor planning (selection) prob-
lem. The action selection problem is the often addressed
problem of selecting an action on basis of the actions
(outputs) from each purposive module. The sensor plan-
ning problem, which is the problem of managing the in-
puts to the modules in the system, has been addressed to
a much less extent. This indicates that the assumption
has been that sensing is a pure read operation and thus
not subject to the potential conflicts as are the outputs
to the actuators. This is, however, not true for several
reasons. First of all, with the advent of active percep-
tion [2] it has become necessary to decide what module
can use a given sensor/actuator’ at a given time. This is
due to the fact that sensors are potentially un-sharable
between modules since each module may configure the
sensing system for its own purposes as, e.g., letting the
cameras of a camerahead fixate a specific world point.

Therefore, there has to be a sensor planner to schedule
the sensing resources and a mechanism for doing action
selection. In the purposive paradigm this is the same
thing, however, since a purposive module with no sen-
sors allocated can not do any useful work and thus, when
doing active perception, the sensor planning problem en-
compasses the action selection problem.

1When dealing with active sensing, the border between a sen-
sor and an actuator is blurred and thus we will from now on use
the term “sensor” in the meaning “sensor/actuator”. Actually,
there is—especially in mobile robotics—a strong dualism between
sensing and acting; you sense to move and you move to sense.
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Figure 1: Tlustration of a purposive system with han-
dling of sensor/actuator contention. Some sensors might
be accessed by several modules at the same time, and
some may only be used by a single (or no) module. The
sensor planner acts as an intelligent switchboard con-
necting sensors/actuators to purposive modules.

What we would like to have is a system like the one
depicted in figure 1, where the central issue for the sensor
planning is to decide what modules to grant the control
of what sensors in what sequence, in order to achieve the
best overall performance of the mobile robot system.

Also shown in figure 1 is that the sensor planner is at
the bottom level of a hierarchy of planners that comprises
the planning capacity of the system. This means that the
system architecture, we are considering, is a hierarchical
one, where the sensor planner is at the lower level. At
the very lowest level is purely reactive planning which
resides inside the purposive modules. This allows higher
level planners to abstract away from simple things, e.g.,
obstacle avoidance, that are necessary in order to protect
the robot and the environment. Likewise, the sensor
planner is there to allow higher level planners to abstract
away from how to schedule sensors and actuators and
thereby also when to.run what purposive modules.

It is important to notice that the sensor planner sched-
ules sensors and actuators but does not perform sensor
fusion. This takes place in the purposive modules once
they have been granted access to the sensors. So while
the sensor planner decides what sensory actions to carry
out, the purposive modules decide how to do this.

1.2 Motivation

The motivation for the work presented in this paper
is that there to date seems to be a lack of work ad-
dressing the problem of sensor planning in a framework
where multiple purposive modules are competing for sen-
sor resources—especially in the context of active percep-
tion. Active perception means that sensors are poten-
tially un—sharable and that sensing and acting cannot
be separated in a meaningful way. Much previous re-

518

search does not seem to have taken the consequence of
this fact.

Another strong motivation for this work is that cur-
rent integration frameworks are not very flexible since
they do not explicitly cope with sensor contention and
since they are not formal. This means that much of
the integration consists of creating integration schemes
more or less by hand for each specific task. While good
methodologies and tools for this have appeared, e.g.,
Simmons’ Task Control Architecture [11] and Gat’s Con-
ditional Sequencing [4] it is still believed that on-line de-
cision making will result in more dynamic systems and
better resource utilisation. Moreover, there seems to be
only very few purposive modules in current robotic sys-
tems. This is also believed to be a consequence of the
tedious integration work associated with building sys-
tems by hand. We believe that this can be alleviated by
using a formal method with a well-defined semantics.

Therefore it has been wanted to build a decision—
theoretic sensor planning framework that will allow for
efficient, on-line sensor utilisation and system integra-
tion, thus resulting in efficient, modular, and dynamic
autonomous robot systems. Or, to quote Russell and
Wefald [10, pg. 177] “We believe, however, that a real-
time decision—theoretic approach to planning promises
to satisfy the goals of all sides of the ‘planing debate’ .”.

In the following section, the basic theory behind the
proposed decision—-theoretic sensor planner is presented.
Then, in section 3, experimental results are presented,
and finally, in section 4, conclusions are drawn and future
research directions are given.

'2 Sensor Planning with Bayesian Deci-

sion Analysis

It has been chosen to use Bayesian Decision Analy-
sis (BDA) for the sensor planning since it is a framework
that allows for reasoning under uncertainty which is con-
sidered crucial in real world applications. Being a formal
framework, this approach enables the use of a large body
of theoretical work and, moreover, it allows the direct use
of statistical data. BDA has traditionally been used in
economics and in that terminology, the purposive mod-
ules are competing for the resources in a cost/benefit
manner according to probabilistic models.

Decision—theoretic planning is defined as [12]:

Decision—theoretic planning is a special case of
the general Al planning task where (1) effects
of actions are described by probability distri-
butions over outcomes, (2) objectives are de-
scribed by utility functions, and (3) the cri-
terion for effective plan synthesis is expected—
utility maximization.



In the following, we will outline the theory behind
using BDA for sensor planning,

An important thing to consider when planning in gen-
eral is how far and how detailed to plan. The level of
detail is fixed in this problem since we want to make de-
cisions at the level of sensor action, i.e., what sensors to
grant what modules. How far to plan is however an open
question which should also be addressed.

The reason for planning far ahead is that elaborate
sensing strategies can be found and thus sub-optimal
solutions avoided. There are however many problems re-
lated to planning far ahead when dealing with uncertain,
dynamic real world environments, the major ones being
the computational complexity and the ramification prob-
lem, i.e, the problem of predicting the consequences of
actions. In general, planning far ahead has shown to lead
to behaviours that do not respond very well to dynamic
events [1], [8] and therefore it has here been chosen to do
the opposite thing, to only plan one step, i.e., one sens-
ing action, ahead. This is called myopic decision making
and can be compared to a local optimization strategy as,
e.g., gradient descent. A standard decision tree for the
myopic decision problem is shown in Figure 2. This tree
illustrates the decision problem for one sensor only.

The root decision node is called sensory action since
this is the basic decision task of the sensor planner,
namely what sensors to allocate to what modules. If
there are m modules that request a sensor, the planner
can choose between m + 1 actions, namely to grant the
sensor to one of the m modules (the informed case) or
not to grant the sensor to any module {the un-informed
case). The latter would be the case if the cost of sensing
would not make up for the expected value of the infor-
mation.

The report chance node represents the (discrete) ran-
dom outcome, z;, of the sensing action, A;. It is noted
that this chance node is absent in the un-informed case
since this implies that no sensing is performed.

The second decision node, called actuator action is
the node representing the final consequence type of ac-
tion that will lead to the task completion. There could
be cases where this action is not an actuator action in
the traditional sense, but the term has been chosen to
distinguish between (1) sensory actions that represent
information gathering (and thus expenses) and (2) final,
somehow productive actions marking the completion of
a task and thus a utility “income”.

The state chance node represents the world state, Z,
that the world assumes “after” the actuator action has
been chosen. It is of course only in the representation
that the world state is set after the actuator action has
been chosen. The reason for representing it this way is
that it is only at this time that the world state matters
and that it somehow is finally “probed”. For example,
if the chosen actuator action, ay, is to drive through a
door then the state of that door (open or closed) is going
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to be asserted.

The utilities, U(ax, 21), in Figure 2 denote the payoff
for completing a certain task. The utility is dependent
on which action is chosen to complete the task, and the
state of the world. For example, if it is chosen to drive
through a door and the door is open, this should result
in a high utility. However, if the door turns out to be
closed, this should result in a low utility.

Seen as a whole, the myopic decision scheme can be
interpreted as “given that at most one sensory action can
be performed before task completion, which one should
this be in order to maximize the expected utility?”. It
is however clear that more than one sensory action can
be performed and that the actuator action should only
be performed when the Aqy action is found to be optimal,
i.e., when continued sensing can not be justified by the
increase in expected utility. This means that as soon as
a sensory action (other than Ag) has been chosen, the
system “loops back” to the root decision node and re-
evaluates the situation to see what is now the optimal
choice.

The findings about the state of the world made by the
purposive modules are integrated using Bayesian condi-
tioning, and it is on these updated world state probabil-
ities that the sensor planner bases its decisions.

Above it has been explained that the “optimal ac-
tion” is chosen each time the planner has to make a de-
cision. By “optimal action” is meant the action that
will optimize the expected utility of performing the task.
Choosing this action is called Bayes decision making af-
ter Bayes’ Decision Rule that can be formulated as:

Am
Agpt = arg ndx EU(4))

i=4aA0

ey

where EU(A;) is the expected utility of performing ac-
tion A; and A,p is the optimal action. EU(A;) is derived
in the following.
The expected utility, EU(ax|z;), of a state chance
node is:
q
EU(ak|z;) = Y Plailz;)U(ax, z) (2)

=1

The state probability, P(z|z;), is unconditioned on the
sensor action A; which is a result of the fact that we
assume the sensory actions have no effect on the state of
the world (the sensory actions are non-intervening).

From equation 2 and Bayes’ Decision Rule (equa-
tion 1) the expected utility of receiving report zj,
EU(z;), can be found as:

g
EU(z;) = max EU(ax|z;) = maxz P(z|z;)U(ak, 21)
239 Ak

=1
3)
It is assumed that the cost of performing actuator ac-
tion ay is included in (i.e., has been subtracted from)
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Figure 2: The standard structure of the myopic decision problem, adapted from [9]. Boxes are decision nodes since the
path taken here is decided by the system. Circles denote chance nodes where Chance decides which branch is taken.

There is an implicit time, or causality, axis from left to right.

U(ak,2). The expected utility of sensory action A;,¢ €
[1,m] is thus:

> P(z;)EU(z;) - C(A;) =

j=1

iP(mj) Ir(llE:XZPi(zllxj)U(akazl) -C(4) (4)
j=1 =1

EU(A))

where C(4;) is the cost of performing sensory action A;.
The subscript, 1, on P;(z]|z;) indicates that when evalu-
ating action A; the evaluation should be made according
to the conditional probabilities for the purposive module,
M;. The expected utility of action Ay is:

max Z P(z)

What we are interested in here is, however, not the
absolute value of the expected utility but rather the in-
crease in expected utility per invested cost unit (often
time) compared to not sensing. Therefore, we define the
expected interest from sample information (EISI) as:

U(Ao) = ()

Ular, z1)

2 i1 P(2)EU(z5) — EU(Ao)
EISI(A;) = ! = (Ai)] =
iy Plaj) [maxe, D0, Pi(zlz;)U (ak, 21)]
C(4)
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_maxa, )iy P(z)U(ax, 2)
C(As)

(6)

The quantity in the numerator is called the ezpected
value of sample information (EVSI) and can be shown
always to be non—negative [9]. The expression for E1S1
leaves the un-informed case (EISI(Ap)) un—defined,
since C'(Ag) = 0. To remedy this, we define EISI(4p) =
A where A > 0 can be thought of as the minimum ac-
ceptable interest rate.

Bayes’ Decision Rule (equation 1) can then be re-
defined as:

Aopt = arg max EISI(4;)

Ai=Ap

(7)

We can now list the components that go into the de-
cision framework.

Utilities, U(ag, z;) These utilities reflect what it is
worth taking action ax when the world is in state
z;. The cost of performing actuator action ay must
be included. The utilities depend only on the cur-
rent task.

Conditional probabilities, P;(z]z;) These
conditional probabilities model how likely the world
is to be in state z; given that report z; is received
from module M;. P;(z|xz;) is therefore a model of a



purposiwe module, M;. When modeling modules is
it however more natural to create the inverse rela-
tion, Pi(x;}z1), so this will be the actual input to the
framework. Bayes’ Rule? is then employed to create
Pi(z|z;). It is important to notice that P;(z|z;) in
general is a function of various state variables, i.e.,
the performance of a module and thus its model
will in general depend on “external” variables such
as distances to objects, positional uncertainties etc.

A priori probabilities, P(z;) and P(z) The a priori
probabilities express a priori information about the
reports and the state of the world, respectively.
One can be found from the other, however, using
P;(z{z;), marginalisation, and Bayes’ Rule. Thus,
we need only specify a priori knowledge about the
world, P(z).

Costs, C(A4;) This is the cost of performing sensory ac-
tion Ai.

One of the traditional problems with model based ap-
proaches as BDA is how to determine the models, i.e., the
components listed above. Therefore, a few remarks con-
cerning this are appropriate. A priori probabilities about
the world, P(z;), are naturally determined from obser-
vations about the environment the robot has to navigate
in. For autonomous robots cost is typically related to
time, power consumption, or the computational demand
of an action. In this work, the cost, C(4;), of perform-
ing a sensory action has been set equal to the time spent
thereon.

Utilities reflect what is considered good and bad by
the decision—maker, i.e., utilities are generally subjective.
In this system, the utilities are therefore determined by
the system designer and possibly modified according to
experimental results until the system performance seems
in accordance with the goals of the designer.

Finally, there are the conditional probabilities,
P;(z;|z), i.e., the models of the purposive modules, to
be determined. These models are central to the deci-
sion process and should thus be developed with some
care. In general, we do not believe that these models can
be derived analytically and thus we have derived them
empirically through experimentation with the purposive
modules, which, however, is convenient in a framework
where statistical data can be applied directly. It should
be noted that the sensors are not modeled directly as
is customary in, e.g., sensor fusion. Kather, it is the
purposive modules that are modeled, i.e., sensors and
algorithms together, which results in more empirical but
also simpler models.

It is important to notice that the four model com-
ponents are independent of each other, i.e., the a priori

?Bayes’ Rule should not be confused with Bayes’ Decision Rule.
Bayes’ Rule is the well known inversion formula: P(B|A)
P(A|B)-P(B)

P(A) :
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probabilities depend on the environment, the costs on
the scarce resources, the utilities on the system designer’s
preferences (and the current task), and the conditional
probabilities on the purposive modules. This eases the
model derivation and means that the framework, and
thus the system, becomes modular and flexible thereby
facilitating easy system integration. For example, if a
new sensing module should be added to the system, all
that has to be done is to create a model of it and add
it to the current set of model descriptions. Nothing else
has to be changed. Similar holds for adding sensors and
tasks.

The discussion here only covers the case for decid-
ing about one sensor. The formalism can, however, be
extended to cover planning for multiple sensors and ar-
Litrary subsets of the available sensors, i.e., a purposive
module can request, e.g., sonars and a camera and this
can be handled in a coherent manner by the planner. A
more detailed discussion of this is given in [6].

When a purposive module wants to request a set of
sensors all it has to specify in the request is the set of
sensors, ), how long time each sensor will be used,
(where |©2] = [f]), and the name of the module model
Pi(z|z;), M;. Thus, a sensor request, R, is a 3-tuple,
(9,%, M;). From this information it is then possible for
the sensor planner to calculate the expected utilities and
thereby decide which of a number of requesting modules
(if any) should have their requests granted.

3 Experiments

To verify that the ideas presented in this work can
be applied to real world autonomous robot navigation, a
series of experiments were conducted as proof of concept
and to show what type of behaviour a sensor planner
controlled navigation system can exhibit.

For our experiments, we use an in-door office setting,
more specifically our laboratory. The task in this setting
is for the robot to move from one point to another. The
start and goal positions may be in different rooms. This
task has been chosen since it has enough challenges to
show the weaknesses and strengths of the system and
since it is a standard task that allows for comparison
with other systems in the literature.

The feasibility of the sensor planning method will be
considered proven if the planner is capable of control-
ling the robot in real time. By “controlling” is meant
scheduling sensors and thereby determining the actions
of the robot.

3.1 The Experimental Platform, ARVID

The experimental platform, ARVID (the Autonomous
Robot VIsion Demonstrator), is a Robuter-20 base
equipped with the following sensor modalities: a laser



Figure 3: ARVID, the experimental platform used for
the experiments. The 12 DOF camerahead and the as-
sociated control computers are seen on the top of the
Robuter base. The acoustic Polaroid sensors can be rec-
ognized as shiny, circular disks on the vehicle base.

line striper (i.e., a laser generating a light plane), a 12
DOF robot stereo camerahead, and a ring of 24 acoustic
Polaroid sensors. ARVID is shown in figure 3.

The 12 DOF stereo camerahead has two black and
white CCD cameras. Each camera is equipped with an
Ernitec motorized lens with motorized control of zoom,
focus, and aperture. The cameras have common neck tilt
and pan but separate vergence.

The 24 acoustic Polaroid sensors each have a range of
0.1 to 6.0 meters with an accuracy of about 0.01 meters.
The opening angle of the sonar beam is £15 degrees.

The laser line striper and the left camera of the cam-
erahead together constitute a structured light sensor sys-
tem that will just be denoted “the line striper”.

On-board odometry keeps track of the approximate
vehicle position. A low level vehicle driver extends
this information with position uncertainty information,
which is calculated as an upper bound on the vehicle
position error.

3.2 The Tasks

The navigation task is broken down into subtasks by
the mission planner (see figure 1). Each subtask consti-
tutes a task for the sensor planner. Three such tasks were
defined for the experiments. These were door traversal
for traversing doors, room navigation used for navigation
inside rooms, and hallway navigation which is similar to
room navigation but uses a slightly different set of pur-
posive modules.

See table 1 for an overview of which tasks use what
purposive modules (described below).
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3.3 The Modules

A number of purposive modules were built to solve the
task. There has been made no attempt to find the “op-
timal” set of modules for carrying out the task. Rather,
emphasis has been on creating a diverse set of modules
that use different sensors and sensing strategies.

A thorough description of the modules is outside the
space limitations of this paper (see [6] for details). There-
fore, only a very brief description is given here. The

“technical specifications” of the modules are given in ta-
ble 1.

p estimator This module uses the line striper to esti-
mate the angle, 3, of the door with respect to the
doorway. This is done to see if the door can be tra-
versed by the robot. Since the laser is fixed with
respect to the vehicle, the vehicle has to use an ac-
tive sensing strategy, although not very elaborate, to
provide a good viewpoint for the line striper. While
moving, the § estimator uses the sonars to check the
path.

o estimator The a estimator does the same as the 3
estimator, plus it also estimates the position of the
robot relative to the doorway.

Door pinger This module uses a very simple, passive
sonar sensing strategy for detecting if a door is
closed. The module simply tries to fire a sonar
through the door opening and if a return signal
within certain bounds is received, the door is as-
sumed to be closed.

Sonar doorfinder The sonar doorfinder uses the
sonars and an active sensing strategy to estimate
the position of the robot relative to a door.

Visual doorfinder This module uses the camerahead
to do pose estimation by finding doors in the envi-
ronment.

Sonar navigator This module uses sonars to do point—
to—point navigation and obstacle avoidance in a re-
active manner.

Visual navigator The visual navigator is the same as
the sonar navigator except is also uses visual input
from the camerahead to do the obstacle avoidance.

3.4 The Module Models and Utilities

For the experiments, the planner was given probabilis-
tic models of the purposive modules reflecting the char-
acteristics listed in table 1. The cost, C(A;), of using
a module was equal to the expected time consumption
in seconds. The models, P(z;{z), were derived empir-
ically from experiments with the respective modules in



Table 1: Most important features of the purposive modules. The cost of the navigation modules depends on the
distance to the goal. The reason why most modules need the vehicle is that they either use an active sensing strategy
or that they depend on the vehicle not moving while doing data acquisition.

| module | no | cost | tasks l sensors ]
0 estimator 1 high (4 x 27 sec) door laser, camhead, vehicle, sonars
« estimator 2 high (4 x 43 sec) door laser, camhead, vehicle, sonars
door pinger 3 low (< 1 sec) door sonars
sonar doorfinder | 4 high (2 x 77 sec) | door, hallway vehicle, sonars
visual doorfinder | § med (2 x 10 sec) room vehicle, camhead
sonar navigator | 6 var room, hallway vehicle, sonars
visual navigator | 7 var room, hallway vehicle, sonars, camhead

isolation, i.e., independently of the other modules in the
system. Similarly were the utilities determined by ad-
justing them on the basis of a few experiments with the
system, as described in section 2. It is important to no-
tice that only one set of utilities per task must be deter-
mined. Moreover, the utilities for the room and hallway
navigation tasks are identical.

3.5 Experimental Results

We will only outline a couple of experimental results
to illustrate the behaviour of the system, since the pur-
pose of the results is not to illustrate the performance
of the robot as such, but rather the general behaviour of
the system which is a result of the sensor planner dis-
tributing sensors to the various modules.

A map of the laboratory environment, where the ex-
periments were performed, is shown in figure 4. The map
also shows the result of an experimental run where the
robot was told to go from room D1-103 to room D1-101.
The robot was given a priori information about the walls
and the doorways in the environment corresponding to
the solid lines in figure 4. This explains why the robot
does not first try the (too) narrow door between room
D1-103 and the hallway.

The robot knows its (user specified) start position
rather accurately and thus immediately starts out with
navigating to the first setpoint provided by the mission
planner. When the robot reaches the (large sliding) door
between room D1-103 and D1-105, the pinger gets the
sonars to see if it is open. When this has been found,
the sensor planner decides that no further sensing is nec-
essary before the door can be traversed, which then hap-
pens. After this, the visual doorfinder gets the sensors
to locate the robot relative to the next door that must
be traversed. The robot thus knowing its position, the
visual navigator gets control to navigate the robot to
the setpoint in front of that door. Here, the o estimator
gets the sensors to estimate the exact door position and
the state of the door (open/closed). Also, the pinger,
which is a very cheap module to run, gets the sonars to
add extra certainty that the door is open. Having estab-
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Figure 4: The part of the laboratory where the experi-
ments were performed. Solid lines are walls, dashed lines
obstacles, and dotted lines show the route (not the trace)
taken by the robot. The crosses are setpoints generated
by the mission planner, except from the start and goal
points that were user specified. Numbers correspond to
the modules getting the sensors from the sensor planner
(see table 1 for corresponding modules). The insert in
the lower right corner shows the robot to scale. See text
for further explanations.

lished this, the door is traversed. From here, the picture
should be quite clear, except maybe from the fact that
the sonar doorfinder gets the sensors while the robot is
underway in the hallway. This is due to the fact that
the vehicle’s position uncertainty rises while it is navi-
gating down the hallway, causing the EISI of doing po-
sition estimation to rise and point—to-point navigation
to fall. Thus, at some instant, the sensor planner decides
to (temporarily) preempt the visual navigator and give
the sonar doorfinder the sensors in order to improve the
robot’s position estimate.

In an identical experiment, but with the door from
room D1-105 to the hallway closed, the robot shows the
same behaviour up until the point where it is found that
the door is (probably) closed. At that point, the sensor
planner decides that it is not feasible to do more sensing



and that the sub—task should be aborted. This is then
reported to the mission planner. This shows another
feature of decision-theoretic planners, which is that they
can actively reason about when to stop a task, i.e., they
do not treat a “mission impossible” as an exception, as
most traditional navigation systems do.

It is important to notice that there nowhere in the sys-
tem are any rules or the like that dictate when a given
module should have the necessary set of sensors. It is
all decided on-line by the sensor planner that continu-
ously evaluates the sensor requests it gets from the pur-
posive modules. In the experiments reported, requests
were evaluated every 4 seconds, but this is by no means
as fast as the system allows, rather it is a practical fre-
quency when doing experiments.

4 Conclusion

In this work, a decision-theoretic sensor planner for
doing multisensor planning and integration was designed,
built, and tested.

The decision—theoretic framework allowed the sensor -

planner to schedule sensors to purposive modules in a ra-
tional way, based on a well-understood statistical back-
ground and using utility theory. This, in turn, com-
pletely decides the behaviour of the robot (at some level),
since granting and denying the purposive module the sen-
sors/actuators they need corresponds to enabling and
disabling them, respectively. Evidence provided by the
purposive modules was fused using a Bayesian proba-
bilistic approach which is theoretically well-founded.
The decision—theoretic framework furthermore pro-
vided a highly modular way of describing sensors, mod-
ules, and tasks. This greatly facilitates easy system in-
tegration, since new sensors, modules, and tasks can be
added without making changes to the existing system.

Experiments with a real robot showed that the sensor
planner was capable of making rational on-line decisions
about what sensors to use for what purposes. This in-
cluded deciding how much to sense, i.e., when to stop
sensing, when to abort a task; and when to preempt an
on-going sensing operation in favour of another.

What this implies is that the probabilistic models,
created from experiments with the modules, apparently
are sufficient for making rational decisions about sensor
allocation. Also, it seems confirmed that myopic decision
making is sufficient for making decisions at this rather
low level.

We think that this altogether shows that decision—
theoretic planning is a feasible and promising new tech-
nique for doing real-time sensor planning and integra-
tion for autonomous robot navigation in partly known,
dynamic environments.
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