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Abstract. In this paper we present a new technique for on-line extraction of natural landmarks using ultra sonic
sensors mounted on a mobile platform. By storing landmarks' positions in a reference map, we can easily achieve
absolute localization in an indoor environment by doing matching between recently collected landmarks and the
reference map. The matching procedure also takes advantage of compass readings to increase computational speed
and make the performance more robust.

1 Introduction

There has been an abundance of research and development related to use of ultra-sonic sonars for local
navigation in an in-door setting. A good overview can be found in [1] and [2]. It is however characteristic
for much of this work that it assumes use of a priori de�ned map. Alternatively the methods assume that
it is possible to locate linear structures [3] or regions of constant depth (RCD's) [2]. Relatively little has
been performed on automatic acquisition of maps in semi-structured environments and subsequent use of
such maps for navigation. Much of the work reported in this area is based on occupancy grids [4], where the
map acquisition builds up a grid that subsequently can be used for matching using well de�ned structures
[5, 6, 7] like corners, edges or walls, or through correlation based matching of the current map with the
reference map [1]. For the methods based on well de�ned structures there is a need for post-processing of
data to identify 'real' structures in the environment. In the occupancy grid based techniques there is no or
little interpretation of the map and it will thus contain information about structures that are good re
ectors
and accidental/poor re
ectors.
The approach presented in this paper is not grid map based. Instead we have chosen to acquire a reference
map of the best sonar re
ectors, termed landmarks, in the environment. The basic �ltering tool we use for
extracting the positions of these landmarks is triangulation based fusion of sonar data [8].
The reference map of landmarks is used in later missions for automatic estimation of ego position and
orientation through matching against the current set of identi�ed landmarks. The matching performed is in
terms of �nding the best possible a�ne map that transforms the current set of landmarks onto the reference
map . The matching of features is similar in spirit to well known methods from image analysis, i.e., [9, 10].
The paper is outlined as follows. In section 2 the basic algorithm for natural landmark position extraction
is described, whereupon section 3 explains how we can robustly match independently collected landmarks
with each other and hence obtain absolute localization. Finally section 4 presents some of our experiments,
which have been carried out in various room settings at our lab.

2 Landmark extraction

The on-line �ltering technique presented in this section is divided into two layers. These layers are graphically
illustrated in �gure 1. The �rst layer, triangulation based fusion, provides the second layer with so called
triangulation points denoted (nt; T̂ ). Here T̂ = (x̂T ; ŷT ) is an estimate of a target position T = (xT ; yT ) in the
environment and nt is the triangulation value, which re
ects how many triangulations that have contributed
to the target estimate T̂ . The higher the triangulation value nt is, the better target estimate T̂ we get. The
basic triangulation principle is explained in �gure 2, where we note that necessary input for the �rst �lter



Triangulation

fusion
based extraction

points
Landmark

First filter layer Second filter layer

Triangulation Best landmarksSonar data
Lbest(nt; T̂ )(xs; ys; 
; r)

Fig. 1.: Summary of the on-line �ltering process for extracting natural landmarks. Sonar data on the form
(xs; ys; 
; r) are �ltered to give triangulation points (nt; T̂ ), which in turn are �ltered a second time to provide
us with the \best" natural landmark positions in the environment.

layer are sonar readings on the form R = (xs; ys; 
; r). Here (xs; ys) is the sensor position, 
 the heading
angle of the sensor and r the range reading. For a complete description of the �rst �lter layer we refer the
reader to [8].
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Fig. 2.: Basic triangulation principle. Given two sonar readings from the same target in the environment, a
better estimate of the target position T is found by taking the intersection T̂ of the beams corresponding to
the two sonar readings. Here (xs1 ; ys1), (xs2 ; ys2) are sensor positions, r1, r2 range readings and 
1, 
2 heading
directions. Usually T̂ 6= T because of measurement errors in r1 and r2. In this situation the triangulation
value nt is equal to one since only \one triangulation" has contributed to the target estimate T̂ (see marked
triangle). For a better estimate of T one should fuse several triangulations [8].

The second layer of �ltering is based on the \best" triangulation points from the �rst �ltering stage, i.e.
those points that belong to the following set:

D =
n
(nt; T̂ ) j nt >= ntthreshold

o
: (1)

By discarding target points with a small hit-count nt a signi�cant number of \outliers" from the raw sonar
data are removed. This is because it is unlikely that accidental re
ectors will create high nt-values. Also,
with high nt-values, we can assume the target position estimates to be quite accurate. In our implementation
we use ntthreshold = 4, which has turned out to be an appropriate threshold when working with a memory
size of 7 sonar scans (1 scan = �ring all 16 sonars on our Nomad 200 robot).
Let us now consider the second layer of �ltering in detail. The �rst triangulation point (nt1 ; T̂1) 2 D generates
a landmark hypothesis L1 = (sh1 ; T̂1). Here sh1 is a support number for the landmark hypothesis, which
initially is set equal to unity. The second triangulation point (nt2 ; T̂2) 2 D will result in one of the following
two actions:



1. If j T̂1 � T̂2 j� � then the L1 hypothesis is updated as L1 = (sh1 ; T̂1) where

T̂1 :=
1

sh1+1 (sh1 T̂1 + T̂2) (recursive mean)

sh1 := sh1 + 1:

Here � re
ects our belief of position accuracy of the extracted landmarks. During experiments we found
that an appropriate value of � was � = 10 cm.

2. If j T̂1� T̂2 j> � then (nt2 ; T̂2) will trigger a competing landmark hypothesis L2 = (sh2 ; T̂2) with sh2 = 1.

More generally if we have p competing landmark hypotheses L1; L2; : : : ; Lp, then the next triangulation point

(ntl ; T̂l) 2 D (l > p) will either update one of these hypotheses according to item 1 above, or generate a new
hypothesis Lp+1 according to item 2. In item 1 we note that the landmark position is allowed to drift by
taking recursive mean. We reason this might be of help for getting a more precise position of the landmark
as well as taking odometry errors into account.
Returning to the competing landmark hypotheses, a concern might be that the end-result is a large number
of hypotheses, which would slow down an on-line updating algorithm. In practice this is however not a
problem. When exploring a real livingroom setting (�gure 4-7) with a Nomad 200 platform, equipped with
16 sonars, we found that the number of competing landmark hypotheses remained below 100.
As the on-line updating of competing landmark hypotheses evolves we keep track of the k best hypotheses
with respect to their associated support number sh. The set of these landmark positions we denote Lbest

and this set is later used for doing landmark matching. Experiments have shown that a reference map with
twenty landmark positions (k = 20) is su�cient to obtain robust matching (see section 4).

3 Landmark matching

Consider a situation where a mobile platform, equipped with sonars and a compass, has collected two

independent landmark sets L
(1)
best = fL

(1)
1 ; L

(1)
2 ; : : : L

(1)
k1
g and L

(2)
best = fL

(2)
1 ; L

(2)
2 ; : : : L

(2)
k2
g from the same room,

though represented in di�erent robot centered coordinate systems. We could imagine L
(1)
best being our reference

map of landmarks, which is going to be matched against a recently collected set of landmarks L
(2)
best. In �gure 3

we can see a simple test example. The relation between the coordinate systems (x(1); y(1)) and (x(2); y(2))
will be an a�ne map involving a rotation point Rp, a rotation matrix Rm and a translation vector t. In this

section we will show how L
(1)
best and L

(2)
best can be used to estimate this a�ne map and hence obtain absolute

localization.

Reference map Recently collected landmark set

x(2)

y(2)

'
(2)
32

y(1)

L
(2)

k2

L
(1)
3

L
(1)
2

L
(1)

k1

L
(1)
1

L
(2)
2

d
(2)
32

L
(2)
3

L
(2)
1

L
(1)
best L

(2)
best

x(1)

Fig. 3.: Two landmark sets from the same room have been collected in di�erent coordinate systems. One of
the sets is our reference map of landmarks while the other set has recently been collected with the mobile
platform. How do we match these sets against each other and hence obtain absolute localization?

We assume that while the mobile platform is exploring the room, collecting landmarks, it is also sampling
compass readings (relative to the current coordinate system). Taking the mean value of these readings gives
the bearings �c(1) and �c(2) for the two runs. These bearings will later provide a start guess for the rotation
matrixRm. The algorithm for matching the two landmark sets against each other is probably best understood
by looking at some pseudo code:



/* Compute distance matrices from L
(1)
best and L

(2)
best */ (1)

D(1) =
�
d
(1)
ij

�
i; j 2 [1; k1]

D(2) =
�
d
(2)
lm

�
l;m 2 [1; k2]

/* Compute angle matrices from L
(1)
best and L

(2)
best */ (2)

�(1) =
�
'
(1)
ij

�
i; j 2 [1; k1]

�(2) =
�
'
(2)
lm

�
l;m 2 [1; k2]

/* Compute expected rotation angle */ (3)
'exp rot = �c(2) � �c(1)

/* Form landmark pairs in L
(1)
best and L

(2)
best respectively */ (4)

P1 =
n
(L

(1)
i ; L

(1)
j ) j L

(1)
i ; L

(1)
j 2 L

(1)
best; j > i; i; j 2 [1; k1]

o
P2 =

n
(L

(2)
l ; L

(2)
m ) j L

(2)
l ; L

(2)
m 2 L

(2)
best; l 6= m; l;m 2 [1; k2]

o
/* Matching loop... */ (5)
max matches= 0
Loop over P1

Loop over P2

/* Assume that (L
(1)
i ; L

(1)
j )$ (L

(2)
l ; L

(2)
m ) */

'rot = '
(1)
ij � '

(2)
lm

d =j d
(1)
ij � d

(2)
lm j

/* Check if the above assumption is worthwhile to consider */

if d < 2� and angle di�erence between('rot; 'exp rot) < � (*)
/* Calculate affine map candidate (Rp;Rm; t) */ (6)

Rp = L
(1)
i

Rm =

�
cos('rot) sin('rot)
� sin('rot) cos('rot)

�

t = L
(2)
l � L

(1)
i

/* Compute transformed landmark set */

Ltemp =
n
L j L = ( L0 � t�Rp)Rm +Rp; L0 2 L

(2)
best

o
/* Find number of landmarks in L

(1)
best which */ (7)

/* have a neighbour in Ltemp closer than 2� */

matches = nmb of matches between(L
(1)
best ;Ltemp)

/* Update best result */ (8)
if matches>max matches

store(Rp;Rm; t)

In words the pseudo code is explained in the following way. (1) First we form distance matrices D(1) and D(2)

for the landmark sets L
(1)
best and L

(2)
best respectively. These matrices will of course be symmetric (see for example

�gure 3 and conclude that d32 = d23). (2) Angle matrices �(1) and �(2) are then produced in a similar way,
but these matrices will not be symmetric (see for example �gure 3 and conclude that '23 = � + '32 ). (3)
From compass bearings �c(1) and �c(2) we can form an estimate of the rotation angle 'exp rot with which the

two coordinate systems (x(1); y(1)) and (x(2); y(2)) di�er. (4) Form landmark pair sets P1 and P2 from L
(1)
best

and L
(2)
best respectively. (5) Matching loop. Loop over the sets P1 and P2. In the loop assumptions of type

(L
(1)
i ; L

(1)
j )$ (L

(2)
l ; L(2)

m )

are made, meaning that pair (L
(1)
i ; L

(1)
j ) in L

(1)
best corresponds to pair (L

(2)
l ; L

(2)
m ) in L

(2)
best. This assumption

is treated as reasonable if we manage to pass the if sentence marked with a (*). Clearly the assumption

is wrong if the distances d
(1)
ij and d

(2)
lm di�er too much; more precisely they should not di�er more than

twice the uncertainty radius � of a landmark. Also the calculated rotation angle 'rot should not di�er too
much from the expected rotation angle 'exp rot obtained from compass readings. We use � = 45� as we



have experienced the compass oscillating when the mobile platform is turning. (6) Calculate an a�ne map

candidate (Rp;Rm; t) and use it for transforming the landmark set L
(2)
best into a temporary landmark set

Ltemp. (7) If the a�ne map (Rp;Rm; t) is the one we are searching for, then the reference map L
(1)
best should

almost overlap Ltemp, so we check how many landmarks in L
(1)
best that have a neighbour in Ltemp that is closer

than 2�. (8) If the number of matches is greater than the maximum number of matches obtained so far, then
store this transformation.

As a remark to (8) we can say that our practical implementation is slightly more advanced. We keep track
of all a�ne maps (Rp;Rm; t) which give rise to matches=max matches. The transformations are stored with
respect to their rotation angle 'rot and are given a support number sm, initially set to unity. This number is
increased with one unit if another transformation occurs with matches=max matches and a rotation angle in
the interval ['rot � 1�; 'rot + 1�]. At the end we select the transformation with the highest support number
sm.
The algorithm's computational complexity is O(k21k

2
2) if the (*) line is disregarded. This line however ef-

fectively sorts away a signi�cant number of false matches (typically 98-99%) and reduces the complexity
substantially. We experience a computation time of about one second when using a Ultra Sparc 1 with
k1 = k2 = 20.

4 Experiments

The experiments presented in this section are taken from two di�erent indoor settings, a livingroom (�gures
4-7) and a corridor (�gure 8). The livingroom is for obvious reasons more furnished than the corridor and
hence contains more natural landmarks. We used a Nomad 200 platform equipped with 16 sonars to cover
these indoor settings. Eleven runs were done in each setting. The 20 best landmarks' positions collected
from the \zero run" was stored in a landmark reference map together with the mean value of the sampled
compass readings. Before starting the \zero run" we marked out the robot position on the 
oor with tape.
This position was the zero position (0,0) measured in reference map coordinates, and could later be used for
checking position errors in the matching.
Between the runs 1-10 the robot was translated, rotated and reset in order to change the robot centered
coordinate system. The robot was driven around in the room, and when it had collected some landmarks the
technique described in section 3 was used to match these landmarks with the reference map. In most runs
only parts of the room area were covered. In some of the runs people were present in the room or walking
by. All this was done in order to test the robustness of the technique. After a matching had been performed
we used the a�ne map (Rp;Rm; t) relating the reference map and the current set of landmarks to calculate
the zero position in robot centered coordinates. The robot was then ordered to go to the zero position and
stop there. Then we measured the distance from the robot to the true zero position marked on the 
oor
and hence obtained the position error in our matching (this error of course include some odometry errors
as well). Statistics from each of the runs 1-10 are provided in �gures 11 and 14, and some cases are further
illustrated graphically in �gures 9, 10, 12, 13 and 15.
In the livingroom setting we see from the statistics in �gure 11 that we have an average matching percent of
68%. The position error has a mean value of 8.7 cm and a standard deviation of 6 cm. All runs gave a correct
matching, i.e. the chosen a�ne map (Rp;Rm; t) was the correct one. Looking more in detail at the second run
which is graphically illustrated in �gure 9, we see from the robot trajectory that the robot has not traveled a
far distance to collect enough landmarks for a successful matching. In this run 10 landmarks were collected
and 6 of them found a partner in the reference map. The third run in the livingroom, graphically presented
in �gure 10, show a situation where the robot has collected 20 landmarks of which 14 were successfully
matched with the reference map. However, the more landmarks we allow the robot to collect, the higher
risk we stand of getting some \ghost landmarks" which does not show consistency between the runs. If the
number of \ghost landmarks" becomes large compared with the natural landmarks in the environment then
the risk of an incorrect a�ne mapping (Rp;Rm; t) increases. In the livingroom there are plenty of natural
landmarks, but in more smooth and symmetric environments \ghost landmarks" can cause problems.
An example of an environment which is symmetric and contains quite few natural landmarks is the corridor
presented in �gure 8. In this setting we carried out the same experiments as in the livingroom. From the
statistics in �gure 14 we conclude that the matching percent of landmarks is varying a bit more than in
the livingroom case. In �gures 12 and 13 we graphically present the successful matching in run 7 and 9 in
the corridor. The robot has here only covered part of the corridor compared with what was covered when



collecting the reference map in the \zero run". Still the matching is successful. Concerning the doors in the
corridor, they were open during the \zero run" but half open in the runs 5-7 and closed in the runs 8-10.
This was done in order to check the robustness of the technique.
From the statistics in �gure 14 we see that the position error is about the same as in the livingroom except
for the last run where the error is as high as 50 cm. This case is graphically illustrated in �gure 15 where we
see that the error is elongated in the same direction as the corridor. The bad matching was caused by \ghost
landmarks" along the walls. These landmarks does not show consistency between the runs and hence we
would do better without them. An alternative would be to manually sort away \ghost landmarks" from the
reference map, but since we want as little human interaction as possible when creating reference maps, we
have chosen not to take this approach. Another alternative would be to use the fact that natural landmarks
(in this case door posts and window corners) generally will have a higher associated support number sh than
\ghost landmarks" and hence some kind of weighted matching of landmarks could be of interest. This is an
idea we have not investigated yet.
Summing up the experiments, they were successful in the sense that they all, except the 10:th run in the
corridor, produced correct a�ne mappings relating the reference map and the sets of recently collected
landmarks with an accuracy of about 5-15 cm. Hence absolute localization can in most cases be achieved
with that accuracy.

5 Conclusions

In this paper we have presented a technique that on-line extracts natural landmarks from ultrasonic data
as a mobile platform equipped with sonars is traversing the environment. It has also been explained how
independently collected landmarks can be matched against each other to obtain absolute localization within
an indoor setting. Typically we get a position accuracy of 5-15 cm. The technique is robust in indoor settings
with lots of natural landmarks, but somewhat less robust in indoor settings that are symmetric and contain
few natural landmarks.
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Fig. 4.: View 1 of the livingroom Fig. 5.: View 2 of the livingroom.

Fig. 6.: View 3 of the livingroom Fig. 7.: View 4 of the livingroom

Fig. 8.: View of the corridor. The runs were carried out between the marked lines in the �gure.
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Fig. 9.: The 2nd run in the living room. The �g-
ure should be interpreted as follows. Triangulation
points which were used to �lter out the landmarks
in the reference map (the \zero run") are drawn
with dark dots. The bright stars (*) are triangulation
points from the 2nd run used to �lter out another
set of landmarks. All triangulation points have been
plotted in the same coordinate system for easy ver-
i�cation of the matching quality. Those landmarks
that were successfully matched against each other
are marked with circles. The robot trajectory in the
2nd run is shown in the �gure, and it is seen that the
robot has not traveled a long distance before doing
this matching. The scales on the axes are given in
mm.
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Fig. 10.: The 3rd run in the living room. The robot
trajectory is here longer than in the 2nd run since
we have allowed the robot to collect more landmarks.
We note that a substantial part of the collected land-
marks has found a partner in the reference map. For
easier interpretation of the orientation of the map we
have marked two objects, a dinner table and some
shelves, which could be compared with the corre-
sponding objects marked in �gure 5.

Livingroom runs

Run k1 k2 # Matches Matching percent Position error

1 15 20 11 73.33 % 5 cm

2 10 20 6 60.00 % 15 cm

3 20 20 14 70.00 % 8 cm

4 13 20 10 76.92 % 9 cm

5 17 20 13 72.47 % 4 cm

6 14 20 10 71.43 % 17 cm

7 16 20 10 62.50 % 18 cm

8 20 20 13 65.00 % 2 cm

9 19 20 12 63.16 % 7 cm

10 20 20 13 65.00 % 2 cm

Average 16.4 20 11.2 67.98 % 8.7 cm

Fig. 11.: Statistics from the livingroom runs. Here k1 is the number of landmarks collected from one of
the runs 1-10, and k2 the number of landmarks stored in the reference map from the \zero run". At each
matching, the found a�ne map (Rp;Rm; t) relating the recently collected landmark set and the reference
map was the one we were looking for.
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Fig. 12.: The 7th run in the corridor. The map should
be interpreted in the same sense as described in �g-
ure 9. In this run the doors of the corridor were half
open and only part of the corridor was covered by
the robot. We see that the most important natu-
ral landmark positions, i.e. door post positions and
window corners, have been matched correctly. The
scales on the axes are given in mm.

0 2000 4000 6000 8000
−6000

−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

Doors

Windows

Fig. 13.: The 9th run in the corridor. In this run the
doors of the corridor were closed and only part of
the corridor was covered by the robot. We see that
the most important natural landmark positions, i.e.
door post positions and window corners, have been
matched correctly. There are however also matchings
between \ghost landmarks" along the walls. These
landmarks occur because of the lack of natural land-
marks in this environment and can cause trouble
concerning localization along the direction of the
corridor (see for instance data from the 10th run,
which yielded a position error of 50 cm).

Corridor runs

Run k1 k2 # Matches Matching percent Position error Doors were

1 15 20 12 80.00 % 5cm wide open

2 10 20 7 70.00 % 2 cm wide open

3 18 20 11 61.11 % 11 cm wide open

4 14 20 11 78.57 % 4 cm wide open

5 17 20 12 70.59 % 9 cm half open

6 14 20 8 57.14 % 16 cm half open

7 12 20 7 58.33 % 10 cm half open

8 20 20 12 60.00 % 15 cm closed

9 17 20 12 70.59 % 7 cm closed

10 19 20 10 52.63 % 50 cm closed

Average 15.6 20 10.2 65.90 % 12.9 cm

Fig. 14.: Statistics from the corridor runs. Here k1 is the number of landmarks collected from one of the
runs 1-10, and k2 the number of landmarks stored in the reference map from the \zero run". In order to
test the robustness of the matching algorithm we let the doors in the corridor shift in position between
the runs. The \zero run" was done with the doors in wide open position.
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Fig. 15.: The 10th run in the corridor. The map should be interpreted in the same sense as described in �gure
9. Here the matching of landmarks has failed. Comparing dark dots and bright stars in the graph it can,
for instance, be seen that the window position is di�ering in the direction of the corridor. This case hints
that symmetric environments with few natural landmarks and lots of \ghost landmarks" can cause trouble
with the matching technique used in this paper. An alternative to get around this is to manually sort away
\ghost landmarks" in the reference map which does not show consistency between the runs. In this case this
would mean removing landmarks appearing along the corridor walls. This would decrease the risk of bad
matchings. However, since we want as little human interaction as possible when creating reference maps, we
have chosen not to take this approach.
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Comparing dots and stars here, we see

that the window position is di�ering a

bit, i.e. the matching of landmarks has

failed in the direction of the corridor.


