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Abstract—In this paper a sensor fusion scheme, called triangu-
lation-based fusion (TBF) of sonar data, is presented. This algo-
rithm delivers stable natural point landmarks, which appear in
practically all indoor environments, i.e., vertical edges like door
posts, table legs, and so forth. The landmark precision is in most
cases within centimeters. The TBF algorithm is implemented as a
voting scheme, which group sonar measurements that are likely to
have hit a mutual object in the environment. The algorithm has
low complexity and is sufficiently fast for most mobile robot appli-
cations. As a case study, we apply the TBF algorithm to robot pose
tracking. The pose tracker is implemented as a classic extended
Kalman filter, which use odometry readings for the prediction step
and TBF data for measurement updates. The TBF data is matched
to pre-recorded reference maps of landmarks in order to measure
the robot pose. In corridors, complementary TBF data measure-
ments from the walls are used to improve the orientation and po-
sition estimate. Experiments demonstrate that the pose tracker is
robust enough for handling kilometer distances in a large scale in-
door environment containing a sufficiently dense landmark set.

Index Terms—Localization, pose tracking, sensor fusion, sensor
modeling, sonars.

I. INTRODUCTION

I N THE authors’ opinion the sonar is an attractive range
sensor. It is cheap compared to other popular range sensors

like laser scanners and range cameras. While the field of view
of a laser scanner is usually limited to a plane, a set of sonars
placed at strategic positions on a mobile robot gives a complete
coverage of the surrounding world. Moreover, if disregarding
outliers caused by specular reflections and cross talk, a standard
Polaroid 6500 sonar sensor gives quite accurate range readings
( 1%).

The bad angular resolution and the frequent number of out-
liers in sonar data can be overcome using different techniques
[1], [2], [5]. In advanced systems, arrays of sonars are being
used for listening to their own and the other sensors echoes in
order to find object positions through triangulation. The echoes
are then fast sampled (1 MHz) and a large amount of signal
processing is performed to obtain very accurate range readings,
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which is a prerequisite if triangulating objects with a small base
line between the sensors. In this kind of research, high confi-
dence classification of points, edges, and planes is reported [10],
[12]. The accuracy in position of the classified objects is claimed
to be within millimeters, where the error comes down to being
dependent on environmental factors like temperature, humidity
and wind fluctuations.

An appealing method, which is presented in this paper, is
to manage with less signal processing, i.e., less range accu-
racy, and still be able to reliably detect discriminating features,
like vertical edges. The method we propose is called triangula-
tion-based fusion (TBF) of sonar data, and buffers sonar scans
that are triangulated against each other using a simple and low
complexity voting scheme. Since the sonar scans in the buffer
are taken from different robot positions, the base line between
the sensor readings being triangulated are only limited by the
odometry drift. Hence, the range accuracy is not of major impor-
tance in this approach. This paper contains a detailed description
of the TBF algorithm as well as a case study of how it can be
applied for robot pose tracking. The paper is organized as fol-
lows.

Section II contains a detailed description of the TBF algo-
rithm and discusses implementation issues. It is also explained
how the TBF data uncertainty can be obtained using local grid
maps. A real world example, where a sonar equipped mobile
robot operates in a living room, is used throughout the section
to illustrate the characteristics of the TBF algorithm.

Section III describes how the TBF algorithm can be applied
to robot pose tracking when using an extended Kalman filter.
For related work, see [3], [12], and [16]. A lot of details, such
as tuned parameter values, are reported in order to document the
implementation of the pose tracker. The idea is to use TBF data
that have been validated against reference maps of TBF data
for subsequent measurement of the robot pose. In corridors, the
method is complemented with TBF data from the walls. A large
scale indoor environment is used in the experiment to demon-
strate the strength and weaknesses of the approach.

II. TBF ALGORITHM

TBF of sonar data is a novel a computationally efficient
voting scheme for grouping sonar readings together that have
hit a mutual vertical edge object in the environment. The
sonars are assumed to be placed in the same horizontal plane
and the data obtained from the sensors is interpreted in the
two-dimensional world representation given by this plane. The
performance of the algorithm is illustrated in Fig. 1, which
shows a complete 3-D model of a 95 m living room which
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Fig. 1. The TBF algorithm is a voting scheme that solves a data association
problem, i.e., it clusters sonar measurements that originate from a mutual edge in
the environment. This figure illustrates how the TBF algorithm performs when
a sonar equipped Nomad 200 robot traverses a living room. All data presented
in the figure are real.

Fig. 2. Basic triangulation principle of an edge. Given two sonar readings from
an edge, the positionT of the edge can be obtained by taking the intersection
between the beam arcs.

was hand measured within centimeter precision. The thick line
on the floor is the robot trajectory and the clusters of lines
represent sonar readings that have been grouped by the TBF
algorithm. The mutual end point for each line cluster represents
an object position estimate delivered by the TBF algorithm.
As seen from the figure, the TBF method is good at detecting
vertical edges in the environment, for instance door posts,
shelf corners, table legs and so forth. Before discussing the
TBF method in detail, we will spend the following section on
discussing the basic component used in the TBF algorithm, i.e.,
triangulating two sonar measurements.

A. Basic Triangulation Principle

Consider two sonar readings taken from different positions
during robot motion (Fig. 2). The readings are assumed to orig-
inate from a vertical edge at position in the en-
vironment. If only one of the range readings is considered, the
sonar physics limit the object position to be somewhere along
the associated beam arc.1 When using the information from both
sonar readings we can get the object positionby computing

1Neglecting the presence of side lobes.

Fig. 3. Sliding window for storage of sonar readings. Each column contain a
complete sonar scan taken during robot motion.

the intersection point between the two beam arcs.
The following equations have to be solved:

(1)

(2)

Here denotes the sensor position,is the range reading,
is the sensor heading angle, andis the opening angle of the

center sonar lobe. For the sonar type used in this presentation
(Polaroid 6500), is about 25. The solutions of (1)
with can be written

(3)

(4)

where

False solutions in (3) and (4) are removed when veri-
fied against (1) and (2).

B. Implementation

Consider a mobile robot equipped withsonars distributed
at arbitrary positions in a horizontal plane. The TBF algorithm
is then implemented as a sliding window (Fig. 3) withrows
and columns. Each entry in the window contains sonar
data necessary for performing a triangulation, i.e.,

Each column in the window represents a complete sonar scan
taken during robot motion. The right column represent the most
recent sonar scan, and the sliding window is updated with a new
scan whenall sensor position stamps with respect to the old scan
have moved more than a certain minimum distance m.
Depending on the sonar scan sampling frequency (2–3 Hz) and
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Fig. 4. Pseudocode for the TBF algorithm. Each step in the right column is explained in detail in the text.

the current robot speed (0–0.5 m/s), this distance will vary, typ-
ically between 0.05–0.25 m. When a new scan is inserted into
the window, the oldest scan is shifted out (left column). Hence,
the column size of the sliding window is kept constant to
sonar scans. In the present implementation is used. Be-
tween each update of the sliding window, the TBF algorithm
searches for triangulation hypotheses between the right column
(new data) and the rest of the window. From a programming
point of view, the TBF algorithm is implemented according to
the pseudocode given in Fig. 4. The different steps in the pseu-
docode have been numbered in the right column, and are ex-
plained in detail below.

1) Loop over the last column in the sliding window, i.e., the
most recently acquired sonar scan. Let us from here on
consider the first lap in this loop ( ). This means that
we consider the most recent reading taken with sonar 1,
i.e., .

2) Check if the range reading possibly could be from
an edge. From experiments we have concluded that a
Poloroid 6500 sensor is able to detect edges up to at least
5 m. Hence we check that m.

3) Form a set that will contain all the readings which
should be associated with the reading . Initially

.
4) Initialize a zero hypothesis about the object

that was hit by the reading . The zero hypothesis
correspond to an object position estimate
at the middle of the corresponding beam arc.

5) Initialize variables that keep track of the maximum de-
viation between the triangulation measurements.

6) Loop over all but the last column in the sliding window
to find triangulation partners for the reading . A tri-
angulation partner is only approved if it fulfills three
constraints (step 7).

7) First repeat the check done in step 2 for the range reading
, second check that the current object position esti-

mate belongs to the sonar beam of , and third that
the expected range readingdoes not differ too much
from the actual range reading . The allowed differ-
ence decreases with the number of suc-
cessful triangulations that have been done (step 8).
In our implementation m.

8) If this step is reached, there is a high probability that the
readings and originate from the same object.
Hence, it is worth using (1)–(4) to check if an intersec-
tion point exists.

9) For a successful triangulation (step 8), add the reading
to the set , recursively update the object position

estimate and finally increase the hypothesis counter
(the number of successful triangulations done so far).

Note that if the zero hypothesis is just replaced
by .

10) Update the maximum deviation between the successful
triangulations done so far.

11) Only consider hypotheses supported with at least one
successful triangulation.

12) If the maximum deviation between the successful trian-
gulations is large ( m in our implementation)
we classify the position estimate as belonging to an
object in the environment which isnot well represented
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as an edge, for instance a wall. This classification is done
by switching the sign of the variable. The sign switch
secures that triangulation points with high positive
values will have a high probability of originating from
an edge such as door posts, shelf edges, table legs etc.

13) Use the set of grouped readings to compute a refined
position estimate and the associated covari-
ance matrix . This step is discussed in detail in the
next section.

14) Save the triangulation point , and optionally
the set .

15) Go back to step 1 and increase.
Continuing commenting on the TBF code in Fig. 4, it is noted

that it generates at most triangulation points between each up-
date of the sliding window. Each triangulation point correspond
to a position of an object that was hit by one of the readings in
the last column of the sliding window. At line 6 in the TBF code
(for ), the window is swept backward column
wise to find triangulation partners for a particular element in
the last column. The reason for not sweeping the columns in
forward direction is that it is more probable that nearby sonars
scans have hit a mutual object than scans that are further apart.
Hence a zero hypothesis (step 4) is more probable to evolve into
a correct 1-hypothesis ( ) if first considering the most ad-
jacent sonar scan. In step 13 of the TBF code, the triangulation
point is refined by a local grid map computation. In
this computation the uncertainty of the estimate is also obtained.
The next section describes how this is done in detail.

C. Refining a Triangulation Point Using a Local Grid Map

Steps 2–10 in the TBF algorithm provide a triangulation point
estimate that has been formed by recursively taking the mean
value of beam arc intersections (step 9). It is clear that this is
not the best way to compute this estimate.2 Moreover, the un-
certainty in the position is unknown. What is good, though, is
that the triangulation point produced by steps 2–10 is a good ini-
tial guess of the true position. Hence, by centering a local grid
map around this initial guess we can recompute the triangulation
point and its uncertainty by using a sonar sensor model. In the
present implementation a simple sensor model is used for this
purpose, where the range readingis assumed to be normally
distributed around the true rangeas

m

The first standard deviation term, , is in agreement with
what the data sheets specify for the a Polaroid 6500 sensor
and the extra centimeter is used to cover up for the uncertainty
between the sensor positions where the readings were taken,
caused by odometry drift. Concerning the angular modeling of
the sonar, an uniform distribution is used, i.e., an object is as-
sumed to be detectable anywhere in the main lobe with equal
probability, but not detectable at all outside the main lobe. This
model is supported by experiments done with a sonar pulse in-
teracting with an edge and is documented in [21].

As stated above the local grid map is centered around the ini-
tial position estimate provided by steps 2–10 in the TBF algo-

2But it is cheap and often gives surprisingly good estimates!

Fig. 5. Refined triangulation point estimate using a local grid map. The beams
represent grouped sonar readings by the TBF algorithm. This triangulation point
actually corresponds to one of the shelf corners from the experiment presented
in Fig. 1.

rithm. The grid size depends on the quality () of the initial
guess. For triangulation points with , a grid
map with 0.01-m resolution is used.3 For points with , a

grid map (cell size 0.02 m) is used. Hence more compu-
tational effort is put on estimating triangulation points supported
by many readings. By using the sensor model, the grouped sonar
readings can be fused in the grid map. Treating the readings as
independent, this fusion process is straightforward (pure mul-
tiplication in each cell). An example of a grid map with fused
sonar readings is shown in Fig. 5. By using the cell with max-
imum probability as a triangulation point estimate , the
covariance of this estimate is readily obtained as

where is the position corresponding to cell and
is the associated probability.

D. Computational Complexity

The computational complexity of the TBF algorithm essen-
tially relies on steps 8 and 13 (see code). Step 13, the local grid
map computation, is by far the most expensive step and is exe-
cuted for each found triangulation point. The complexity of the
grid map fusion process is , where is the number
of cells along a side of the grid map, but can be reduced by trun-
cating the range sensor model after a couple of standard devia-
tions. When running the TBF algorithm on a 450-MHz PC, step
13 takes on average 2.6 ms to process. The TBF algorithm can of
course be speeded up by simply disregarding step 13, but then it
will provide less accurate triangulation point estimates, formed
by taking recursive means of intersection points. Furthermore,
the uncertainty in these estimates will not be available. Under
these circumstances, the complexity of the algorithm depends
on step 8, i.e., triangulating two sonar readings. This operation
can be done in less than a 100 operations and takes about 10s
to process on a 450-MHz PC. Note that step 8 is only performed
when necessary (step 7).

3The grid size can probably be reduced, but this is the size we use at the mo-
ment. The grid size is limited from below by the grid resolution and the accuracy
of the initial guess.
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Fig. 6. The experiment in Fig. 1 from a top view. The triangulation point
estimates are plotted with their uncertainty ellipses. Fig. 7 shows a closeup of
the dashed rectangle at one of the bookshelf corners.

During a complete iteration of the TBF algorithm (step 1–16),
the sliding window is swept times (step 1 and 6). Hence step 7
is executed times (disregarding step 2). This is usually
not a real time problem for a moderate size window ( ,

). However, when increasing the size of the window,
the complexity explodes. This will for instance happen when
increasing the number of sonars (), or worse, using multiple
echoes from each sonar. To circumvent this problem, it is pos-
sible to store the sonar scans in a coarse grid map (0.5-m reso-
lution) rather than in a sliding window. Each sonar reading
is then placed in the cell corresponding to the mid beam posi-
tion (mentioned zero hypothesis in step 4)and in the adjacent
eight cells. Each cell can then be treated as a sliding window of
its own. For each new reading , the mid beam position of

is then used to find the grid cell containing all the adjacent
readings. This reduces complexity substantially.

E. Experiments

In the introduction of this section, a real world experiment
with the TBF algorithm was presented. Let us take a closer look
at this experiment. In Fig. 6, a top view of Fig. 1 is shown. From
this view it is clear that the TBF algorithm is good at detecting
vertical edges in the environment. Only triangulation points ful-
filling and m are shown in this plot,
where means the spectral radius of the covariance matrix

. Besides this “high” thresholding it may seem like that some
obvious edges are missed, for instance the sofa table, but then
one has to consider the height of the objects. The sonars we use
only have a beam width of 25and hence the sight in vertical di-
rection is rather limited. The sofa table is usually never detected
by the sonars, because of its low height. Moreover, the sonars
we use only give the first echo response back. With the ability to
detect multiple echoes, more edges could have been seen. An-
other fact that is seen from Fig. 6, is that the TBF algorithm is
best at detecting edges when the robot moves side passed them.
This is because of the base line between the readings then come
in a favorable orientation with respect to the object being trian-
gulated.

In Fig. 7, a close up of the dashed rectangle of Fig. 6 is shown.
From this figure it is clear that the edges are not just detected

Fig. 7. Close-up of dashed rectangle in Fig. 6. The ellipses in the picture
represent the uncertainty, two standard deviations in size, of a triangulation point
produced by the TBF algorithm. From this picture it is clear that the accuracy
of the triangulation points can reach centimeter level. One of these ellipses
originate from the refined triangulation point computation shown in Fig. 5.

once, but several times when the robot moves along. The pre-
cision of the estimates can be seen to be within centimeters.
In a general situation the precision depends on the distance to
the object as well as the base line between the sonar readings.
Preferably, one would like to have as large base line as possible.
Since the TBF algorithm passively stores and analyzes sonar
scans there is no base line restriction, except for the odometry
drift between the scans. This makes it possible to produce trian-
gulation points with acceptable precision (0.1 m) using sonars
with low range resolution. In a previous implementation of the
algorithm, a 25-mm resolution in the sonar data was used suc-
cessfully. In the experiments presented in this paper the sensor
resolution is however at millimeter level, though not calibrated
to that level.

Other interesting facts, which are not shown in the experi-
ment presented here, is that the TBF algorithm is very efficient
for removing outliers in sonar data such as specular reflections
and cross talk [21], furthermore, moving objects are efficiently
rejected by the method. This has to do with that the algorithm
is being built on a static world assumption. Triangulations on
a moving target which in the algorithm is assumed to be static
will clearly not get much support when it comes to voting ().

III. ROBOT POSETRACKING

In this section we present a case study of how the TBF algo-
rithm can be used for robot pose tracking. However, to be able to
track the position, a reference map is needed. In the first section
we therefore discuss how such map could be built manually. In
fact the TBF data presented in the previous section was actually
generated with this map building strategy.4

A. Map Acquisition Using Natural Point Landmarks

Consider a robot that is manually operated around in an in-
door setting which it later should operate autonomously in. The
TBF algorithm is supposed to be active during the movement of

4Please do not confuse this step with what popularly is called SLAM (simul-
taneous localization and map building). This is a map built with human robot
interaction.
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Fig. 8. Using positionsp ; p ; p ; . . . that are known in both (R)obot
coordinates (odometry) and (W)orld coordinates (hand measured), a recorded
landmarkL can be translated to world coordinatesL .

the robot. Each time a triangulation point it detected that satis-
fies the thresholds and m, the corre-
sponding position is registered as anatural point landmark .
To limit the number of natural point landmarks, we keep track
of triangulation points that cluster (closer than 0.1 m). The clus-
tered triangulation points are regarded asonenatural point land-
mark by only keeping the most recent detected one. Because of
the odometry drift, it is important not to record landmarks over
too large distances, otherwise landmarks collected at the begin-
ning of the robot motion would be represented in a significantly
different coordinate system compared to landmarks collected at
the end of the motion. A suitable way to represent all landmarks
in onecoordinate system with acceptable precision, is to intro-
duce a (W)orld coordinate system, and then measure up some
positions that cover the area the robot
is going to operate in (Fig. 8). By placing the robot at one of
these positions, let say , the corresponding (R)obot coordi-
nate can be obtained from odometry information. The robot
can then be moved to another position, let say , and while
this is done the TBF algorithm records natural point landmarks.
When the robot reaches , the corresponding robot coordi-
nate is given from odometry information. The collected
natural point landmarks can then be converted into world co-
ordinates since the transformation between robot and world co-
ordinates is known once , and are known.
The distance between the positions and should not be
too long because this could cause a significant odometry drift
effect between the landmark positions. In our implementation
we use a separation distance of about 4–7 m, but this distance
is dependent on the kind of ground surface the robot moves on
as well as the odometry precision of the robot. Summing up,
the procedure of moving the robot between pairs of positions

can be repeated so that a complete ref-
erence map of landmarks is obtained.

B. Pose Tracking

Consider a robot navigating in an indoor environment with
the TBF algorithm running in the background, and that a refer-
ence map of landmarks is
available in world coordinates. The robot position in world coor-
dinates is denoted and the orientation is captured

by an angle between the world- and robot--coordinate-axis
(see Fig. 8). Hence therobot poseis captured by the state vector

The pose tracking problem studied here is to maintain an esti-
mate of the state while the robot is moving. For that purpose
we propose an extended Kalman filter operating on the non-
linear state model

(5)

(6)

(7)

(8)

Here the input signal influence how the robot is moving.
The robot pose measurement is obtained from triangulation
points that have been validated against the reference map
(Sections III-B-1 and III-B-2). Finally, is a partial measure-
ment of the robot pose based on triangulation points that have
been matched against corridor walls (Section III-C). Assuming
white and uncorrelated noise, the extended Kalman filter for the
robot pose model becomes

prediction:

(9)

(10)

measurement update:

(12)

(13)

(14)

(15)

Let us now consider these equations in more detail. The non-
linear function that appears in the odometry model
(9) can for a synchro-drive robot be taken as

where is the relative distance movement between time step
and and is the change in motion direction. The

input signal of the Kalman filter is a vector containing these
odometry signals, i.e., . From prediction (9)
it is seen that the orientation angleis predicted to remain con-
stant. A more accurate robot model would include an extra state
representing the drift in orientation. In this approach, the ori-
entation drift is assumed to be estimated and compensated for
enough by many triangulation point measurements.
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In (10), the state covariance is predicted. Here it is impor-
tant to model the process noise matrix appropriately. Prefer-
ably should be chosen so that if the robot moves from point

to point with no other sensing than odometry, then the
state covariance prediction when reaching pointshould be
the same independently of the odometry sampling frequency.
The matrix should also be chosen so that the predicted state
covariance become realistic not only over short distance move-
ments, but also for long distances. In [11] it is described how to
model the process noise matrix for a differential-drive robot.
This model technique can be extended to also encompass a syn-
chro-drive robot. In the experiments presented in Section III-D
a synchro-drive Nomad 200 robot is used, and hence the process
noise matrix is modeled based on this fact [7]. Three param-
eters need to be set in the synchro-drive model, and
where

In our implementation these parameters are set to

m m

rad rad

rad m

The parameter reflects the variance in the distance traveled
while and captures the variance in motion direction when
the robot is steering and moving, respectively. The parameter
choices are conservative to be sure to capture the odometry drift,
for instance m /m means a drift of about 0.07 m/m.

From (10) and (15) it is evident that the prediction part of the
Kalman filter will increase the state covariance matrixwhile
the measurement part will decrease it. When decreases,
the Kalman filter converges and measurements are gradually
weighted less, which implies that the state estimatebecomes
static. To prevent this, the diagonal elements ofare bounded
from below as

m

The Kalman filter is obviously represented in world coordinates,
since the state is in world coordinates. The data obtained from
odometry and sonars is however given in robot coordinates, and
hence it need to be converted to world coordinates. Therefore, a
state-dependent transformation is introduced that take an arbi-
trary point from robot to world coordinates

(16)

(17)

Here is the current pose estimate and
is the most recent robot position obtained from

sampled odometry data. In the following sections we will use
(16) and describe, in detail, how the robot pose measurements

and are performed.

1) Robot Pose Measurement:The measurement ap-
pearing in (6) is a direct measurement of the robot pose, i.e.,

. In fact, is a nonlinear measurement of the state,
but we have chosen to hide these nonlinearities within the
measurement covariance matrix . The state measurement

is obtained by solving a maximum-likelihood estimation
problem which is formulated as

argmin (18)

(19)

Here denotes a recent triangulation point pro-

duced by the TBF algorithm and is a
natural point landmark in the reference map . The triangu-
lation point has been passed through two types of valida-
tion gates to assure that is a measurement of the natural
point landmark . These validation gates will be discussed
in more detail later. In the objective function of (18) it is seen
that and are given in world coordinates, but these
quantities will in practice be given in robot coordinates by the
TBF algorithm. The transformation (16) could be used to relate

, with as

(20)

(21)

From these expressions it is seen that the function is
state dependent. If we denote the elements of and by

and substitute (20) and (21) into the objective function (18), we
obtain

The minimization of (18) can now be done numerically with
a Newton–Raphson search.5 As an initial estimate of the
state , the current Kalman filter state prediction is
used. This estimate can be expected to be close to the optimal
solution if the pose tracking is working accurately. When the
Newton–Raphson search is run in practice, it usually converges

5The necessary gradient and Jacobian expression involved in the
Newton–Raphson search are given in the Appendix.
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to an optimal solution within two to three iterations. As
convergence criterion we use

m
m

The optimal solution is then taken as a state measurement
, i.e.,

Concerning the measurement covariance matrix a conser-
vative approach is taken by setting constant variances

m
m

Since the measurements in fact are corre-
lated,6 the noise variances are kept high to avoid the Kalman
filter putting too much attention on the measurements. This is
of course not an optimal solution, but it has proven to work sur-
prisingly well. Another alternative would of course be to extend
the state model to include a correlated noise model, but aside
from the problem of finding such appropriate model, this would
increase the computational cost, which is something we want to
avoid.

2) Landmark Validation: In Section III-B-1, validated land-
mark pairs are used to obtain a measurement of
the robot pose. In this section it is explained how these landmark
pairs have been validated to assure that is a triangulation
point which represent a measurement of a natural point land-
mark .

First of all, only triangulation points satisfying are
considered to be potential measurements of natural point land-
marks in the reference map. The reason for choosing a lower
threshold compared to when recording the reference map (Sec-
tion III-A) is that we want to be sure that no landmarks are
missed by the TBF algorithm. TBF data that has no correspon-
dence to the reference map landmarks is expected to be sorted
away in a two-stage validation process. The first type of valida-
tion gate is based on the predicted distance and angle
between the robot position and a reference land-
mark . If a triangulation point measurement should
be associated with this landmark it is required that

where and is the distance and angle between the robot
position and the triangulation point measurement

. The thresholds and are state covariance dependent
as

m m

6Because of a sliding landmark pair setP described later in text.

Fig. 9. Using the one standard deviation uncertainty ellipses of the points
^T ; ^T ; L andL the distribution of the distancesd andd
can be approximated as in (22) and (23).

If the triangulation point measurement happens to fall
within several validation gates, then the closest reference
map landmark is chosen as a partner. Using this technique
to pair triangulation point measurements with reference map
landmarks, a landmark candidate pair setis generated

Here is a sliding set where a pair ( ) is removed
if a) the robot has moved more than 2 m since detecting the
triangulation point , b) a new measurement of appears
(closer than 0.1 m), or c) the pair does not fulfill a validation
based on relative distances. Step c) is an efficient way to remove
most of the bad data associations in the set. Indeed if the pairs

, are correct data associations,
then the distances

should be almost the same. This fact can be used to remove
false data associations from the set. However, better distance
measures can be obtained using the covariance matrices of

, and (Fig. 9) to approximate the
distributions of the distances and as

(22)

(23)

Here is the true distance between the landmarks and
mm is an extra term covering up for the odometry drift that
may be present between detecting and . Under these
circumstances the distribution of is

Hence using the normalized (Mahalanobis) distance
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a better distance measure is obtained. For a correct data associ-
ation the threshold

(24)

isused. If thiscondition isnotmet, it is interpretedas thateitherof
and is an incorrect data association,

orboth.To findoutwhich landmarkpairs inthatare incorrect, it
is necessary to loop over all distances . The landmark
pair that is most frequent in not satisfying condition (24) should
be removed from the set. This procedure is repeated until all
pair combinations in meet the condition (24).

After validating the landmark pairs in with respect to
relative distances, there is a good chance that the surviving
landmark pairs of are correct data associations. Hence,
they could be used to measure the robot pose as explained
in Section III-B-1. Note however that might just contain
a single element after passing the validation
based on relative distances. In those cases we cannot tell if

is a correct data association or not, and hence no
robot pose measurement is performed in that case.

To guarantee that is appropriate for updating the robot pose
with respect to orientation, there should be some distance be-
tween the landmark pairs in. In the present implementation,

is approved for robot pose measurement only if

m

C. Pose Tracking in Corridors

The just described robot pose measurementis sufficient
for pose tracking in most rooms of office or living room size.
Usually these kind of rooms contains a dense set of natural point
landmarks, making it easy for the robot to update its position.
In larger areas, with a sparse set of landmarks, like corridors for
instance, these kind of measurements are insufficient. This has
to do with the orientation estimate becoming crucial when
the robot moves long distances in the same direction. Only a
slight error in the orientation estimate will propagate into a large
position error if the robot has to move a long distance before
detecting new landmarks. In a corridor, where the robot task
often is to move from one room to another, the natural point
landmarks of the reference map can be limited to door posts.
In the worst case, the corridor only contain smooth walls and
hence no point landmarks at all are available. Because of these
reasons, a second type of measurement of the robot poseis
introduced to handle the case when the robot visits a corridor.

The idea is to estimate the robot pose based on measurements
of the corridor width and orientation. Suppose the corridor is
modeled as a rectangle with a local coordinate system placed
at (Fig. 10). To be general, the -axis is as-
sumed to be tilted an angle relative to the world coordinate

-axis. The relation between these two coordinate systems is
then given by

(25)

Fig. 10. Corridor wall measurements(� ; ' ) and(� ; ' ) can be obtained
using local Hough transforms based on triangulation points.

Using the current state estimate, the corridor wall positions
and orientation can be predicted in robot coordinates in terms
of the polar coordinates and . Using two

-grids centered locally around and ,
respectively, a Hough transform [18] based on triangulation
points can be performed to actually measure and

(Fig. 10). In our implementation a buffer of the 50
most recent detected triangulation points is used in the Hough
transforms.7 This kind of measurement is repeated every time
ten new triangulation points are available. Given for instance
the measurement , the orientation angle and the local

-coordinate of the robot can be measured as

Using the transformation (25) this can be expressed in terms of
the state variable as

(26)

These kind of corridor wall measurements need of course to be
validated before actually updating the Kalman filter. For this
purpose the - and -validation gates

are used where is the corridor width and is the
resolution of the local -grids. In our implementation

m and and the local grids are of size
. The large -validation gate ( ) is due to

the fact that the corridor width actually may vary a bit. The co-

7No restriction is put on the parametersn andP in this case since a tri-
angulation point with lown value and largeP actually is likely to originate
from a smooth object, e.g., a corridor wall.
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Fig. 11. This figure illustrates the performance of the pose tracker when being applied to a Nomad 200 robot moving over 1 km in a large scale indoor environment.
Middle boxed picture shows pure odometric data and the outer picture shows the estimated trajectory in world coordinates placed on top of a hand measured drawing
of the building. The dark dots in the outer picture are reference map landmarks that have been used in the pose tracking. See text for more details.

variance matrix of a measurement of type is set to

m

where the 0.2 m again has to do with covering up for varying
width of the corridor.

Finally it is worth noting that the complexity of a measure-
ment of type is low because of the Hough transform com-
plexity being linear with the number of points used.

D. Experiments

To test the proposed pose tracker, a large scale indoor envi-
ronment was chosen, containing 15 rooms and three long corri-
dors. A world coordinate system was defined with the origin in
the living room (see Fig. 8). Landmarks were then recorded for
each room/corridor according to the guidelines of Section III-A.
After this, a 1.8-km odometry and sonar data set was collected
for off-line tuning of the pose tracker. The various parameters
(validation gates etc.) were then trimmed and chosen as speci-
fied in Sections III-B and III-C. A fact that simplified the tuning
was that data from a well established laser pose tracker [6] was

availablewhichgavecentimeterprecision.Hence, “groundtruth”
was known when doing the tuning. After one year (!), a 1-km new
odometry, sonar and laser data set was collected from the envi-
ronment. The pose tracker was then again run off-line using the
one year old reference maps (one map per room). Some of the
reference maps were up to date and some were not because of
refurnishing. The result from this experiment is documented in
Fig. 11. The middle boxed picture shows the collected odometry
and sonar data. The grey solid line is the robot trajectory and the
black dots building up the walls of the rooms and corridors are all
the triangulation points produced by the TBF algorithm. In total
the orientation angle drifted about 300during this data collec-
tion, i.e.,onaverage0.3m.Thedriftwas,however,not constant
since it depended on the configuration of the three wheels of the
robot with respect to the current motion direction. In the worst
case, the drift was about 0.8m.

The outer picture shows how the pose tracker has compen-
sated the robot trajectory, which has been plotted on top of
a drawing of the environment (hand measured in world coor-
dinates). The black circles appearing in this figure are land-
marks in the reference maps that have been used during the
pose tracking. As seen from this picture only a few landmarks
were matched in certain areas, like for instance the left corridor,
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Fig. 12. Repeated experiment from Fig. 11 but without using the wall measurements in the corridors. The degrade in performance is clear. When the estimated
robot pose differed from the true pose more than 3 m, the sonar pose tracker was reset. In this run the sonar pose tracker was reset seven times.

which contains few doors, and the room marked “Lab,” which
had been completely refurnished since the acquisition of the ref-
erence map. In the left corridor the pose tracker was very depen-
dent on the Hough transform-based measurements of the orien-
tation angle and robot position. In the Lab the robot had to sur-
vive on pure odometry information.

The pose tracker was implemented in a way so that the robot
not only used the reference map corresponding to the room it
was currently visiting, but also the reference maps of the adjacent
rooms. This made it possible to track landmarks in several rooms
at thesametime,which is importantwhentherobotshouldchange
room. The presence of thresholds in door openings can easily
cause sudden changes in the robot pose and hence it is important
to have access to as many landmark measurements (door posts)
as possible in such cases. Since the pose tracker had information
about where the doors should be in world coordinates, it could
estimate when it actually crossed a door opening. When a room
change occurred, or was believed to occur, extra uncertainty was
added to the state covariance matrix to cover up for slippage and
rotation errors when crossing a threshold

m

m

When comparing the sonar pose tracker data with corresponding
data from the laser pose tracker, the state estimates was found to
be almost overlapping, differing only a few centimeters in most
cases. However, at one instance the sonar pose tracker failed
badly in its estimate. If looking closer at Fig. 11 an arrow marks
a place where the sonar pose tracking estimate almost diverged
(almost crossing corridor wall) but being saved by Hough mea-
surement corrections against the corridor walls. It was the lack
of Hough measurements earlier on that caused a somewhat bad
orientation estimate propagating into a large position error. The
lack of hough measurements could be blamed on that in an ear-
lier part of this corridor one of the walls was missing, which had
not been modeled in our map.

To illustrate how the corridor wall measurements influence
the performance of the pose tracker, the experiment was re-
peated, but with the Hough component removed. The result is
illustrated in Fig. 12 where the degrade in performace is clear. In
this experiment, the sonar pose tracker was reseted by the laser
pose tracker whenever the robot pose estimate differed more
than 3 m. This happened seven times during the run. Hence,
wall measurements are necessary for acceptable performance
in corridors. Note that this result implies that the presented pose
tracker may perform badly in a large room with a sparse set of
landmarks and no wall measurements available. From the exper-
iment in Fig. 12, the just mentioned example is best illustrated
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in the left vertical corridor. The pose tracker diverged twice in
this corridor when not having access to wall measurements, both
times due to an orientation error propagated into a large position
error when the robot passed areas with only a few landmarks.
Although this corridor contain an area with a dense population
of landmarks, the position error had already become too large
when the robot entered this area. Basically the robot becomes
lost when the position error has grown above the maximum size
of the landmark validation gates. This fact can be used to trig
local re-localization of the robot. Indeed it is strong evidence
for divergence of the Kalman filter if the landmark validation
gates have grown to maximum size and the robot still fails to
validate landmarks, although being in a dense landmark area
(implied by state estimate and reference maps). When re-local-
izing the robot locally or globally, one could for instance use
old Monte Carlo techniques that lately have become popular in
mobile robotics [4], [8], [9]. Contrary to the Kalman filter, these
methods can handle a multimodal non-Gaussian distribution of
the robot pose, but at the expense of an increased computational
cost.

IV. CONCLUSIONS

A sensor fusion scheme called TBF of sonar data has been
presented. The method produce stable estimates of static (ver-
tical) edges in the environment and can be run at a low com-
putational cost. There are many applications for the TBF al-
gorithm in mobile robotics, for instance mapping and localiza-
tion. In this article the case of robot pose tracking was studied.
The performance of the pose tracker was shown to be robust in
most parts of a large scale indoor office environment. The ex-
perimental section also indicated under what circumstances the
pose tracker might fail, i.e., in large rooms with areas containing
only a sparse set of landmarks. For more information about the
TBF algorithm and its application areas, see [8], [20], and [21].

APPENDIX

GRADIENT AND JACOBEAN EXPRESSIONS

In the Newton–Raphson minimization of the object function
(18) the gradient and Jacobian expression of is needed.
These formulas are given as follows:
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