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Abstract

This paper explores the relation between the projectivity associated with
the motion of a plane and the fundamental matriz. 1t is straight forward
to test for the existence of and stably estimate the projectivity P of a
moving plane in an image sequence, it is harder to estimate the funda-
mental matriz F. The relation between F and P constrains F to be a
member of a two parameter family effectively decoupling the rotational
and translational components of F. P encodes the rotational components.
This paper presents a series of methods for estimating F that make use
of this property.

A test for ‘compatibility’ of rigid plane motions is derived based on the
projected motion of the line of intersection of two planes.
Keywords: fundamental matriz, plane projectivity, epipolar geometry.

1. Introduction
The fundamental matriz is a key concept in vision using uncalibrated imagery. It
encodes the epipolar geometry associated with the camera motion [7, 3, 6]. This
may be used for motion segmentation [12, 8, 11, 10] or as the basis for recovering
projective structure [6, 1, 2]. The projectivity of a moving plane also encodes infor-
mation about epipolar geometry only less directly as 1t is also a function of scene
structure [4, 9]. The fundamental matrix has proven complicated to estimate [7]
because enforcing the det[F] = 0 constraint means that a set of non-linear equations
have to be solved. If the set of points being viewed by the camera lie on a plane in
3D space then the equation used to estimate F is degenerate. The routines used to
estimate F may be written to test the data for degeneracy [12] or planes explicitly
tested for [9)].

The relation between F and a plane projectivity P allows the representation of
F to be broken into a rotational and a translational part. This gives rise to a new
family of algorithms for estimating F. Given the existence of a plane in the field of



view linear algorithms for estimating F that still enforce the det[F]=0 constraint are
possible.

Given two distinct co-moving planar regions two new methods are presented for
epipole estimation. One method uses linear least squares and hence the eigenvalues
of the fit may be used a test for mutually compatible motion between planes, the
second method is nonlinear.

The paper is layed out as follows. Section 2 gives the notation used. Section 3
gives the relation between the fundamental matriz and a plane projectivity and lists
a series of algorithms for epipole estimation given P. A comparison of results for all
the various methods of F estimation is given in section 4. Section 5 derives and
demonstrates two tests for compatibility of plane motions. Conclusions are given in
section 6

2. Notation

In this section all the notation used in this paper is set out. The camera model is
a pin hole and for the purpose of this analysis need not be calibrated. The image
plane 1s assumed to be in front of the center of projection.

e x; the position of the i** corner in homogeneous coordinates (by default in
image 1)
e x'; the matched position of the i*# corner in homogeneous coordinates (by

default in image 2)

o P, the projectivity describing the transformation of a plane between image j
to image k.

e [ the fundamental matrix (by default from image 1 to image 2).

e e;; the ‘epipole’ or projected position of camera center for image % in image
Jj-

3. The relation between P and F

A complete exposition of the properties of the fundamental matrix and its relation
to the essential matrix is given in [7]. If x and x’ are the two image positions of
a point under camera motion then the fundamental matrix F satisfies the following
equation,

x Fx =0, (1)

with the constraint

det[F] = 0. 2)

If all of the points x lie on a plane in space then equation (1) is degenerate. However
noting that the motion of points on the plane may be described by a projectivity P,

x' =Px (3)
and substituting (3) into (1) gives [5],

xTPTFx =0 4)



for all x. This implies that P7 F is antisymmetric. This is equivalent to the condition

F12 = [621]X 7) (5)
where
0 —das as
[a], = as 0 —a
—as aq 0

P then encodes all the rotational information in F. Next a list of methods for esti-
mating F or equivalently the epipole e;; once P is known are given in terms of the
function to be minimised..

1. Linear least squares,
min 2
F Z (X'T F x)
i

The problem becomes nonlinear if F is parameterised to enforce the condition

det[F]=0.

2. Nonlinear least squares minimising the distance between image points and
epipolar lines,

min 1 1 T\
g XZ: <(sz')% F(Fxi)3 | (Pl (Fx’i)g) <X Fx) '

The condition det[F]=0 may be enforced through a particular parameterisation
of F or as a side condition in the minimisation [7].

3. Parallax relative to a plane to directly estimate the epipole e,
Px; X X} <77xl X X} )T

21
[Pxi [x;] \ [Pxi |xi]

4. Linear least squares estimate for e,

min T
€91 €99

min 2

e (X'T [ea1], Px) .

This may be solved directly as a minimum eigenvalue problem for the elements
of the epipole e31. F is then found using (5) which naturally satisfies det[F]=0.

5. Nonlinear least squares minimising the distance between image points and
epipolar lines for e,

min 1

L (([821] Pxi) + (le21] Pxi)3

1 2
([ezl]xpxli)% ([e21], ) [e21] PX)'

_|_




6. Three parameter linear least squares solution given two plane projectivities
(simply using the antisymmetric property of P F)

min _ - T
& |[PEPT fal, ] + [PIPT Tal, ]|
Where | | represents the Frobenius norm of a matrix and |[a]x| =1, F then is

given by F = Py T [a], from (4).

7. Nonlinear method given two plane projectivities (derived using (5)).

min | [[e21]>< 7)1] . “te]x PQ] |
€91 1—
21 lea, PATlea 72)

8. The unique nondegenerate mutual eigenvector of two plane projectivities.
Pre1s = APqers

or

’P2_1IP1€12 = )\812 (6)

4. A comparison of method for F estimation

Results are presented for two directions of camera motion relative to the objects
shown in figure 1. Table 1 gives results for the camera undergoing strict translation
towards the object for each of the methods of epipole estimation given in section 3.
In each case epipoles were computed between frame 1 and frame n for n = 2...6, the
variance in angle with respect to epipole 1,6 and epipole 1,6 itself are given. Table 2
gives results for strict translation roughly parallel to the image array of the camera.

Figure 1: Test object designed to provide stable corners for tracking.

Method 3 has an encouragingly low variance indicating consistency but its
estimates of the epipole are clearly biased. The epipoles estimated using method 7
have proven most reliable in a delicate reconstruction task.



Algorithm No. | epipole variance
-0.08645 0.0533  0.9948 7.29

-0.07614 0.06811  0.9947 0.8432
-0.0866  0.06008 0.99442 | 0.3571
-0.08667  0.0600  0.9944 0.3567
-0.07903 0.05713  0.9952 0.7585
-0.0823  0.05888  0.9948 0.2271
-0.0757  0.05768  0.9954 | 0.08968
-0.0808  0.0570  0.9950 0.2237
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Table 1: The camera under went strict translation towards the reference object shown
i figure 1. Algorithm number, estimate of the epipole, variance in the estimate
computed over 5 frames.

Algorithm No. | epipole angular variance
1 0.9966  0.0645 -0.0508 20.12
2 0.9998 -0.0149 0.0101 21.83
3 0.9273  0.00635 -0.3740 2.86
4 0.9985 -0.0274 0.0472 1.247
5 0.9941  0.2488  0.2264 1237.68
6 0.9881 0.0136 -0.1535 21.34
7 0.9963  0.0108 -0.0845 12.97
8 0.9871  0.0113 -0.1598 20.87

Table 2: The camera under went strict translation perpendicular to the reference
object shown in figure 1. Algorithm number, estimate of the epipole, variance in the
estimate computed over 5 frames.



5. Testing two planes for compatible motion
It is desirable to be able to test whether two planes are moving in a rigidly connected
manner. Two methods for testing the compatibility of plane motions are given here.
The first simply looks at the condition number of for the fit of the parameter
a in algorithm number (6). Figure 2 shows a two link robot arm with 4 visible
planes. The condition numbers for the parameter a are shown table 3. Planes a
and b are co-moving, plane ¢ and d are co-moving but independently of a and b.
Unfortunately as can be seen from the table this test is inconclusive.

Figure 2: A two link Model Articulated Revolute Robot generating two independent
rigid motions. Link 1 s attached to the base and link 2 1s attached to link 1. Plane
a will be taken to be on to of link 2 plane b to be on the side of link 2 plane ¢ on
top of link 1 and plane d on the side of link 1. The estimated line of intersection
between planes ¢ and d is shown.

plane 1 | plane 2 || 1/(condition number)
a b 0.0006533
a c 0.0583333
a d 0.2400
b c 0.246399
b d 0.001139
c d 0.00846635

Table 3: Table of the relative compatibility of pairs of planes in motion. Plane a is
co-moving with plane b and plane ¢ is co-moving with plane d (figure 2).

The second test for plane compatibility functions by considering the projected
motions of lines on a plane. The new position of a line 1 on a plane is given by,

=P~ T1 (7)



The line of intersection of two planes in an image will then be an eigenvector of

2 DV § (8)
or 1
_ _7m1T
(PriPyT] L= T (9)

This is very similar to (6) only with the matrix transposed and the reciprocal of the
eigenvalue being taken. Matrices have the property that the eigenvalues of a matrix
and its transpose are equal. Generally at most two of the 1; correspond to lines that
project into the field of view. Empirically the eigen-systems of (6) and (9) have been
found to have a curious property,

12' 1 X (10)

if ¢ # j. The test for compatible plane motions is then to choose images directions
x;, that span the projection of lines 1; into the second image and look at the angle
between P1x;, and Pax;,. If the angle is found to be equivalent to less than one pixel
then you have found a preserved line of intersection of two planes and hence the two
planes probably have one common rigid motion. If no preserved line of intersection
exists then the planes are undergoing independent motion. A line of intersection
recovered in this way is shown in figure 2.

6. Conclusions

A series of new methods for fundamental matrix estimation have been presented
and compared with existing ones. Methods which base their estimate of F in part
on a projectivity seem to give rise to estimates of epipoles with a lower variance.
We also demonstrate that it is possible to determine whether planes are undergoing
rigid co-motion. If two distinct co-moving planes have been found then the epipoles
be estimated directly.
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