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1 Introduction
In a wide range of application areas ranging from domes-
tic robotics and warehouse management to surveillance
it is desirable to have autonomous mobile robot systems
that can perform specific tasks such as cleaning, map
generation, or delivery. Researchers have worked on the
problem for more than 3 decades. This has lead to a
number of successful systems, in areas such as warehouse
delivery and semi-autonomous bomb removal. It is, how-
ever, characteristic that almost all application systems
can only operate in a very limited application domain
under severe constraints. A good impression of the state
of the art in the research area can be found from a re-
view of the annual AAAI robotics contest [4]. In the 1993
contest most robots were built specific to participate in
the contest with extensive knowledge about the domain,
which makes it possible to build systems which only use
simple sensing modalities such as sonars. For operation
in a less known environment it is judged necessary to em-
ploy sensing modalities that provide more detailed infor-
mation so that unknown structures can be identified and
avoided. One such sensing modality is computer vision.
To verify that it is possible to build competent mobile
robotic systems, that can perform realistic tasks with a
minimum of domain knowledge an autonomous system,
which exploits vision as an integral part of it sensing and
planning has been constructed. To enable comparison of
the performance of the robot to that of other systems it
was chosen to use the tasks from the AAAI contest as a
basis for definition and operation of the system. In 1993
the contest contained three tasks: ‘escape from the office’,
‘office delivery’ and ‘office rearrangement’. The first two
tasks can be combined into a single task of office delivery.
The last task requires simple sensing for detection and
description of box type objects. This task requires use
of a large operation area, which we unfortunately don’t
have available. We have consequently focussed on design
and implementation of a system that should be able to
perform office delivery in a natural office or laboratory
environment. It is here essential that the environment is
not modified in any way to accommodate the operation
of the robot. In the remaining of this paper it is described
how such a system may be implemented. First the system
architecture is described, followed by a description of the
system modules, and finally the implementation and a
set of experiments are described in detail.

2 System Architecture

The office delivery system is organized as a hybrid archi-
tecture, combining reactive behaviors for local short-term
planning; and supervision by a deliberative strategic ex-
ecutive, which runs concurrently with the reactive sub-
system, and performs goal-directed, task-achieving plan-
ning. This organization imposes sufficient reactivity for
handling contingencies, and thus ensures safe collision-
free navigation, while supporting deliberative behaviors
for task-achieving purposes [12].

Figure 1 depicts the overall architecture of AMOR di-
vided in four subsystems: Pilot', which performs the
high-level planning as well as resource scheduling and
control activities; Navigation Subsystem, which provides
a set of executable actions ranging from perception to
action activities; Reactive Subsystem, which implements
a set of reactive behaviors for safe navigation, through
a tight coupling of perception and action; and Hardware
Interface, which defines a high-level interface to the sen-
sors and actuators of the physical part of the system.

Given a task issued by a human operator, the Task
Planner synthesises a plan, a sequence of high-level sub-
tasks, based on an a priori provided graph representation
of the navigation environment, which when executed suc-
cessfully will achieve the overall task. The assumption
made by the Task Planner is that navigation through a
door is principally independent of how the (preceding)
room navigation task has been accomplished. Pursuing
this line of thought, the office delivery task is decom-
posed in room navigation, door navigation and hallway
navigation. Each navigation contert imposes different re-
quirements on the strategy of navigation regarding pre-
cision, speed, and reactivity. For instance, the demand
on precision is higher when driving through a doorway
than when navigating in a room. Given a subtask and
the state of the world, the Context Selector selects the
navigation context that defines a strategy for navigation
in that context. A set of modules, in the Navigation
Subsystem, corresponding to the navigation context, will
subsequently be initiated. The modules run concurrently
and are coordinated by the Pilot to accomplish the given
subtask. The modules in the Navigation Subsystem can
be parameterized to adapt to a given navigation context.
The set of selected modules in the Navigation Subsystem
are given limited autonomy, in order to eliminate poten-
tial bottleneck effects between the Pilot and the Naviga-

IThe analogy confirms to the pilot concept introduced by A.
Meystel in [11].
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tion Subsystem. Furthermore, the Reactive Subsystem is
invoked according to the strategy of the navigation con-
text.
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Figure 1: The target architecture of the office delivery system.

Room Navigation This context is selected by the Pi-
lot for navigation in an office/laboratory room that may
contain obstacles. The Pilot supplies the robot’s initial
position, with a bounded uncertainty and a goal position
(in the same room) in the vicinity of the door to exit.
The only a priori knowledge provided by the Pilot is the
approximate position of the doors.

Given the start and goal points and a generated map,
the Path Finder plans a collision-free path, which is up-
dated incrementally upon detection of new obstacles. Ob-
stacle (and free space) detection is based on ultrasonic
sensors as well as stereo-vision, performed by the Sonar
Obstacle Detector and the Visual Obstacle Detector, re-
spectively. The coordinates of the detected obstacles are
sent to the Map Maker, which builds and maintains a
floor map. The Map Maker regularly transmits a copy of
the updated map to the Path Finder, which consequently
regenerates the path avoiding potential obstacles on the
robot’s path. The planned path is converted to a se-
quence of motion commands which are executed by mod-
ules at the hardware interface level. The executed mo-
tion commands are transferred to the Uncertainty Man-
ager, which computes the positional uncertainty associ-
ated with the robot. The positional uncertainty is used
by the Door Finder to determine the search area for find-
ing doors.

During path execution the reactive subsystem ensures
safe navigation using the Sonar Bumper, which acts as
a safety agent with the objective to prevent the robot
from colliding with static as well as moving obstacles.

The Sonar Bumper reactively regulates the speed of the
robot relative to the shortest distance to obstacles and
eventually stops the robot if this distance becomes criti-
cally small.

Hall Navigation Hall navigation is similar to room
navigation since a hall can principally be considered as
a room, however, hallways/corridors have certain proper-
ties, which are exploited in order to achieve a more robust
navigation. For this purpose a reactive wall following al-
gorithm is employed, which ensures that the robot drives
in the middle of the hallway and, at the same time, avoid-
ing static obstacles.

Door Navigation For traversing the door the naviga-
tion system positions the door, approaches it and locates
it again etc., until the robot traverses the door and enters
a new room/hall. Positioning of the door is performed by
a purposive visual module denoted the Door Finder.

3 System Modules

The system modules, are implemented in Vipwob (Vi-
sion Programmer’s Workbench)([7]. Vipwob is a tool for
distributed data processing across a computer network,
which defines a high-level interface to networking. The
modules communicate by events for low-level communica-
tion (e.g., control and synchronization), and channels for
high band-width communication (e.g., for image trans-
fer). A homogeneous module architecture contributes to
the modularity of the system software. Furthermore, us-
ing events as the primary method of communication en-
ables us to design a well-defined interface for each mod-
ule. The logical architecture of the system modules is
depicted in figure 2. The module has the following com-
ponents:

Message handler: Handles incoming and outgoing traf-
fic of events and thus defines the communication interface
of the module. The message handler dispatches incoming
events from the event queue and invokes the correspond-
ing event-handler, which processes the event.

Services: The services correspond to event handlers and
are invoked according to the incoming events.

User interface: The user interface is used for monitor-
ing and interacting with the module.

Data interface: The data interface is used for high
band-width communication.

Logically the events can be categorized in the following
event types:
Simple events: consist of signal, request and reply. These
events do not carry any explicit data, other than the se-
mantics of the signal itself.
Data events: consist of request and reply. Data events
contain data, and are used for information transfer from
a source to a destination module.

The request and reply event types can be used to per-
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Figure 2: Logical architecture of the system modules.

form a hand-shake between the involved modules. Each
of the modules included in the Navigation Subsystem,
Reactive Subsystem, the Hardware Interface as well as
the Pilot are implemented using this generic module ar-
chitecture.

3.1 The Pilot

The Pilot is implemented as a rule-based production sys-
tem in CLIPS? [5] embedded as a Vipwob module. The
Pilot is principally divided into the following subsystems:
Task Planner, Context Selector, Navigation Modules and
the Virtual Subsystem. The Navigation Modules consist
of room, hall and door navigation described in section 2.

The Task Planner, Context Selector and the Naviga-
tion Modules are implemented as CLIPS modules. It is
used as an abstraction tool, as every construct defined
by a module can not be ‘seen’ by other modules, unless
explicitly specified. Each module has logically a working
memory, and the contents of the working memory of a
module is invisible to other modules. By partitioning the
knowledge base into modules, a faster pattern-matching
can be achieved, as only facts defined by the module are
involved in the pattern-matching process.

The Virtual Subsystem of the Pilot consists of vir-
tual modules, written in COOL (Clips Object-Oriented
Language), which represent the real Vipwob modules in
the Navigation and Reactive Subsystems. The virtual
modules are implemented as classes and contain message-
handlers corresponding to the services of each real Vip-
wob module. Furthermore, the classes contain fields to
store data, which are used to store the internal state of
the corresponding Vipwob module. When the Pilot re-
quests some type of information, the particular object
(ie., instances of the classes at run time) can either for-
ward the request to its corresponding Vipwob module,
or it can return the information stored internally in the
object, reducing the physical communication in certain
cases. The Virtual Subsystem serves the purpose of hid-
ing the communication specifics® to the system modules,
so that the rule base of the Pilot is made more elegant.

2(C Language Integrated Production System.)

3CLIPS has in this project been augmented with user-defined
functions, which handle communication to the real Vipwob
modules.

Dividing the Pilot in the above subsystems, contributes
to that the rule base is kept in a modular manner. Aug-
menting the rule base can be done relatively easy as the
Pilot is modular and knowledge is embedded in rules.

3.2 Path Finder

The path planning method used in AMOR is based on
a potential-field [6, 10] method, for safe path genera-
tion. One of the major disadvantages of the potential
field methods, however, is that the usual formulations of
potential-field path planning do not preclude the occur-
rence of minima other than the goal. In the steepest-
decent search the robot can ‘fall’ into these minima and
achieve a stable configuration short of the goal state. In
[2] Connolly et al. describe the application of harmonic
functions to the potential-field path-planning problem.
Harmonic functions are shown to have several useful prop-
erties, one of which is that creation of local minima within
the solution region is impossible. Furthermore harmonic
functions allow incremental update of the path, resulting
in reactive planning?, which makes them suited for adap-
tive regeneration of paths in unknown configurations.

3.3 Map Maker

The Map Maker is based on a slightly modified version of
histogram grid methods [1, 13]. The modification consist
of assigning a size/ uncertainty to obstacles and thus up-
dating a set of cells in the grid, instead of only updating
one cell. The obstacle detectors have a constant sampling
frequency, and therefore the region covered by the sensors
(or the spatial resolution) will depend upon the travelling
speed of the robot. To obtain a map without holes, it is
required to scale the size of detections according to the
travelling speed and sampling frequency of the obstacle
detectors®.

The purpose of the Map Maker is to build a consistent
map of the environment by filtering out spurious detec-
tions and keeping correct detections in the map. This
is obtained by setting a threshold on the number of de-
tections required before an obstacle appears on the map.
Currently, the threshold is set to 3 detections at the same
location, which gives a consistent map. However, it ap-
pears that this threshold might result in reduced reac-
tivity to new obstacles. Higher reactivity is obtained by
including obstacles in the map, the first time they are de-
tected, but reoccuring detections are required to include
the obstacle for permanent inclusion in the map. This
scheme results in a map with few mis-detections and high
reactivity.

3.4 Uncertainty Manager
The Uncertainty Manager computes the positional un-
certainty associated with the robot, specified by a mean

*In our implementation path replanning consumes a time of ap-
proximately 4 seconds on a MIPS 3000 CPU.

SIn the case of v = 0.1m/s and freq = 1Hz, the size will be
0.lm.
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value and a covariance matrix. Based on this positional
uncertainty the Door Finder determines where in the im-
age to search for the door. The method used for compu-
tation of the positional uncertainty is based on a method
developed by Kosaka and Kak described in [8].

A plant (vehicle) model is developed for the mobile
platform separated in a model for pure translation and
pure rotation, respectively. The motion of the robot is
defined with a number of random variables (with assumed
Gaussian distribution), which characterize the actual mo-
tion the robot undergoes as a function of a given motion
command (i.e., different distances for pure translation
and different rotations for pure rotation). The vehicle
model is then used to update the positional uncertainty
of the robot as new motion commands are executed.

3.5 Door Finder

The Door Finder is a purposive visual module which uses
three features for finding the door. The door finder as-
sumes that the door posts are two straight lines, which are
detected with a robust edge detection method optimized
for detecting straight lines. The approximate position of
the door is used to determine the image processing area
by transforming the world coordinates of the door, with
a given uncertainty®, to the image plane. The width of
the doorway, i.e., the distance between the door posts is
known with a small constant uncertainty, and is there-
fore used to filter out erroneous responses from the two
previous steps.

The edge detector operates in five steps: the image
is convoluted with an simple 1 x 3 ([-1,0,1]) differenti-
ating kernel, combined with a Hough transform which is
restricted to almost vertical lines. The thresholded gradi-
ent images is subsequently AND’ed with the longest lines
from the Hough transform. The resulting lines are linked,
and the image coordinates of the lower end-points of the
lines determine where the door post intersect the ground
plane. Subsequently the world coordinates of the inter-
sections are computed using inverse perspective transfor-
mation from the image plane to the ground plane.

Two sample images produced by the Door Finder are
shown in figure 3. The white areas in the images cor-
respond to the thresholded response from the gradient
kernel. Several (almost) vertical lines (black lines) are
found in both images, but the correct door coordinates
are selected by criteria on the estimated position and door
width.

The largest deviation allowed, when finding the door,
for successful door traversing is approximately 150mm7.
The accuracy of the Door Finder with a detection dis-
tance of 2.5m is maximum 45mm and the mean error is
37mm, which is well inside the required range. The test
results are shown in figure 4.

SProvided by the Uncertainty Manager.
“The width of the robot is about 700mm and the door opening
is about 1000mm wide.

Figure 3: Sample images produced by the Door Finder. The left
umage is from a distance of approzimately 4.5m, and the right im-
age is at a distance of approzimately 2.5m.
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Figure 4: The Door Finder results from the distance 2.5m io
4.7m. The resolution of the azes is equal to give a geometrical
impression of the accuracy of the detection.

3.6 Obstacle Detector

The visual obstacle detects obstacles by inverse perspec-
tive transformation from the image plane to the ground
plane of a pair of stereo images, followed by an absolute
subtraction of the two transformed images [9, 3]. The ob-
stacle detection is obtained by thresholding the difference
image, and subsequently filtering it with a morphological
erosion. The remaining pixels in the image are labeled
as obstacles, and the pixels filtered out, are labeled as
free-space.

The advantage of this method is that the coordinates of
an obstacle are given directly from the (z,y) coordinates
in the ground plane image (as a result of the transforma-
tion to the ground plane), and that the method classi-
fies objects deviating from the ground plane. No object
recognition or high level segmentation is required for this
method to work.

With an image resolution of 256 x 256 and the used
camera position, the resolution of the ground plane im-
age is better than 40mm. The Obstacle Detector showed
an error which was linearly dependent on the distance.
The source of the linear error is that obstacles are de-
tected at a given height®, which in our case was about
200mm. The linear error is found by fitting a line to
the test results by linear regression, giving the slope of
the error. The slope is then used to compensate for the
error resulting in a standard error of 80mm in distance
to the detected obstacles. The field of view of the vi-

8This depends upon the camera set-up and the image resolution
[14].
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sual Obstacle Detector extends from 1.5m to 4.3m with
a width of approximately 2.8m. The sampling frequency
of the Obstacle Detector is approximately 1Hz and this
is comparable to the sampling frequency of the sonars.

3.7 Sonar Bumper

The Sonar Bumper ensures safe collision-free navigation
by reactively regulating the speed of the robot based on
the minimum distance to obstacles. It is based on 24
ultrasonic sensors, which directly provide range infor-
mation, thus the processing requirements of the Sonar
Bumper are low, resulting in a tight coupling between
sensing and action.

The Sonar Bumper is capable of stopping the vehicle
with an accuracy of about £50mm from a specified min-
imum distance from obstacles, i.e., for minimum distance
set to > 100mm, the Sonar Bumper guarantees collision
free navigation.
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Figure 5: The actual speed of the robot, v[d], (at discrete time
instances) as a function of the robots distance to some obstacle, d.
The vertical line, d = 0.2, is the safety distance where the vehicle
should be at total rest.

Figure 5 depicts the way the Sonar Bumper affects the
robot’s speed with decreasing distances to obstacles. The
plots in the figure are for different initial velocities (for
vo = 0.2,0.3,0.4,0.5 and 0.6m/s). From the plot for
vo = 0.6m/s, it can be seen that the first time a sample
of the sonars is retrieved the speed is reduced drastically
(before the robot has accelerated to the initial speed),
which indicates that an initial speed of 0.6m/s is not
sensible for the given system.

3.8 Wall Follower

In the hall navigation context, the Wall Follower ensures
collision free navigation by guiding the robot to the cen-
ter of the hallway and at the same time avoiding colli-
sions. The Wall Follower reacts to the sonar range read-
ings provided by the sonars mounted on the left and right
sides of the robot. The sonar data are transformed to a
robot-centered coordinate system and subsequently two
straight lines, !; and l,., are fitted to the range data re-
trieved from the sonars on respectively the left and right
sides of the robot®. The lines represent repulsive forces

9There are 9 sonars on each side of the robot.

with magnitude as the reciprocal of the robot’s distance
to the fitted lines, with direction given by the normal of
the lines. Thus the repulsive force increases as the robot
approaches a wall.
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Figure 6: The walls, as seen by the robot (dots), are not straight,
rather the plot depicts how the robot perceives the hallway. (left)
Note how the robot follows the walls at the same time avoiding
obstacles. (right) Zoom in on the area where the robot avoids some
obstacles.

The sum of these forces, and the direction of the robot,
gives the direction followed by the robot. Since the lines
are fitted to local data, the robot is capable of avoiding
potential obstacles planted in the hallway. Figure 6 de-
picts a plot of the robot’s path in the hallway, where the
robot is guided by the Wall Follower. It can be seen that
the robot moves in the middle of the hallway and that
the path follows the bends of the hallway. Additionally,
it can be seen (right plot) that the Wall Follower enables
the robot to avoid obstacles, without explicit obstacle
detection.

4 Experimental Results

In the following, results from test runs from a navigation
session from one room to another, will be presented. The
room navigation tests were performed at the Laboratory
of Image Analysis (LIA) and the robot was given the task
to autonomously navigate from a known start position to
a specified goal position. The only a priori knowledge of
the robot is the size of the room, and the approximate
position of the doors. The robot speed for the test run
is < 0.1m/s and the path is registered by sampling the
odometry with a frequency of 1Hz. The obstacles are
mostly static.

Figure 7 (left) depicts one of the tests, where the robot
navigates continuously'® from start to goal. The che-
quered patterns are plots of the obstacles detected by the
robot and are roughly consistent with the actual objects
scattered in the room, as the occupied places indicated in
figure 7 usually contain desks, cabinets etc. The gener-
ated path is collision-free and the average time for com-
pleting the navigation task is about 3 minutes for each
room.

Results of Room to Room Navigation The room
to room navigation test consisted of positioning the robot

10The dashed curve in the figure.
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in room D1-105 and command it to go to another room
(D1-101).

Room D1-105
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Figure 7: (left) Going from DI-105 to the hall. The robot per-
forms three sub-paths, going to vicinity of the door, finding the
door, approaching it and finally going through it. (right) After en-
tering the hall, from room D1-105, the robot goes through the hall
(no obstacles were placed in the hall) and enters the nezt room.
The average time for completing the task was about 5 min.

Figure 7 depicts the path of the robot including when
navigating in the initial room. The path consists of three
segments. The first path brings the robot to the vicinity
of the door (to exit), then the door is found and the
robot approaches the door, while aligning itself for safe
door traversing. Subsequently, the door is found again
with higher precision, the door is repositioned and then
the robot goes through the door. In the figure it seems
like the robot does not exit the door optimally, because
the path goes to the right. This is, however, not the fact.
What happens here is that, the robot has an accumulated
position error due to wheel slippage. When it finds the
door, it will not be in the expected world coordinates
due to this position error. AMOR will thus reposition
the door relative to its own position to enable safe door
traversing. In figure 7 (right) the robot has entered the
hall (at the top-right) and heads for room D1-101. The
robot uses the same strategy for going through the door
and finally it enters the room (not depicted here) and
accomplishes the navigation task successfully.

5 Summary
In this paper an autonomous mobile robot navigation
system, capable of performing automated office delivery
tasks, is described. The implemented prototype system
is capable of autonomously navigating from one room to
another designated by the operator. This involves: nav-
igation in a room, where the robot dynamically detects
and avoid obstacles; hall navigation, where it follows the
walls by a reactive scheme and finally door traversing,
where the robot autonomously positions the door and
passes safely through it. The only a priori knowledge
used by the system consists of a graph representation of
the navigation environment, containing door positions.
A priori, no knowledge is provided about the position,
physical or geometrical properties of other objects in the
environment.

The results indicate that using visual capabilities en-

ables robust goal directed mobile robot navigation sys-
tems guided by a set of carefully selected visual modules.
Additionally reactive systems based on simple sensing
modalities enable safe navigation and handling of run-
time contingencies.
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