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Cue Integration for Visual Servoing
Danica Kragic´ and Henrik I. Christensen, Member, IEEE

Abstract—The robustness and reliability of vision algorithms is,
nowadays, the key issue in robotic research and industrial applica-
tions. To control a robot in a closed-loop fashion, different tracking
systems have been reported in the literature. A common approach
to increased robustness of a tracking system is the use of different
models (CAD model of the object, motion model) knowna priori.
Our hypothesis is that fusion of multiple features facilitates robust
detection and tracking of objects in scenes of realistic complexity.
A particular application is the estimation of a robot’s end-effector
position in a sequence of images.

The research investigates the following two different approaches
to cue integration: 1) voting and 2) fuzzy logic-based fusion. The
two approaches have been tested in association with scenes of
varying complexity. Experimental results clearly demonstrate
that fusion of cues results in a tracking system with a robust
performance. The robustness is in particular evident for scenes
with multiple moving objects and partial occlusion of the tracked
object.

Index Terms—Fuzzy logic, tracking, visual cues, visual servoing,
voting.

I. INTRODUCTION

V ISUAL servoing is composed of two intertwined pro-
cesses: tracking and control. The major components of a

visual servo system are shown in Fig. 1. Tracking is responsible
for maintaining an estimate of the target’s position, while servo
control reduces the error between the current and the desired
position of the target. Each of these processes can be studied
independently, but the actual implementation must consider
the interaction between them to achieve robust performance.
Tracking of a target can be divided into the following three
subtasks: 1) detection of the target; 2) matching across images
in an image stream; and 3) estimation of the motion of the target
(see Fig. 2). Once the position and the velocity of the target
are known they can be fed into a control loop. The tracking
can either be performed in image (i.e., image coordinates of
the tracked features are estimated) or in world coordinates
(a model of the target/camera parameters are used to retrieve
the three-dimensional (3-D) pose of the tracked features).
Image-basedservo control uses image coordinates of the
features directly in the control loop. If the control is performed
in the 3-D Cartesian space we talk aboutposition-basedservo

Manuscript received January 18, 2000; revised November 17, 2000. This
paper was recommended for publication by Associate Editor H. Zhuang and
Editor V. Lumelsky upon evaluation of the reviewers’ comments. This work
was supported by the Swedish Foundation for Strategic Research through the
Centre for Autonomous Systems.
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Fig. 1. The major components of a visual servo system.

Fig. 2. The major processes involved in visual tracking.

control [22]. In this work, image-based tracking and servoing
are studied.

The reported literature on visual tracking and servoing is ex-
tensive. Some examples include the work by Dickmanns et al.
[1] and Kollnig and Nagel [2]. Both of these approaches have
adopted specific models [in terms of the environment and/or the
objects of interest (cars)]. In terms of manipulation many ap-
proaches exploit markers ora priori known features like lines
and corners to simplify detection and tracking. Examples of
such work include Hager [3], Allen [4], and Papanikolopoulos
and Khosla [5].

A notorious problem in visual servoing is robustness. Lack
of robustness is primarily due to the following three problems:
1) figure ground segmentation (detection of the target); 2)
matching across images (in particular in the presence of large
inter-frame motion); and 3) inadequate modeling of motion (to
enable prediction of the target in new images). Robust target
detection is often achieved through the use of artificial markers
that are easy to segment. An alternative approach is the use
of CAD models, for example, as demonstrated by Kollnig
and Nagel [2] and Hirzinger et al. [6]. Such an approach is
particularly relevant for tracking of well-known/well-defined
objects that can be modeleda priori. However, for general
objects of complex shapes, an approach to increased robustness
may be an integration of multiple visual cues. A lot of work
has been reported on fusion of visual cues [7]–[9]. Most of
the reported techniques are model-based [8], where a specific
model of the imaging process and feature extraction is used as
the basis for fusion of cues. Visual servoing requires techniques
that are suited for real-time implementation. To achieve this,
one often has to resort to ‘simple’ visual cues. In addition,
fast execution and redundancy enable simplified tracking and
allow handling of temporary loss of individual features. In this

1042–296X/01$10.00 © 2001 IEEE
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paper, two different methods for real-time fusion of visual cues
are investigated: integration using voting and integration using
fuzzy logic.

Initially, two methods for integration of visual cues are pro-
posed. It is then outlined how these methods are used to design
a tracking system for hand–eye coordination. The system has
been experimentally tested and evaluated. Finally, conclusions
regarding the proposed methodology and experimental results
are presented.

II. CUE INTEGRATION METHODS

Our environment offers a rich set of cues originating from the
scene structure and events. Recent work on robot navigation and
mobile manipulation employs more than one sensor for task exe-
cution. Such multisensor or multicue integration techniques per-
form very well in complicated and dynamic environments where
the uncertainty of individual sensors/cues vary during the task
execution [31]. The information obtained by one or multiple
sensors is both complementary and redundant hence it supports
the robustness of algorithms in unforeseen situations. Machine
vision is a typical modality that benefits from this redundancy.

A probabilistic framework has been widely used in fusion of
multiple cues [8], [10], [11]. For example, as described in [12]
and [13], these methods have primarily been used for pattern
recognition and scene reconstruction. This approach requires a
model that fits to the data and prior distributions of possible re-
sults. The problem is that the validity of the model is often lim-
ited and it might be difficult or impossible to verify the correct-
ness of the model at run-time.

An alternative to the use of strong models is model-free ap-
proach to cue integration [9], [14], [15]. This approach exploits
the incidental agreement of multiple cues where methods like
voting and fuzzy logic can be used for deciding on agreement.
This approach has been widely used in cases where a precise
mathematical model of the controlled process is not available
[15]–[18]. The following section introduces voting and fuzzy
logic-based cue integration which are used to design a tracking
system. The objective of the system is to track a portion of the
image occupied by the end-effector of a robotic manipulator.
The center of this region is then used to control a pan-tilt unit to
keep the end-effector in the center of the image.

A. Fusion Using Voting Schema

Voting has been widely used in machine vision in various
forms, the most popular probably being the Hough trans-
form [19]. In computer science, it has been used for reliable
computing, where multiple sources were combined according
to simple approval rules [9], [15]. Voting enables increased
reliability of an integrated system consisting of a number of
modules/cues where the reliability of each individual module
varies significantly over time.

The main advantage of voting mechanisms is that they can op-
erate “model-free” with respect to the individual cues. In prob-
abilistic fusion, a model of the form encodes the
relationship between visual cues and particular objects/patterns.
In voting, a very simple or no model is used for fusion. In prin-

ciple, each estimator may be a simple classifier that votes for a
particular attribute or against it (binary voting).

A common estimation/classification space or a (voting do-
main), is usually introduced in voting where each cue esti-
mator is a mapping

(1)

The voting domain may for example be the 3-D space, the image
plane or alternatively, the control space such as the joint space
( ) of a manipulator. In terms of voting, there are several pos-
sible methods for selection/integration. If each of thecue esti-
mators ( ) produce a binary vote for a single class (present/not
present) a set of thresholding schemes can be used

Unanimity:
Byzantine:
Majority:

where represents a particular class. If each cue estimator is
allowed to vote for multiple classes, and the maximum vote is
used to designate the final classification, the voting scheme is
denoted consensus voting and the winning classis chosen
according to

(2)

where is a combination method, which for example could be
a simple addition of the votes or a weighting function that takes
the relative reliability of the cues into account, i.e.,

(3)

A general class of voting schemes, known asweighted con-
sensus voting, is defined by the following definition.

Definition 1 ( -out-of- voting): An -out-of- voting
scheme, , where is the number of cue estima-
tors, is defined in the following way:

if

otherwise

(4)

where

if
otherwise

for (5)

is the voting function and is a function for
combining the confidence for each estimator.

In our implementation, a cue estimator can give a vote for
a given class if the output of the estimator is . If or
more cues vote for a given class, the value is estimated using
the fusion method . If more than cues are compatible, a
weighted estimate is produced by the structure function. The
motivation for not using simple averaging is that the different
cues might have different levels of uncertainty associated which
can be taken into account by the fusion operator.

Each cue estimator provides a binary estimate/answer. If we
assume the probability of correct classification is, then the
estimator can be modeled as a Bernoulli random variable. The
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Fig. 3. Examples of membership functions—every fuzzy set can be
represented by its membership function.

combined/fused estimate is a combination of votes
which is a regular combination. The fused estimate ( ) will
thus have a binomial distribution . The assumption
of uniform detection probability is in general unrealistic, but it
may be used for an overall design. A more detailed analysis can
be used for design of the fusion mechanism.

We have implemented weighted consensus voting where
two-out-of-five cues are needed for the fusion. The response
of th cue is weighted by a factor where . To
enable the flexibility, the weights are changed dynamically
depending on the performance measure of the individual cue.
For each cue, the image position of the tracked region is
estimated. As the performance measure, we use the difference
between the position as estimated by individual cue and the
position estimated by each of the integration techniques. The
cues are weighted proportionally to this measure.

B. Fusion Using Fuzzy Logic

The main concept of fuzzy set theory is the notion of a fuzzy
set , which is completely determined by the set of ordered pairs

(6)

where denotes the universe of discourse for the setand
is an element of . The membership function (Fig. 3) gives
a membership value for each element: .

In our implementation, the membership function was a mo-
notonously increasing function [see Fig. 3(b)]. The membership
function for a cue and a particular image position was generated
with a look-up table where the value of membership depended
on a number of neighborhood pixels in a 55 kernel that gave a
response to that particular cue (for 0 pixels occupied ,
for 25 pixels occupied ). As the composition operator,
we use the min–max operator defined by Zadeh [20]

(7)

where is the output of th cue estimator.

III. V ISUAL CUES

The following section presents visual cues used in the inte-
gration process (see Fig. 4).

Fig. 4. Fusion mechanism.

A. Color-Based Segmentation

Color detection is based on thehue (H) andsaturation(S)
components of the color histogram values

(8)

Color training was performed off-line, i.e., thea priori known
color is used to compute its distribution in the– plane. In the
segmentation stage, all pixels whose hue and saturation values
fall within the set defined during off-line training and whose
brightness value is higher than a threshold are assumed to belong
to the tracked object.

B. Sum of Squared Differences (SSD)

An experimental study of different correlation methods,
performed by Burt et al. [23] showed that a direct correla-
tion method and SSD perform nearly as well as the more
complicated methods (mean-normalized correlation, vari-
ance-normalized correlation, etc.). An abundance of efforts
has been devoted to using different optimization techniques
for speeding up the correlation [25], [24]. Motion estimation
in general involves SSD minimization where the minimization
process is performed by using a discrete search over an image
region assumingintensity constancybetween successive image
frames

(9)

where is spatial image position of a point, is
the image intensity, denotes the image velocity at that
point, and is the number of parameters of the velocity model.
Motion parameters are estimated by minimizing the residual

(10)

where the summation is performed along the feature window
(region of interest) and is a weighting function that is, in
the simplest case, . In our implementation, we used
a Gaussian-like function to reduce windowing effects. To speed
up the process, we used optimization techniques as proposed
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in [25]: loop short-circuiting, heuristic best place search begin-
ning, and spiral image traversal pattern.

C. Edge Tracking

The main objective of our experiments is to track a robot’s
end-effector. We use a parallel jaw gripper and the most simple
model is to consider the jaws as pairs of parallel lines. Therefore,
a simple edge operator (Sobel) was used to detect clusters of
parallel lines.

D. Blob Motion

In our implementation, image differencing is performed as
the absolute difference of the intensity component () in con-
secutive images

(11)

where is a fixed threshold and is the Heavyside function
[32]. The scene is segmented into static and moving regions
since only objects having a nonzero temporal difference change
position between frames. Since the motion cue responds to all
moving image regions we compensate for the egomotion of the
camera head itself before computing the motion cue.

E. Disparity

The fundamental problem of disparity computation is finding
the corresponding elements between two or more images. This
can be done as proposed in [26], by matching small regions
of one image to another based on intrinsic features of the re-
gion. These methods can be further classified depending on
whether they match discrete features between images or corre-
late small area patches [27]. In our implementation we use com-
bined corner and edge detector proposed by Harris and Stephens
[28]. They proposed the followingcorner response function :

(12)

where is a constant, is the determinant, and is the
trace of matrix , which is a 2 2 symmetric matrix of spatial
derivatives

(13)

is positive for a corner region, negative for an edge region, and
small for a flat region [29]. We have used the knowledge of the
epipolar geometry during the matching process together with
uniqueness and ordering constraints. To get rid of the outliers,
a maximum-likelihood cost function is used to find the most
probable combination of disparities along a scan line.

IV. V ISUAL SERVO CONTROL

The most commonly used approach in image-based visual
servo control is to control the motion of the robot to servo the
image plane features toward to a set of desired locations [3], or
to achieve a defined relationship of feature characteristics [21],
[22]. In general, for feature points, the relationship between

Fig. 5. Robotic workcell. In the present configuration, no specialized vision
hardware was used.

feature velocities in image plane and velocities in camera frame
are expressed by the following equation:

...

...
...

...
...

...
...

(14)

In our experiments, we assume a gripper that moves in Carte-
sian space. Translational and rotational velocities of the gripper
frame origin are and , respectively. The relationship be-
tween two velocity screws: one expressed in the camera frame
and second expressed in the robot frame is represented by

(15)

where

(16)

where is a skew-symmetric matrix, and are the rota-
tion matrix and translation vector associated with the gripper-to-
camera homogeneous transformation. Combining (14) and (15),
we obtain

(17)

where is image Jacobian. The task is to move the robot in such
a way that the image distance between the current position of a
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(a)

(b)

(c)

Fig. 6. Three configurations used for visual tracking experiments: (a) the configuration used in Experiment VI-A.1; (b) the configuration used in Experiment
VI-A.2; (c) the configuration used in Experiment VI-A.3.

point and the goal position is minimized. Considering the
image velocity of each point to be proportional to the difference
vector between the current and the goal position, we can write

(18)

where is a scalar that controls the convergence rate of the
servoing. From (17) and (18) follows

(19)

Image Jacobian is usually not a square matrix and therefore the
pseudoinverse (left or right) is used in order to compute the ve-
locity screw of the manipulator [22].

Our tracking system is used to obtain continuous visual feed-
back in two different settings as follows: 1) in a tracking task
where the objective was to keep the target in the center of the
image, and 2) in a simplepick-and-placetask.

V. SYSTEM SETUP

We used a pair of color CCD cameras arranged in a stereo
setting as shown in Fig. 5. The cameras (mounted on a pan-tilt
unit) view a robot manipulator (PUMA560) and its workspace
from a distance of about 2 m. The optical axes of the cameras
are parallel to each other with a baseline of 20 cm. The size of
the original image is 320240 pixels and the focal length of
the cameras is 6 mm. The implemented system is running on a
regular 233-MHz Pentium.

VI. EXPERIMENTAL EVALUATION

The aim of the experiments was to investigate the hypothesis
that fusion of multiple visual cues can lead to increased overall
reliability of the tracking system compared to a system that em-
ploys just one of the cues.1 For that purpose we have tested
each cue separately as well as the proposed integration tech-
niques in scenes with different level of clutter and complexity.

1This hypothesis has been proven in a different formulation in [33].
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(a)

(b)

Fig. 7. Experimental setting. In the present configuration, no specialized vision hardware was used.

The tracking system was evaluated in two different settings as
follows.

1) Visual Tracking : The camera system was used to actively
track a robot end-effector with respect to various levels of
background clutter and partial occlusion. Three different
scenarios can be seen in Fig. 6. The objective of this ex-
periment was to evaluate the performance of individual
cues and proposed integration methods.

2) Visual Servoing: The objective of this experiment was
to test the performance of the developed visual tracking
system in a visual servo system. Voting-based integration
was used for a pick-and-place servo task (see Fig. 7).

A. Visual Tracking

A control algorithm was designed in order to keep the end-ef-
fector in the center of the image as presented in the Appendix.
A series of tracking experiments has been carried out. The re-
sults are presented for a sequence of 30 frames. In order to ob-
tain the comparison between the different approaches, we first
recorded few sequences of manipulator motion. Each sequence
was then sampled so that every tenth frame was used. The size
of the tracked region was 6060 pixels.

We evaluated the performance of each cue estimator as well
as the result obtained by voting and fuzzy logic-based integra-
tion. To present the quality of tracking we used the measure of
therelative error. To express the relative error we used the dis-
tance (in pixels) between the ground truth position values (that
were obtained off-line) and the position values obtained with
cue estimators and the integration modules, respectively. To es-
timate the ground truth, we used the tool-center-point (TCP) to
be our reference position. Three images from each sequence are
shown in Fig. 6. The tracking performance for each of the cue

estimators and the integrated cues are shown in Fig. 8. The re-
sults are presented and summarized in Tables I–III through the
relative error using the mean and the standard deviation of the
distance error.

Experiment 1: The manipulator was moving on a straight
path for about 100 cm [Fig. 6(a)]. The distance of the manip-
ulator relative to the camera was increasing from about 75 to
110 cm. The rotation of the sixth joint was 20. The background
was not cluttered but all the objects in the scene had the same
color properties as the end-effector. The objective was to test
the color segmentation and SSD in order to evaluate whether
the mentioned cues perform better in a regular scene with a few
challenges.

It is evident that most cues have a reasonable performance
[Fig. 8(a)]. The relative error is presented in Table I. The dis-
parity cue is the only cue with significant deviations (due to
the lack of texture on the target object). From the error graph
for values, the uniform performance is apparent. From the
error graph for values, we observe that the higher weight
for the correlation cue implies that the voting scheme re-
lies heavily on this particular cue, i.e., the correlation and
voting-based fusion provide similar results. Overall tracking
with a standard deviation of 2 pixels is very good. The bias
trend in errors for the values is due to the motion in depth.
The fuzzy integration shows a larger bias, but as most of the
cues are in agreement, the variation over the sequence is still
not significant.

Experiment 2: A complex background will introduce strong
differences between image intensities in consecutive image
frames. This kind of setting will mostly affect the SSD since
the background variations strongly influence the appearance
of the template. The motion of the manipulator was as in the
previous experiment.
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(a)

(b)

(c)

Fig. 8. Distance error in theX-horizontal (left image) andY -vertical (right image) direction for the modules during (a) Experiment VI-A.1; (b) Experiment
VI-A.2; and (c) Experiment VI-A.3. For visual clarity, the results from the edge and disparity cues are not presented. (“Frame Nr” represents the frame number.
Section VI-A explains how image sequences were obtained.)

We introduced a significant background clutter in the scene
[Fig. 6(b)]. The distance errors in -horizontal and -vertical
direction are presented in Table II and the performance is shown
in Fig. 8(b). It is evident from the graphs that the correlation

method is likely to fail in the cases where the variations in tem-
plate appearance are significant. Although very good and fast
cue, in the cases where the environment is challenging, this cue
is not reliable enough. Significant deviations in the response of
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TABLE I
MEAN DISTANCE ERROR ANDSTANDARD DEVIATION FOR EXPERIMENT IV-A.1

TABLE II
MEAN DISTANCE ERROR ANDSTANDARD DEVIATION FOR EXPERIMENT IV-A.2

TABLE III
MEAN DISTANCE ERROR ANDSTANDARD DEVIATION FOR EXPERIMENT IV-A.3

this particular cue, reduces the weights assigned to this cue. A
dynamic change of weights makes voting superior to fuzzy fu-
sion which does not offer added robustness in this situation. This
experiments shows an obvious need for a cue integration.

Experiment 3: The third experiment includes multiple
moving objects and partial occlusion of the target [Fig. 6(c)].
The independent motion will confuse the simple motion de-
tector, as it is used without a windowing function (obviously, it
is possible to introduce validation gates to reduce this problem).
The occlusion will at the same time result in failure for the
correlation tracker, which again demonstrates the need for
integration to ensure continuous tracking. The distance errors
are presented in Table III and the performance in Fig. 8(c)
where the error graphs clearly illustrate how correlation and
color cue fail. It is evident here that this failure is propagated
almost unattenuated through the fuzzy tracker, which indicates
that fuzzy approach used here is inappropriate for the type
of cue integration pursued in this work. For implemented

weighted consensus voting, the consensus of most cues allows
the system to cope with both types of error situations which is
reflected in the limited variation over the image sequence and
the best overall performance.

B. Visual Servoing

Based on the previous experimental evaluation, we chose the
voting-based integration to design a tracking system which pro-
vided the visual feedback in a number of robotic tasks. Here, we
present two tasks as follows.

1) Pick-and-place task: The task is to visually servo the
robot to pick up an object (can) on the table [see Fig. 7(a)].
In the first frame, we manually initiate a point in the image
(a point on the end-effector) and the region around this
point is continuously tracked in left and right camera im-
ages during the servoing sequence. The size of the region
was 5 5 pixels. The final position of the tracked point is
knowna priori. The error between the current and desired
point position in the image is used to compute the velocity
screw of the robot using (19). Since only three degrees of
the robot are controlled, it is enough to track one point in
each image in order to compute the image Jacobian [22].

2) Positioning task: The task is to visually servo the robot
in order to place the wheels of the car parallel to the road
[see Fig. 7(b)]. Again, we manually initiate the two points
in each image which are then continuously tracked during
the servoing sequence. The control is done in a similar
fashion as in the previous example.

VII. CONCLUSION

Visual servoing has a tremendous potential for a wide variety
of applications, but to gain acceptance a key factor is robust
operation in realistic settings. This has been a major obstacle
for widespread use of vision. Fusion of information to achieve
robustness is a well-known technique. Most earlier approaches
have used a Bayesian approach to integration as it provides a
nice theoretical framework for analysis and design. Unfortu-
nately, the Bayesian approach requires good models in terms of
conditional probabilities and prior information that sometimes
is hard to provide.

This paper has discussed methods for integration, which are
based on weak or model-free approaches to integration. In par-
ticular, voting and fuzzy logic have been studied. The basic
methods have been outlined and it has been described how the
methods may be used for integration of visual cues for image-
based tracking. In this context, the image space has been used
for fusion of visual cues. For real-time visual servoing, a number
of relatively simple cues have been used for experimentation to
evaluate the potential utility of cues that individually are inade-
quate in realistic settings. The results show that integration using
weak methods enables a significant increase in robustness. The
methods clearly demonstrate that voting in particular provides
performance that is better than any of the individual cues. The
evaluation has included laboratory settings that pose a limited
challenge and settings that have explicitly been designed to pro-
vide a low signal-to-noise ratio so as to generate unreliable cue
estimates.
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The presented methodology address the general problem of
multicue figure ground segmentation. This problem only makes
sense in the context of tasks and for well-defined objects. A
problem that has not been addressed in this paper is model selec-
tion to enable segmentation, which for typical systems will re-
quire use of attention methods for selection and indexing. In ad-
dition, the presented method has assumed that a blob-like recog-
nition scheme is adequate for tracking and servoing. In many
tasks, more detailed models must be deployed to enable accu-
rate pose control. Both of these problems are being addressed
as part of our current research effort.

APPENDIX

A. Control Algorithm

Under perspective projection, the velocity of a pointin the
camera frame can be associated to the velocity of a pointin
the image plane as [22]

(20)

where represents velocity screw

(21)

and is the focal length of the camera. The objective of our
experiment was to control the pan-tilt unit in order to keep
the target in the center of the image. We relate the differential
change in the image coordinates with the differential change of
pan and tilt angles in the following way:

(22)

The error signal is defined as the difference between the target
current position in the image and the center of the image

(23)

where and the image coordinates of the target. We used a
proportional control to recenter the target in the image, defined
as

(24)

where is a constant.
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