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Detecting Region Transitions for
Human Augmented Mapping

Elin A. Topp∗ and Henrik I. Christensen

Abstract—In this paper we describe a concise method for the feature
based representation ofregions in an indoor environment and show how it
also can be applied for door passage independent detection of transitions
betweenregions to improve communication with a human user.

I. I NTRODUCTION

With this paper we aim to make a case for a concise method
for the segmentation of an indoor environment into a topological
graph representation that is independent from particular ”transition
indicators” like door passages and that allows to generate ahuman
comprehensible environment representation for a mobile service
robot. We assume such an environment representation as crucial
to support meaningful interaction between a user and a supposed
”general purpose service robot” in and about the environment. We
consider our framework ofHuman Augmented Mapping(HAM) [1,
chapter 3] a possible way to approach the issue of integrating robotic
and human environment representation in general. The framework
subsumes different aspects of robotic mapping, spatial representation
and human robot interaction. Within the context of HAM we assume
an interactive scenario – a “home tour” – as the most natural way
of providing the robot with the needed semantic informationabout
the environment as it is seen by the user. The human user guides the
robot and gives names to things and places according to her personal
preferences, while the robot builds a suitable (hybrid) mapthat is
augmented with this information. In such a tour it is not necessarily
the case that the user will present all items actively [1, chapter
6], hence, the system driven detection of transitions, e.g., from one
room into another, is essential to make sure that the representation
generated by the robot corresponds to the user’s understanding of the
environment. An obvious way of detecting such changes is to find
door passages. However, there are cases where the border between
two structurally (and often also functionally) different rooms (or
regions) is not described by an obvious separator like a door passage.
Figure 1 visualises such a ”structural ambiguity”. There are of course
also cases where one large room serves different functions,e.g., in
very small studios with combined ”living room” and ”kitchen”, but
in this work we want to focus on a segmentation based on structural
features that can be observed in the environment. Such a feature
based representation should be suitable for the generationof region
nodes in a topological graph structure and support the detection
of hypothesised transitions betweenregions. Ideally, the respective
representation allows a robot to more or less immediately recognize
a particularregionas previously visited even when reaching it from a
new ”entry point”. In this paper we describe our concise method for
the feature based representation ofregionsas nodes of a topological
graph representation and show how it also can be applied for door
passage independent detection of transitions betweenregions. We
show the applicability of the method in different (interactive) contexts
and give one ”proof-of-concept” example for a successful ”loop
closing” experiment.
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Fig. 1. (left) The ”hall” has been presented to the robot thatnow assumes the
complete depicted area as ”hall” since no ”door passage” waspassed while
traveling. (right) The user wants the robot to understand that there is some
part of the area that is NOT the hall, but, e.g., the ”corridor”. It seems natural
to assume an ”unspecified area” in the transition.

II. RELATED WORK

Since our presented work deals mainly with the issue of obtaining
a topological partitioning of a given environment we give anoverview
of related work in this area. We are aware of several works using im-
age analysis techniques and object recognition based representations
or categorisations for rooms or regions, but due to the limited space
we focus mainly on structure based methods in this brief overview.

One strategy is to predefine the topological structure of an environ-
ment and use this map for localisation and navigation purposes [2].
The limitations of such an approach in the context of and interactive
framework and the arbitrary environment we assume are obvious:
the complete possible working environment for the robot needs to
be known in advance. Other, more adaptive methods that assume the
robot to acquire a topological representation of its environment are
based on (sensory) data obtained while travelling.

An unsupervised/autonomous method for the detection ofplaces
is suggested by Beesonet al. [3] based on earlier investigations in
a related context [4], [5]. The definition of a “place” in these works
suits the requirements and abilities of an autonomous system, but
does not necessarily correspond to a personalised representation of a
human user. This limitation can be observed also for other completely
unsupervised methods of topology learning, as for instanceproposed
by Tapuset al. [6].

For the representation of convex areas Kröse showed that itis
possible to represent suchregions reliably by obtaining only one
sample range data set and transform it to its centre point andbearing
with the help of a principal component analysis to anticipate future
scans [7]. Our representation forregions is closely related to this
proposed approach, as to the one presented by Buschka and Saffiotti
[8], who detect ”room-like” structures based on (sonar) range data,
using a very similar method. However, due to the nature of theused
range finder data, their approach is somewhat different to our method
regarding necessary preparation steps.

Mozos et al. show, how thecategory of a certain area (room,
doorway, or corridor) can be determined with the help of supervised
learning [9], also used in another similar approach [10]. Weadopt
their idea of using a set of features to represent a (laser) range data
set, that we obtain inregions, but use an even more concise set
of features [1, chapter 4]. Further Mozoset al. label places in the
complete environment into a fixed number of categories, while we
do not rely on any previously defined categories for theregionsthat
can be specified by the user. This allows us to concentrate on the
transition from oneregion into the other, not regarding what category
(in the sense of the mentioned work) theregionsor the transition itself
belong to.

III. R EPRESENTING AN INDOOR ENVIRONMENT WITH REGIONS

In the HAM framework we define aregion as follows:A region
is a functionally and / or structurally delimited area of an indoor
environment, that can be a container for one or several particular
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locations and objects. A region offers enough space to navigate
(typically regions correspond to, e.g., rooms, corridors,delimited
areas in hallways)1.

For this work we focus exclusively onregionsand their structural
properties. Theregions that have been labeled in the assumed tour
form the nodes of a topological graph structure that (among other
entries according to the HAM model) contain subgraphs representing
known, viable paths (navigation graphs). We introduce alsoa generic
node, the “genericregion” as a starting point and to cope with
situations in which entities of other conceptual levels (e.g., locations)
are specified without the surroundingregion being named before.

The general assumption is that a “region node” in the topological
graph is generated when the user shows a particularregion to the
robot. This can also happen when the robot detects a significant
change in the environment – a hypothesised transition from one
region into another – and asks for clarification of the situation, while
the user did not (yet) introduce any new region actively.

A new region node is linked into a topological graph structure on
two levels: A high level edge describes the topological linkbetween
two nodes, i.e., the fact that it is possible to somehow travel from one
region to a neighboring one. The so far existing navigation graphs of
those regions are rebuild so that the high level edge receives at least
one concrete instantiation, describinghowto travel. This concrete link
is represented as a (metric) path vector relative to theregion node’s
geometrical centre point. In addition to the topological links between
the graph nodes, eachregion node is described with its centre point
X̄ and angleθ relative to the starting position of the tour. To derive
these metric links we make use of a (corrected) position estimate.
Since the metric links betweenregion nodes are described relative
to the corresponding node ”origin”, we believe it would be possible
to decouple small local (metric) maps from the global metricone
if necessary. Hence, we assume an arbitrary, ”classic” simultaneous
localization and mapping (SLAM) method as suitable for the purpose
of retrieving a sufficiently correct pose estimation.

Representing regions and detecting transitions between them

To actually compute the representation for theregion nodes in our
topological graph structure, we rely on statistical features derived
from laser range data sets. This is a very concise, computationally
rather inexpensive and flexible method and we propose to use it
not only for the description of theregion nodes specified by the
user, but also for continuous comparisons of hypothesisedregion
representations for transition detection. The detection of transitions
can then be handled independently from or as a complement to
explicit cues like, for instance, door detectors as used by other
approaches [11].

1) The region representation:We represent specifiedregionswith
the help of a number of statistical features computed from a 360◦

laser range data set [1, chapter 4]:

• Massm: The free space surrounding the robot (”clutter index”)
• Lengthl1 andl2: The length along the two principal components

of the data set (overall ”size”)
• Excentricity e: The excentricity of the ellipse described by the

two principal components (overall ”shape”)
• Centre pointX̄: The centroid of the data set
• Angle θ: The angle of the first principal component relative to

the origin of the map / the starting point of the tour

1Locationandobjectcorrespond to other spatial concepts used in the HAM
framework, forming a conceptual hierarchy. We use the termlocation for a
large, not as a whole manipulated object or a particular “workspace” (more
or less static, e.g., a table, the fridge, the coffee-maker), and define anobject
as small and dynamic (manipulable) item (e.g., a cup or a remote control).

The first three features describe the properties of theregion while
the latter two are used to link the correspondingregion node into the
graph structure as described previously. Although those features are
related to each other we found in some empirical tests that they all
contribute to the distinctive power of the description [1, chapter5].
The features over a range data set{Xi : 0 ≤ i < N}, whereN is
the number of data pointsXi = (xi, yi) are computed as follows. To
compensate for the distortion of the laser range data set2 the centroid
of the data set is computed as a range weighted average
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wherer′i is the distance of the transformed point from the centroid.
Since this estimated covered area is depending on objects inthe
vicinity it represents an index of clutter, which is helpfulto differ-
entiate between regions of the same basic layout, but with different
furnishing.

We perform a principal component analysis (PCA) to obtain the
two eigenvectorsE1 and E2 of the data set. We then estimate the
two featuresl1 and l2 as the maximum distances represented in
the data set along the bearing angles ofE1 and E2. To make sure
that such a point is found, a tolerance threshold around the bearing
angle is employed. The data set is now represented by the quadruple
regDesc = (name,m, l1, l2, e) and stored as properties of the
correspondingregion.

2) Detecting transitions while travelling:While travelling through
the environment the available range data sets are continuously used to
generate a ”hypothesisedregion” representation of the surroundings,
which is compared to a previously specified one to decide, whether
the environment has changed significantly so that it appearslikely to
have entered a newregion [1, chapter 4].

To compare tworegion representations we compute a distance
measured from the relative differences in each of the descriptive
features:

d =
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for f ∈ {m, l1, l2, e},

2as a result of the equidistant angular resolution with whicha laser range
finder scans the environment objects in the direct vicinity of the sensor are
represented with considerably more data points than objects that are further
away
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with fcur andfhyp standing for the respective feature of the current
and the hypothesised representation. We evaluated severaldistance
measures in initial empirical tests and found the presentedone most
suitable to capture the changes being implied by the structure of
the environment. If the distance measured exceeds a threshold a
significant change in the environment representation is hypothesised.

To improve stability, we assume that the change has to be stable
over a number of data cycles. Additionally it is obvious thatthe robot
cannot have entered a newregion when it has not moved, hence we
apply a minimum distance threshold between transition detections.
Those two conditions allow to lower the computational effort and
make the system more stable.

The hypothesisedregion representation is compared to the pre-
viously accepted current one. In the case that a significant change
is detected, the hypothesised representation is checked against all
other available representations (nodes in the graph) whether any of
them matches sufficiently well and is not completely unlikely to have
been entered, given its (metric) position. If none of the previously
specifiedregionrepresentations match, the system assumes to be back
in the “genericregion”. Given appropriate interaction capabilities,
a transition detection with the hypothesis for the actuallyentered
region can lead to a confirmation dialogue with the user, which then
can result in the specification of a newregion. The corresponding
representation is then added to the graph and is used as the accepted
current one for further comparisons.

IV. I MPLEMENTATION AND EVALUATION OF THE SYSTEM

We investigate our method for the representation ofregions and
detection of transitions in the context of three different implemen-
tations. Although the used implementations were slightly different
regarding their integration into an interactive system (orlack thereof)
the general system setup for both online runs and data collection
consisted of a mobile non-holonomic platform with one laserrange
data finder mounted at about 30cm (in one case 50cm, but still below
the top level of most furniture) above the ground. In all cases time
stamped odometer readings and laser data were made available and,
depending on the interaction capabilities, also the user’slabeling and
the raw data sets used for the specification ofregions together with
the resulting feature based representation. As mentioned previously
we consider two types of events relevant to generate a new region
representation in the topological graph. One is the – user initiated –
specification of a new region, the other is the – data driven and robot
initiated – detection of a structural change in the environment. When
the user through personal initiative or as a result of a clarification
discourse specifies aregion, the robot acquires a 360◦ range data
set by turning around once, for the continuous comparisons we use
”virtual scans” generated from a local map3 to compensate for the
fact that the used robots only have one laser range finder available.

Evaluation

We discuss our approach in the context of a number of data sets
that were obtained in different indoor environments, representing the
range from ”laboratory conditions” in an office building to ”real world
conditions” in a small, actually inhabited, apartment. Also the settings
range from explicit test runs, where data collections from tours with a
remotely controlled robot [12] were evaluated, to a fully interactively
controlled run conducted by a test user. These different settings had of
course influence on how the system could handle a detected transition
after it stated its hypothesis, but the main aspect was in all cases

3part of the software tool package ”CURE”, courtesy of PatricJensfelt and
John Folkesson

to use theregion representation for the detection of transitions in
the environment and evaluate the suitability of the method for the
generation of a human comprehensible representation of an indoor
environment. We evaluated the runs (guided tours) in those different
environments with respect to the following criteria:

• Consistency of the generated separation ofregions in the envi-
ronment with the “common understanding” of this separation

• Detection of “obvious” transitions (doorways) and ambiguities
where, e.g., a hallway opens up into a larger area.

• Loop closing ability on the conceptual / semantic level when
coming back to a previously specifiedregion through a new
entry point

• Overall numbern of detected ambiguities / transitions (and
requests for confirmation from the system for the fully imple-
mented systems), withnCorr being the number of expected
transition detections between structurally different areas given
the path of the robot.

• Number nSens of ambiguities detected in a sensible range
(approximately 1 to 2 meters in a standard indoor / domestic
environment) from an obvious transition in the environment
(e.g., a doorway)

• Number nSpurious of obviously spurious (erroneous) detec-
tions of ambiguities (e.g., in the middle of an open area)

• Number nMiss of obviously missed transitions into a struc-
turally different area

The generation of a new, explicitly specified,region was not con-
sidered as a detected change, but when this specifiedregion was
obviously left a detection should have occurred, otherwisea miss is
counted.

In the following we describe the test scenarios, the resultsaccord-
ing to our evaluation criteria being summarised in table I asevaluation
results for 1) two domestic settings (ap. 1 & 2), 2) test runs in the
laboratory (lab 1 & 2), and 3) a test with a fully interactive system
(“BIRON” 4).

1) Domestic environment, mapping subsystem only:Two different
domestic environments were considered, one being a rather small
apartment with narrow passages and doorways, the second being
a medium sized flat with partially rather wide passages and open
spaces. In both apartments the living room, a bedroom and thekitchen
were presented to the robot. In the larger apartment also tworuns
were conducted, both being actual guided tours in a user study setup
of the “home tour” scenario.

2) Test runs in the laboratory / office environment:In the office
environment we evaluated two runs one of which covered a large part
of the corridor of one of our floors and two of the rooms. With the

4the “BielefeldRobot Companion”, that served as platform for the demon-
strating Key Experiment 1 (the “Home Tour”) of the integrated EU project
COGNIRON, concluded in 2008 [13]

TABLE I

ap. 1 ap. 2 lab 1 lab 2 BIRON
counts & values

min. movement 1m 1m 1m 1m 1m
data cycles 1 1 3 3 3

n 18 22 13 4 12
nCorr 18 24 13 4 5
nSens 18 20 13 4 9
% of nCorr 100 83 100 100 180
nSpurious 0 2 0 0 3
% of n 0 9 0 0 25
nMiss 0 4 0 0 0
% of nCorr 0 17 0 0 0
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Fig. 2. An illustration of the similarity measure for the ”BIRON”-run as it is changing over time. A switch to a new marker type indicates a potential
”change”. Extreme values due to the user blocking the range finder are cut for readability of the plot. Jumps without markers indicate periods during which
the robot was not moving (translating), hence the similarity distances were not regarded relevant.

Fig. 3. The run starting in the “living room” (left), leaving it and coming
back in (centre, with the hypothesis “living room” in the dialogue box), and
after merging the navigation graphs inside the room (right). Question marks
indicate positions where the system asked for clarificationand solid black
lines represent the navigation graphs.

other run the applicability for loop closing was tested by specifying
the “living room” (one large laboratory room) and the connected
hallway, where the robot was guided back into the “living room”
through a different door than used when leaving it (fig. 3).

3) Test with a fully integrated interactive system:To test the appli-
cability of the transition detection approach the third implementation,
integrated into the communication framework of the robot BIRON,
an experiment in a laboratory environment corresponding toa part
of an apartment including living room, kitchen and hallway was
conducted. An interesting aspect to the integrated system was that
for this experiment no SLAM method was available to provide the
corrected pose estimations usually assumed. We decided to use the
experiment to investigate, in how far the now purely topological
mapping subsystem, including the transition detection, would be
capable of representing the environment in a way that allowed
meaningful interaction with a user, relying only on the feature based
representations.

Fig. 4 illustrates the guided tour with BIRON through the lab-
oratory environment, conducted by a researcher acting as “user”.
Since the pose estimation error was obviously mostly depending on
rotations of the robot platform (see the uncorrected illustration in fig.
4 c) and d)), the accumulated error was kept on a level that allowed to
hypothesise the “hallway” correctly when it was re-entered, since no
significant turning movements “on the spot” had been made after its
specification. Figure 2 illustrates the similarity measures over time for
the run, applying the same conditions for the detection of a transition
as in the original run, i.e., a ”new currentregion representation” is
assumed (in this post-hoc run no confirmation question was actually
posed) when a significant change (d > 1.5) is observed for more
than three data cycles, and the robot is at least 1 meter away from
the point were the previous representation was accepted as current
one.

4) Summary: The results from the seven evaluated runs show,
that most of the obvious transitions in our test environments are

a) b)

c) d)

Fig. 4. The experiment with BIRON, visualised in post-hoc runs. Question
marks indicate positions where the robot asked the user for confirmation. In
the upper left corner of each image the system’s hypothesis of the current
region is shown. a) and b) Reconstruction with the help of a pose estimation
module with the room labels marked at the positions where they were given
to the robot by the user. c) and d) visualisation of the originally generated
representation, based on raw odometer readings, the crosses indicating the
ellipses for the three specifiedregions. a) / c) Starting in the “living room”,
b) / d) concluding the tour in the hallway after going throughliving room
and kitchen twice.

detected rather reliably. As ”obvious transitions” we consider door
passages, junctions of hallways (available in the office settings), and
hallways opening into a room (available in the two domestic data
sets for the ”medium size apartment”). Most failures of the approach
have to be counted regarding ”false alarms”. However, sincewe
assume the user to assist the system, we consider this type offailure
less critical than ”false negatives”. Those occurred significantly less
often and only in one ”apartment” setting. Adaptive settingof the
threshold values to the type of environment (”narrow apartment”
vs. ”spacious laboratory”) or the application of a more sophisticated
change detection filter can be an option to cover such cases more
appropriately. A number of spurious detections in one of thedomestic
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settings can be explained with the user being very close to the robot
(due to the interactive scenario) and thus covering larger parts of
the laser range finder’s “field of view”. Such spurious detections can
obviously be avoided by increasing the number of data cyclesthat a
change needs to last, before a transisiton is hypothesised.This was
done for the laboratory runs, where it seemed to have immediate
impact in the sense that spurious detections did not occur that
frequently, still being able to detect significant changes satisfyingly.

The second laboratory run (fig. 3) showed the advantage of using a
feature based representation both for the detection of transitions and
the representation ofregions, so that it is not necessary to travel back
to a previously observed path to hypothesise a loop closure,which
would presumably be the case with a door detector in combination
with pure metrical SLAM.

The aim of the integration of the mapping subsystem with the
fully interactive framework on BIRON was to see if a meaningful
interaction in and about the surroundings can be achieved with the
proposed models and used representations. For this integrated system,
it was decided to limit the functionality of the mapping subsystem
to the rather basic situations described above, i.e., the specification
of regionsand the detection of transitions together with the resulting
requests for confirmation. Within this limited context the question
mentioned above can be positively answered at least for the discussed
environment. The robot detected all expected transitions and produced
only a very limited amount of surprising questions.

As an overall result we consider the approach to separatingregions
and detecting transitions between them a useful tool to support the
acquisition of a usable and understandable representationof an arbi-
trary indoor environment, suitable for a meaningful communication
with the user even without an underlying correction of the robot’s
pose estimation, as it could be demonstrated with the last presented
experiment.

V. CONCLUSIONS AND FUTURE WORK

In this article we presented our approach to the separation of
regions (one central spatial concept in our framework for Human
Augmented Mapping - HAM) in the environment and the detection
of transitions between them. We assume an interactive guided tour
in which a human user presents and explains a known environment
to our robot.

We tested our implementation of the HAM framework, particularly
its subsystem for topological graph building (region segmentation and
transition detection), with off-line experiments as well as with a full
interactive setup (graphical interface and tracking system included)
and in one case integrated in a fully interactive framework,including
dialogue abilities, in different on-line runs. With these experiments
the applicability of our method forregionsegmentation and transition
detection could be confirmed. No prior knowledge of spatial cate-
gories is needed to generate a topological graph representation of an
arbitrary indoor environment that reflects the human user’sconceptual
understanding of the surroundings. This makes the approachvery
flexible. Our tests showed sufficiently good results in both office (or
laboratory) and domestic environments. Other mentioned approaches
aim to label an environment with spatial categories [9], [10], while
our method can rather be considered to deal with transitionsbetween
any type of spatial categories. This makes it more flexible insituations
where the spatial category is difficult to determine even fora human
user. Thus, we consider our approach as a fast and easy-to-apply
complement to such categorising methods.

So far the corrections made by the user are not persistent in the
system – the robot simply “forgets” that it has already askedthe user
about a particular detected transition. Thus it has to be investigated,
how the topological graph structure and respective representations of

involved regionshave to be changed persistently. Another interesting
aspect for future investigations is whether personal differences can
be handled with one instantiation of an environment representation
or if several are needed.

On a more detailed level it would seem natural to investigatea
more adaptive method to decide if in fact a transition has occurred.
This should make the method better suitable to different types of
environments (generally narrow or more open) without needing to
adjust parameters manually. Another issue is to find out withthe
help of another study, where users actually would want the robot to
react to a detected change and if the system acts in a comprehensible
way when hypotheses about the current position are generated.

VI. A CKNOWLEDGEMENTS

The work described in this paper was mainly conducted at the Cen-
tre for Autonomous Systems, Royal Insitute of Technology (KTH),
Stockholm, Sweden, partially funded by the European Commission
Division FP6-IST Future and Emerging Technologies under Contract
FP6-002020. We also thank the Applied Informatics group at the
University of Bielefeld for their cooperation.

REFERENCES

[1] E. Topp,Human-Robot Interaction and Mapping with a Service Robot:
Human Augmented Mapping. Doctoral Dissertation, KTH School of
Computer Science and Communication (CSC), Stockholm, Sweden,
2008.

[2] I. Nourbakhsh, A. Powers, and S. Birchfield, “Dervish an office-
navigating robot,”AI Magazine, vol. 16, no. 2, pp. 53–60, 1995.

[3] P. Beeson, N. Jong, and B. Kuipers, “Towards autonomous topological
place detection using the extended voronoi graph,” inProceedings of
the IEEE International Conference on Robotics and Automation (ICRA),
Barcelona, Spain, 2005.

[4] B. Kuipers and Y.-T. Byun, “A robust qualitative method for spatial
learning in unknown environments,” inProceedings of the National
Conference on Artificial Intelligence (AAAI), Los Altos, CA, USA, AAAI
Press, 1988.

[5] H. Choset and K. Nagatani, “Topological simultaneous localization and
mapping (slam): Toward exact localization without explicit localization,”
IEEE Transactions on Robotics and Automation, vol. 17, no. 2, pp. 125–
137, 2001.

[6] A. Tapus, G. Ramel, L. Dobler, and R. Siegwart, “TopologyLearning
and Place Recognition using Bayesian Programming for Mobile Robot
Navigation,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Sendai, Japan, 2004.
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