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Triangulation-Based Fusion of Sonar Data with
Application in Robot Pose Tracking

Olle Wijk, Student Member, IEEENd Henrik I. ChristenseiMember, IEEE

Abstract—In this paper a sensor fusion scheme, called triangu- which is a prerequisite if triangulating objects with a small base
lation-based fusion (TBF) of sonar data, is presented. This algo- |ine between the sensors. In this kind of research, high confi-
rithm delivers stable natural point landmarks, which appear in  4ance classification of points, edges, and planes is reported [10],
practically all indoor environments, i.e., vertical edges like door . e o . ) .
posts, table legs, and so forth. The landmark precision is in most [12]. Th_e e_tccura_cym position of the classified objects is Cla'med
cases within centimeters. The TBF algorithm is implemented as a t0 be within millimeters, where the error comes down to being
voting scheme, which group sonar measurements that are likely to dependent on environmental factors like temperature, humidity
have hit a mutual object in the environment. The algorithm has gnd wind fluctuations.
low complexity and is sufficiently fast for most mobile robot appli- An appealing method, which is presented in this paper, is

cations. As a case study, we apply the TBF algorithm to robot pose ¢ ith | - | . . |
tracking. The pose tracker is implemented as a classic extended 10 Manage with less signal processing, I.e., 1ess range accu-

Kalman filter, which use odometry readings for the prediction step  acy, and still be able to reliably detect discriminating features,
and TBF data for measurement updates. The TBF data is matched like vertical edges. The method we propose is called triangula-
to pre-recorded reference maps of landmarks in order to measure tion-based fusion (TBF) of sonar data, and buffers sonar scans
the robot pose. In corridors, complementary TBF data measure- a1 are triangulated against each other using a simple and low
ments from the walls are used to improve the orientation and po- . - . .
sition estimate. Experiments demonstrate that the pose tracker is complexity Vo“”g scheme. Since ,the sonar scans _|n the buffer
robust enough for handling kilometer distances in a large scale in- are taken from different robot positions, the base line between
door environment containing a sufficiently dense landmark set. ~ the sensor readings being triangulated are only limited by the

Index Terms—tocalization, pose tracking, sensor fusion, sensor 0dometry drift. Hence, the range accuracy is not of major impor-
modeling, sonars. tance in this approach. This paper contains a detailed description
of the TBF algorithm as well as a case study of how it can be
applied for robot pose tracking. The paper is organized as fol-
lows.

N THE authors’ opinion the sonar is an attractive range Section Il contains a detailed description of the TBF algo-
sensor. It is cheap compared to other popular range sens@fsim and discusses implementation issues. It is also explained

like laser scanners and range cameras. While the field of vigiww the TBF data uncertainty can be obtained using local grid
of a laser scanner is usually limited to a plane, a set of sonatiaps. A real world example, where a sonar equipped mobile
placed at strategic positions on a mobile robot gives a complegot operates in a living room, is used throughout the section
coverage of the surrounding world. Moreover, if disregarding illustrate the characteristics of the TBF algorithm.
outliers caused by specular reflections and cross talk, a standargection 11l describes how the TBF algorithm can be applied
Polaroid 6500 sonar sensor gives quite accurate range readgébot pose tracking when using an extended Kalman filter.
(£1%). For related work, see [3], [12], and [16]. A lot of details, such

The bad angular resolution and the frequent number of ouis tuned parameter values, are reported in order to document the
liers in sonar data can be overcome using different technigugfplementation of the pose tracker. The idea is to use TBF data
[1], [2], [5]. In advanced systems, arrays of sonars are beifigat have been validated against reference maps of TBF data
used for listening to their own and the other sensors echoegdn subsequent measurement of the robot pose. In corridors, the
order to find object positions through triangulation. The echo@gethod is complemented with TBF data from the walls. A large
are then fast sampled (1 MHz) and a large amount of signgdale indoor environment is used in the experiment to demon-
processing is performed to obtain very accurate range readingigate the strength and weaknesses of the approach.

|I. INTRODUCTION

Manuscript received October 15, 1999; revised September 15, 2000. This
paper was recommended for publication by Associate Editor J. Laumond and
Editor V. Lumelsky upon evaluation of the reviewers’ comments. The research . . ..
was carried out at the Centre for Autonomous Systems at the Royal Institute of| BF Of sonar data is a novel a computationally efficient
Technology and sponsored by the Swedish Foundation for Strategic Reseavgting scheme for grouping sonar readings together that have

This paper was presented in part at the IEEE International Conference gif a mutual vertical edge object in the environment. The

Robotics and Automation, Leuven, Belgium, May 1998, and in part at the dto b | d in th hori tal pl
Seventh International Symposium on Intelligent Robotic Systems, Coimb§;1‘?r“"1rS are assumed 1o be placed In the same horizontal plane

Portugal, July 1999. and the data obtained from the sensors is interpreted in the
The authors are with the Centre for Autonomous Systems, Royal Instity{go-dimensional world representation given by this plane. The

of Technology, SE-100 44 Stockholm, Sweden (e-mail: olle@s3.kth.se; . L. . . .

hic@nada kth.se). performance of the algorithm is illustrated in Fig. 1, which

Publisher Item Identifier S 1042-296X(00)11578-2. shows a complete 3-D model of 285 m living room which

Il. TBF ALGORITHM

1042-296X/00$10.00 © 2000 IEEE



WIJK AND CHRISTENSEN: TBF OF SONAR DATA WITH APPLICATION IN ROBOT POSE TRACKING 741

Time
—_——

Scan 1 Scan 2 Scan 3 Scann—1 Scan n

Sonar 1 R R Ry3 c++ |Rin-1 | Rin

. Sonar 2 Ro1 Rao Ro3 o+ |Ran-1 Ron

H.l?,{ Sonar 3 R3; R3o Ras c R3 n-1 R3p

- "Ir . .

\!,!! Sonar m—1|Rm~1,1 |Rm-1,2 [Rm-1,3 | *** |Bm-1,n-1|Bm—-1n

h ~ ‘? Sonar m R Ry Rms M Rm,n-l Rpn

Fig. 3. Sliding window for storage of sonar readings. Each column contain a
complete sonar scan taken during robot motion.

the intersection poirlf’ = (xr, yr) between the two beam arcs.
The following equations have to be solved:

(.’L’T - -/L'Si)2 + (yT - ySg)Q = TiQa = 1a 2 (l)
Fig. 1. The TBF algorithm is a voting scheme that solves a data association
problem, i.e., it clusters sonar measurements that originate from a mutual edge in
the environment. This figure illustrates how the TBF algorithm performs when
a sonar equipped Nomad 200 robot traverses a living room. All data presented <yT — Us; ) c [ 6 6} _1 9
Yi ’ t=1, 2

in the figure are real. arctan T e

TT — T, 2 2

)

Here(z,, y;) denotes the sensor positiaris the range reading,

~ is the sensor heading angle, ahid the opening angle of the
center sonar lobe. For the sonar type used in this presentation
(Polaroid 6500)¢ is about 25. The solutiongzr, 47) of (1)

with ¢ = 1, 2 can be written

1
£T=uf+@<%ﬂ&u%J7%@—#) @)

V@%—#) @

. 1
Yr =Ys, + 45 <dysdz + |de,

d3

Fig. 2. Basictriangulation principle of an edge. Given two sonar readings fro\mhere
an edge, the positiof’ of the edge can be obtained by taking the intersection

between the beam arcs. dy, =, — s,
dy, =Ysy — Yss

was hand measured within centimeter precision. The thick line P =d> + d§

on the floor is the robot trajectory and the clusters of lines 9 9
32 = rL—ry —dg

represent sonar readings that have been grouped by the TBF
algorithm. The mutual end point for each line cluster represents
an object position estimate delivered by the TBF algorithnfralse solution$zr, ¢r) in (3) and (4) are removed when veri-
As seen from the figure, the TBF method is good at detectifigd against (1) and (2).

vertical edges in the environment, for instance door posts,

shelf corners, table legs and so forth. Before discussing tRe Implementation

TBF method in deta”, we will Spend the fOIIOWing section on Consider a mobile robot equipped with sonars distributed

discussing the basic component used in the TBF algorithm, i.gt arbitrary positions in a horizontal plane. The TBF algorithm

triangulating two sonar measurements. is then implemented as a sliding window (Fig. 3) withrows
o ) o andn columns. Each entryi;; in the window contains sonar

A. Basic Triangulation Principle data necessary for performing a triangulation, i.e.,

Consider two sonar readings taken from different positions

during robot motion (Fig. 2). The readings are assumed to orig- Rij = (Ts55 Ysiyo Vigs Tis)-

inate from a vertical edge at positidh= (xr, yr) in the en-

vironment. If only one of the range readings is considered, t

sonar physics limit the object position to be somewhere alo

the associated beam artvhen using the information from both

sonar readings we can get the object posiffohy computing

T 2

ach column in the window represents a complete sonar scan
na‘ien during robot motion. The right column represent the most
fekent sonar scan, and the sliding window is updated with a new
scan wherll sensor position stamps with respect to the old scan
have moved more than a certain minimum distafyce 0.05 m.
INeglecting the presence of side lobes. Depending on the sonar scan sampling frequency (2—3 Hz) and
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JExkknkknkkikkkxkkkkkk THE TBF ALGORITHM sk ssrssoksokkskokskdoniorkokdnkk /

fori=1-m{ (1)
zf Tin < 7'rna:z{ (2)
G = {R,’n} 3
ne =0, &1 =, +Tin€08(Yin), UT = Ys;, + Tinsin(vin) (4)
Tmin = Ymin = mazlnt, Tmaz '= Ymaz ‘= —mazint (5)
forj=(n-1)—>1 (6)
fork=1—->m (6)
"'f Tkj < "maz . (7)
if (&7,97) € beam of Ry (7)
re := /(&T —zakj)2+(gT _yskj)z (7
if |re — il < di/(ne +1) o (7)
if TriangulationPossible (In:Rin, Rk;; Out:zi', yi' (8)
G = {G, Ry;} , (9)
ET 1= n_tl-f-_l(nth + a:f_,f.' (9)
i1 = 7y (nedr +y7) (9)
e :=.nt + 1 (9)
if :c%f‘ < Tmin then Tmin 1= T3 (10)
if T85> Tmax then Timas = m%i (10)
if yf;' < Ymin then Ymin = yf_r”. (10)
if y;rl > Ymaz then Ymoz ==y (10)
1.f ne Z 1 (11)
’Lf (zma:c - xmin) + (yma:r: hd ymin) > do then n, := —ny (12)
RefineTriangulationPoint(In: G, Out: &7, §r, Pr) (13)
Store ny, T, Pr and possibly G (14)
} (15)

Fig. 4. Pseudocode for the TBF algorithm. Each step in the right column is explained in detail in the text.

the current robot speed (0-0.5 m/s), this distance will vary, typ- 6) Loop over all but the last column in the sliding window
ically between 0.05-0.25 m. When a new scan is inserted into
the window, the oldest scan is shifted out (left column). Hence,
the column size of the sliding window is kept constantito

sonar scans. In the present implementatica 10 is used. Be-

tween each update of the sliding window, the TBF algorithm
searches for triangulation hypotheses between the right column
(new data) and the rest of the window. From a programming
point of view, the TBF algorithm is implemented according to
the pseudocode given in Fig. 4. The different steps in the pseu-
docode have been numbered in the right column, and are ex-
plained in detail below.

1) Loop over the last column in the sliding window, i.e., the  8) If this step is reached, there is a high probability that the

2)

3)

4)

5)

most recently acquired sonar scan. Let us from here on
consider the first lap in this loop & 1). This means that
we consider the most recent reading taken with sonar 1,

i'e"Rln = (‘TShm Ysim Vin, Tln)' 9)

Check if the range reading,, possibly could be from

an edge. From experiments we have concluded that a
Poloroid 6500 sensor is able to detect edges up to at least
5 m. Hence we check that,, < rmax = 5 m.

Form a set+ that will contain all the readings which
should be associated with the readiig, . Initially G =
Ry,

Initialize a zero hypothesi&:; = 0) about the object
that was hit by the reading;,,. The zero hypothesis
correspond to an object position estimate= (2, 4r)

at the middle of the corresponding beam arc.

Initialize variables that keep track of the maximum de-
viation between the triangulation measurements.

10)
11)

12)

to find triangulation partners for the readify,,. A tri-
angulation partneRy; is only approved if it fulfills three
constraints (step 7).

7) Firstrepeatthe check done in step 2 for the range reading

715, second check that the current object position esti-
mate?’ belongs to the sonar beam &f;;, and third that
the expected range reading does not differ too much
from the actual range reading;. The allowed differ-
enced;/(n, + 1) decreases with the number of suc-
cessful triangulations, that have been done (step 8).
In our implementatiorl; = 0.3 m.

readingsk;,, and R;; originate from the same object.
Hence, it is worth using (1)—(4) to check if an intersec-
tion point (zf*, 44*) exists.

For a successful triangulation (step 8), add the reading
Ry to the setG, recursively update the object position
estimated’ and finally increase the hypothesis counter
n, (the number of successful triangulations done so far).
Note that ifn, = 0 the zero hypothesis is just replaced
by (27, y7").

Update the maximum deviation between the successful
triangulations done so far.

Only consider hypotheses supported with at least one
successful triangulation.

If the maximum deviation between the successful trian-
gulations is larged> = 0.1 m in our implementation)
we classify the position estimaté as belonging to an
object in the environment which it well represented
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as an edge, for instance a wall. This classification is done
by switching the sign of the, variable. The sign switch
secures that triangulation points with high positive
values will have a high probability of originating from
an edge such as door posts, shelf edges, table legs etc.

13) Use the seff of grouped readings to compute a refined
position estimateé 7, ) and the associated covari-
ance matrixPr. This step is discussed in detail in the
next section.

14) Save the triangulation poifit,, T, Pr), and optionally
the setG.

15) Go back to step 1 and increase

Continuing commenting on the TBF code in Fig. 4, itis noted

; ; ; ; Fig. 5. Refined triangulation point estimate using a local grid map. The beams
thatit generates at mo:sttrlangulatlon points between each upr present grouped sonar readings by the TBF algorithm. This triangulation point

date of the sliding Win_dOW- Each triangulation point COITESPOKtually corresponds to one of the shelf corners from the experiment presented
to a position of an object that was hit by one of the readings imFig. 1.

the last column of the sliding window. At line 6 in the TBF code

(for j = (n — 1) — 1), the window is swept backward columnrithm. The grid size depends on the quality X of the initial

wise to find triangulation partners for a particular element iguess. For triangulation points with > 4, a31 x 31 grid

the last column. The reason for not sweeping the columnsritap with 0.01-m resolution is usédsor points withn, < 4, a

forward direction is that it is more probable that nearby sonagg x 24 grid map (cell size 0.02 m) is used. Hence more compu-

scans have hit a mutual object than scans that are further apational effort is put on estimating triangulation points supported

Hence a zero hypothesis (step 4) is more probable to evolve ibipmany readings. By using the sensor model, the grouped sonar

a correct 1-hypothesisi{ = 1) if first considering the most ad- readings can be fused in the grid map. Treating the readings as

jacent sonar scan. In step 13 of the TBF code, the triangulatipilependent, this fusion process is straightforward (pure mul-

point (7, gr) is refined by a local grid map computation. Intiplication in each cell). An example of a grid map with fused

this computation the uncertainty of the estimate is also obtaing@nar readings is shown in Fig. 5. By using the cell with max-

The next section describes how this is done in detail. imum probability as a triangulation point estiméta-, 4 ), the
covariancePr of this estimate is readily obtained as

C. Refining a Triangulation Point Using a Local Grid Map

~ 2 A~ ~
Steps 2-10 in the TBF algorithm provide a triangulation point p, — < (wij—ir) (ij =) (uis _yT)> y
estimate that has been formed by recursively taking the mean (wij—27)(yi; — 1) (yij—r)*

value of beam arc intersections (step 9). It is clear that this is

not the best way to compute this estimatsloreover, the un- Where(z;;, y;;) is the position corresponding to céll j) and
certainty in the position is unknown. What is good, though, &, IS the associated probability.

that the triangulation point produced by steps 2—10 is a good ini- _ .

tial guess of the true position. Hence, by centering a local gitt COMPutational Complexity

map around this initial guess we can recompute the triangulationThe computational complexity of the TBF algorithm essen-
point and its uncertainty by using a sonar sensor model. In tt@lly relies on steps 8 and 13 (see code). Step 13, the local grid
present implementation a simple sensor model is used for thigp computation, is by far the most expensive step and is exe-
purpose, where the range reading assumed to be normally cuted for each found triangulation point. The complexity of the

%]

distributed around the true rangeas grid map fusion processign?(n;+1)), wheren,. is the number
B B of cells along a side of the grid map, but can be reduced by trun-
7~ N(7, 0.017 + 0.01 m). cating the range sensor model after a couple of standard devia-

tions. When running the TBF algorithm on a 450-MHz PC, step

The first standard deviation terr,017, is in agreement with :
. . 13 takes on average 2.6 msto process. The TBF algorithm can of
what the data sheets specify for the a Polaroid 6500 sen3sor . . . .
. . .course be speeded up by simply disregarding step 13, but then it

and the extra centimeter is used to cover up for the uncertain . . . . )
. . will provide less accurate triangulation point estimates, formed

between the sensor positions where the readings were taken,’ - . : | i
¥tak|ng recursive means of intersection points. Furthermore,

caused by odometry drift. Concerning the angular modeling e uncertainty in these estimates will not be available. Under

;Tjemse%ng’ t?; du;g(;{;nbg S;:bmrl]%r;ési#fﬁ:'r;:i}’] Tgb(;bﬁ;t] ': %E?se circumstances, the complexity of the algorithm depends
. yw . . 933 step 8, i.e., triangulating two sonar readings. This operation
probability, but not detectable at all outside the main lobe. Thé%n be done in less than a 100 operations and takes abast 10
model is supported by experiments done with a sonar pulse - rocess on a 450-MHz PC. N P h 8i | Ef“” q
. . . . p z PC. Note that step 8 is only performe
teracting with an edge and is documented in [21].

. . when necessary (step 7).
As stated above the local grid map is centered around the ini- y (step 7)
tial position estimate provided by steps 2—10 in the TBF algo-3The grid size can probably be reduced, but this is the size we use at the mo-
ment. The grid size is limited from below by the grid resolution and the accuracy
2But it is cheap and often gives surprisingly good estimates! of the initial guess.
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Fig. 6. The experiment in Fig. 1 from a top view. The triangulation point
estimates are plotted with their uncertainty ellipses. Fig. 7 shows a closeugr@j. 7. Close-up of dashed rectangle in Fig. 6. The ellipses in the picture
the dashed rectangle at one of the bookshelf corners. represent the uncertainty, two standard deviations in size, of a triangulation point
produced by the TBF algorithm. From this picture it is clear that the accuracy
of the triangulation points can reach centimeter level. One of these ellipses
During a complete iteration of the TBF algorithm (step 1—16¥riginate from the refined triangulation point computation shown in Fig. 5.

the sliding window is swept: times (step 1 and 6). Hence step 7 .

is executedn? (n—1) times (disregarding step 2). This is usuallyonce, but several times when the robot moves along. The pre-
not a real time problem for a moderate size windew £ 16, cision of the estimates can be seen to be within centimeters.
n = 10). However, when increasing the size of the window a general situation the precision depends on the distance to
the complexity explodes. This will for instance happen whethe object as well as the base line between the sonar readings.
increasing the number of sonars) or worse, using multiple Preferably, one would like to have as large base line as possible.
echoes from each sonar. To circumvent this problem, it is pdsince the TBF algorithm passively stores and analyzes sonar
sible to store the sonar scans in a coarse grid map (0.5-m regggns there is no base line restriction, except for the odometry
lution) rather than in a sliding window. Each sonar readitg drift between the scans. This makes it possible to produce trian-
is then placed in the cell corresponding to the mid beam pogilation points with acceptable precision (0.1 m) using sonars
tion (mentioned zero hypothesis in stepadidin the adjacent with Ipw range resolution. Ip a previous implementation of the
eight cells. Each cell can then be treated as a sliding windowagorithm, a 25-mm resolution in the sonar data was used suc-
its own. For each new readin;,,, the mid beam position of cessfully. In the experiments presented in this paper the sensor
R, is then used to find the grid cell containing all the adjacefigsolution is however at millimeter level, though not calibrated

1 | 4 462

L L 1 L h L L y
538 53 534 532 530 528 526 524 S22
cm

readings. This reduces complexity substantially. to that level.
Other interesting facts, which are not shown in the experi-
E. Experiments ment presented here, is that the TBF algorithm is very efficient

. . . . : fPr removing outliers in sonar data such as specular reflections
In the introduction of this section, a real world experiment | ool [21], furthermore, moving objects are efficientl
with the TBF algorithm was presented. Let us take a closer look ’ ' g obJ y

at this experiment. In Fig. 6, a top view of Fig. 1 is shown. Fror%ejecna(j by the method. This has to do with that the algorithm

this view it is clear that the TBF algorithm is good at detectinIS being built on a static world assumption. Triangulations on

. . : : . . % moving target which in the algorithm is assumed to be static
vertical edges in the environment. Only triangulation points quiII clearly not get much support when it comes to voting)y
filling n; > 6 and\/p(Pr) < 0.05 m are shown in this plot, y 9 bp 9

wherep(Pr) means the spectral radius of the covariance matrix
Pr. Besides this “high” thresholding it may seem like that some
obvious edges are missed, for instance the sofa table, but theln this section we present a case study of how the TBF algo-

one has to consider the height of the objects. The sonars we G##n can be used for robot pose tracking. However, to be able to
only have a beam width of 2%nd hence the sight in vertical di-track the position, a reference map is needed. In the first section
rection is rather limited. The sofa table is usually never detectes therefore discuss how such map could be built manually. In

by the sonars, because of its low height. Moreover, the sonéast the TBF data presented in the previous section was actually
we use only give the first echo response back. With the ability generated with this map building strategy.

detect multiple echoes, more edges could have been seen. An- o ) .

other fact that is seen from Fig. 6, is that the TBF algorithm f&- Map Acquisition Using Natural Point Landmarks

best at detecting edges when the robot moves side passed thei@onsider a robot that is manually operated around in an in-

This is because of the base line between the readings then calmer setting which it later should operate autonomously in. The

in a favorable orientation with respect to the object being triai-BF algorithm is supposed to be active during the movement of

gulated. 4 _ , : ,
. . . Please do not confuse this step with what popularly is called SLAM (simul-
InFig. 7, a close up of the dashed rectangle of Fig. 6 is Showgeous Iocalization and map building). This is a map built with human robot

From this figure it is clear that the edges are not just detect@eraction.

I1l. ROBOT POSE TRACKING
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L% Ly by an anglex between the world- and robatcoordinate-axis
‘--H*-‘%' ; (see Fig. 8). Hence thebot posds captured by the state vector
(R) '

1] o2 (o, 00, )

W)

The pose tracking problem studied here is to maintain an esti-
L(3“’ mate of the state while the robot is moving. For that purpose
we propose an extended Kalman filter operating on the non-
linear state model

" —— = ] : Tpg1 = f@r, up) + wi (5)
1 / y™ @ _ ), (i) ,
y =H x4+ v, i=1,2 (6)
Fig. 8. Using positionsp:, pz, ps, ... that are known in both (R)obot E(wkwf) =Qy @)
coordinates (odometry) and (W)orld coordinates (hand measured), a recorded (@) (i) (i) )
landmarkL(®) can be translated to world coordinate$"”. E (Uk Vg T) =1, t=1,2. 8)

the robot. Each time a triangulation point it detected that satfdere the input signai.; influence how the robot is moving.
fies the thresholds, > 6 and /p(pT) < 0.05 m, the corre- The robot pose measuremg/r,ift) is obtained from triangulation
sponding positiofd” is registered asmatural point landmarlg,.  Points that have been validated against the referencedfiéh

To limit the number of natural point landmarks, we keep tradiéections I1I-B-1 and 111-B-2). Finallyy{” is a partial measure-

of triangulation points that cluster (closer than 0.1 m). The clugent of the robot pose based on triangulation points that have
tered triangulation points are regardedasnatural point land- been matched against corridor walls (Section 11I-C). Assuming
mark by only keeping the most recent detected one. Becaus&v$fte and uncorrelated noise, the extended Kalman filter for the
the odometry drift, it is important not to record landmarks ovéPbot pose model becomes

too large distances, otherwise landmarks collected at the begin-

ning of the robot motion would be represented in a significantly

different coordinate system compared to landmarks collected?sgdiction:

the end of the motion. A suitable way to represent all landmarks Trgp = F(Ern, ur) 9)
in onecoordinate system with acceptable precision, is to intro- 9 af T
duce a (W()orld coordinate system, and then measure up some Py = D Py <£> + Qk (10)
positionSplw), pg‘“, e, p§,“’> that cover the area the robot date: b b
is going to operate in (Fig. 8). By placing the robot at one Orpeasurement update: ‘ ‘

- / : . _ () OF:
these positions, let saﬁ“), the corresponding (R)obot coordi- bt =Ygy — H T n
natepgR) can be obtained from odometry information. The robot Spt1 = H<i)Pk+1|kH<i)T + R,(f}rl (12)
can then be moved to another position, let p%/’), and while Kip1 = Pk+1|kH(i)TS;il (13)

this is done the TBF algorithm records natural point landmarks.
When the robot reachq:éw), the corresponding robot coordi- ‘
natepgR) is given from odometry information. The collected Preyijpyr = (I - Kk+1H(Z)) Pryajn- (15)
natural point landmarks can then be converted into world co-
ordinates since the transformation between robot and world d®t us now consider these equations in more detail. The non-
ordinates is known onqegw), pgR), péw), andp(R) are known. linear function f(z;, u) that appears in the odometry model
The distance between the positigni$ andp$™ should notbe (9) can for a synchro-drive robot be taken as
too long because this could cause a significant odometry drift

- . : (W) Dy,
effect between the landmark positions. In our implementation (xr ) +——
we use a separation distance of about 4—7 m, but this d|stanje_
is dependent on the kind of grpgnd surface the robot moves n— (yp\’)) +ﬁ(cos(/3k+ock+A/3k)—Cos(ﬁk—i—ak))
as well as the odometry precision of the robot. Summing up, ko A

tfge )prog:egiure of (m?ving the robot between pairs of positions Ok
W) (W W
pi »py ,---,pp ~ Canbe repeated so that a complete refyhere p, is the relative distance movement between time step

erence map of landmarks is obtained. k andk + 1 and A3, is the change in motion direction. The
input signak:;, of the Kalman filter is a vector containing these
odometry signals, i.eu; = (Dy, ABx)T. From prediction (9)
Consider a robot navigating in an indoor environment witlis seen that the orientation angtds predicted to remain con-
the TBF algorithm running in the background, and that a refegtant. A more accurate robot model would include an extra state

Zry1ppt1r = Trgrp + Kir1€h+1 (14)

(Sin(ﬂk + o, +A/3k) —Sin(ﬁk—i—ak))

B. Pose Tracking

ence map of landmarke™) = {£{™) L) LIV} is  representing the drift in orientation. In this approach, the ori-
available in world coordinates. The robot position in world cooentation drift is assumed to be estimated and compensated for

dinates is denote(iv,(,w), y,(,w)) and the orientation is capturedenough by many triangulation point measurements.
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In (10), the state covariance is predicted. Here it is impor- 1) Robot Pose Measurementhe measuremeny,gl)
tant to model the process noise matgjx appropriately. Prefer- pearing in (6) is a direct measurement of the robot pose, i.e.,
ably @;, should be chosen so that if the robot moves from poisf () = J. In fact,y,(f) is a nonlinear measurement of the state,
A to point B with no other sensing than odometry, then theut we have chosen to hide these nonlinearities within the
state covariance prediction when reaching pdishould be measurement covariance matdiﬁél). The state measurement
the same independently of the odometry sampling frequengy®) s obtained by solving a maximum-likelihood estimation
The matrix@;. should also be chosen so that the predicted sta§gyblem which is formulated as
covariance become realistic not only over short distance move-
ments, but also for long distances. In [11] it is described how to 1) (Z
model the process noise mat€, for a differential-drive robot. e = afgm'”z f 922 (18)
This model technique can be extended to also encompass a syn- =1
chro-drive robot. In the experiments presented in Section III-Df(i)(x) _ (Ti(W) _LZ(W)> PT—_l(W) (Ti(W) _LZ(W)> . (19)
a synchro-drive Nomad 200 robot is used, and hence the process i
noise matrix?; is modeled based on this fact [7]. Three paran .o T(VV) P(VV)

eters need to be set in the synchro-drive mokigl, ka, ande ) denotes a recent triangulation point pro-

duced by the TBF algorithm and"") = (z (V?), U(L“)) is a

where . :
natural point landmark in the reference map"). The triangu-
- (W ;
O—%k = kp|Dx| U?A,@k = k§|A/3k| + k,@D|Dk|_ lation pomtTi( ) has beAeQV[))assed through two types of valida-
tion gates to assure thﬁf is a measurement of the natural
In our implementation these parameters are set to point landmarkZ". These validation gates will be discussed

_ ) in more detail later. In the objective function of (18) it is seen
k’; =0.005 m~/m that 7" and P{* are given in world coordinates, but these
kg =6.3- 107¢ rad’/rad guantities will in pract|ce be given in robot coordinates by the
kP =0.0005 rad/m. TBF aIgonythm. Trle transformation (16) could be used to relate

7 Ti(“), Pg‘) with TfR), Pg‘) as

The parametekp, reflects the variance in the distance traveled

while kg andk? captures the variance in motion direction when . W), ~(R) x,(,R) x,(,w)

the robot is steering and moving, respectively. The parameter: (@) = Roo) | 1 = y{R) + y{VV) (20)
choices are conservative to be sure to capture the odometry drift, W) (R) T ' '

for instancek, = 0.005 m2/m means a drift of about 0.07 m/im.  £r; () = Be()Pr,” R, (a). (21)

From (10) and (15) it is evident that the prediction part of the

Kalman filter will increase the state covariance maffixwhile F70mM these expressions it is seen that the( funcﬁ@?((g) ) is

the measurement part will decrease it. WhBn decreases, State dependent. If we denote the elements &f andPy.” by

the Kalman filter converges and measurements are gradually . () @)

weighted less, which implies that the state estimigtbecomes 700 _ < T ) P(R) D3

static. To prevent this, the diagonal element$pfire bounded I, (z) pgi)

from below as

)2 and substitute (20) and (21) into the objective function (18), we
. obtain

pi1, p22 = (0.1 m)*  pgg > (20 1800

P20 ()726) o () () \p ()
The Kalman filter is obviously represented in world coordinates, f()(;) = hy " (a )+p1(‘)h2(‘) _221(’3) hy” (x)hy”(x)

since the state is in world coordinates. The data obtained from Pi'Ps’ — D3
odometry and sonars is however given in robot coordinates, and; () A (R) ( (W) (W))
. . ’ x)=a7, — T, +cos(a)lx " —x;
hence it need to be converted to world coordinates. Therefore, a * () B () L
state-dependent transformation is introduced that take an arbi- + sin(a) (yp\’) _ a;(rV_V))

trary pointp from robot to world coordinates ‘ | |
R (2) = gz, — 5 — sin(a) (a;,(“) B a:(LV_”)

(R) ~ (W) ‘
W) _ - R Lr Lr ; W
Ro(4) = cos(d) —sin(d) 17 The minimization of (18) can now be done numerically with
TS sin(& cos(@)/) a Newton—-Raphson searghAs an initial estimate of the

statez, the current Kalman filter state predictici), ;i is
Here (), "), &) is the current pose estimate and used. This estimate can be expected to be close to the optimal
(=, yfR)) is the most recent robot position obtained frorgolution if the pose tracking is working accurately. When the
sampled odometry data. In the following sections we will uddewton—Raphson search is run in practice, it usually converges
(16) and describe, in detail, how the robot

(1) q @) pose mea‘c’uremeng’%he necessary gradient and Jacobian expression involved in the
andy,,

are performed. Newton—Raphson search are given in the Appendix.
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to an optimal solutionc°P* within two to three iterations. As
convergence criterion we use

0.01m

2+ _p®)| < | 001 m

180°

The optimal solutiorz°P is then taken as a state measurement
L
u e,

Ei?. 9. Using the one standard deviation uncertainty ellipses of the points
T80, T80, LYY and L§™ the distribution of the distancesr, ; andd;,

y;(tl) = 2Pt can be approximated as in (22) and (23).
Concerning the measurement covariance md?lfﬁz a conser- 1 - d -
vative approach is taken by setting constant variances Pen = min 4 o | 3° +/pss + oo- ), 15° :
PP y 9 2 180° drr 180°
0.84 m)?2 0 0 . . . ~
) ( 0 ) (0.84 m)?2 0 If the triangulation point measuremeﬁj;(R) happens to fall
Ré): ' . |- within several validation gates, then the closest reference
0 0 (100 i ) map landmark is chosen as a partner. Using this technique
180° to pair triangulation point measurements with reference map
Since the measuremergtg) yél) yél) __infact are corre- landmarks, a landmark candidate pair’Bet generated

lated? the noise variances are kept high to avoid the Kalman,_,

filter putting too much attention on the measurements. This is . i . i . .

of course not an optimal solution, but it has proven to work sur- {(TI(R)v LJ(L“)) ; (TQ(R)7 Lgm) AR (Tr(LR)7 Lgl“))} :

prisingly well. Another alternative would of course be to extend

the state model to include a correlated noise model, but astdere? is a sliding set where a painR), LEW)) is removed

from the problem of finding such appropriate model, this wouldl &) the robot has moved more than 2 m since detecting the

increase the computational cost, which is something we wantt@ngulation pointf}(R), b) a new measurementﬁfR) appears

avoid. (closer than 0.1 m), or c) the pair does not fulfill a validation
2) Landmark Validation:In Section IlI-B-1, validated land- based on relative distances. Step c) is an efficient way to remove

mark pairs(Ti(R), LEW)) are used to obtain a measurement agfost of the bad data associations in the/3dndeed if the pairs

the robot pose. In this section it is explained how these Iandmaﬂ%(R), LEW)), (TJ(R), LE»W)) € P are correct data associations,

pairs have been validated to assure tﬁﬁi) is a triangulation then the distances

point which represent a measurement of a natural point land-

mark L") € £W), dr,; =
First of all, only triangulation points satisfying; > 3 are

considered to be potential measurements of natural point lafgould be almost the same. This fact can be used to remove

marks in the reference map. The reason for choosing a low@iSe data associations from the setHowever, better distance
asures can be obtained using the covariance matrices of

threshold compared to when recording the reference map (S@@) (W) (R W) ’
tion 1ll-A) is that we want to be sure that no landmarks aré: - Li > Z; ", and L; (Fig. 9) to approximate the
missed by the TBF algorithm. TBF data that has no correspdiistributions of the distance;; anddy,; as

W) _ (W)
i J

7 jvj,(R)‘ dp., =

dence to the reference map landmarks is expected to be sorted _

away in a two-stage validation process. The first type of valida- dr,; ~N (d, A/ ff% + ff%j + ff?m) (22)
tion gate is based on the predicted distasige and angle/ g, .

between the robot positiai::"", 5) and a reference land- dr,, ~N (d, \Vor. ot ) . (23)
mark LEW). If a triangulation point measuremeffsz) should _

be associated with this landmark it is required that Hered is the true distance between the landmarksand= 15

mm is an extra term covering up for the odometry drift that
|drr, — drr| <din may be present between detectifig" ande(R). Under these
lvrr — (Vrr + &)| <t circumstances the distribution df, — dr; is

wheredgr andy gy is the distance and angle between the robot
position (zt™, ") and the triangulation point measurement dr,, — d;., ~ N | 0, \/0%7- +of +ol +toi, +o7,
Ti(R). The thresholdd,;, andi,;, are state covariance dependent ~ ~
as 7

Hence using the normalized (Mahalanobis) distance

\dz,, — dp, |

*3 - *3

g

dyp, = min {0.1 m+ y/max {p11, p22}, 0.4 m}

6Because of a sliding landmark pair $etdescribed later in text. sz‘j =
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a better distance measure is obtained. For a correct data associ-
ation the threshold

dy, <3 (24)

isused. Ifthis conditionis not met, itis interpreted as that either of
(@™, L yand(1™, L) is anincorrect data association, Yo
orboth. Tofind outwhich landmark pairsiithat are incorrect, it
isnecessary toloop over alldistandgs ; , < # j. The landmark
pair that is most frequent in not satisfying condition (24) should
be removed from the s@. This procedure is repeated until all
pair combinations irP meet the condition (24).
After validating the landmark pairs if? with respect to
relative distances, there is a good chance that the surviving
landmark pairs of? are correct data associations. Hence,
they could be used to measure the robot pose as explained . Wy W)
in Section 1ll-B-1. Note however thaP might just contain AL (@, y¢™)
a single elemen(T(R)’ L(W)) after passing the validation Fig. 10. Corridor wall measuremerits:, 1) and(p-, =) can be obtained
based on relative distances. In those cases we cannot tellsifig local Hough transforms based on triangulation points.
(T™®, LW)) is a correct data association or not, and hence no

robot pose measurement is performed in that case. Using the current state estimate the corridor wall positions

.To guarantee th.d? IS gpproprlate for updating the rqbot POS&nd orientation can be predicted in robot coordinates in terms
with respect to orientation, there should be some distance the polar coordinatessr, ¢1) and (ps, ¢). Using two
1, ¥1 2y ¥2)

o o o oot a7 - qds contere ocaly sung, ) and (s 7).
respectively, a Hough transform [18] based on triangulation
max{dr, } > 1.5m. points can be performed to actually measqye, ;) and
7 (p2, w2) (Fig. 10). In our implementation a buffer of the 50
most recent detected triangulation points is used in the Hough
C. Pose Tracking in Corridors transformg. This kind of measurement is repeated every time
The just described robot pose measurer@éﬁtis sufficient (€N new triangulation points are ava}ilable. Given for instance
for pose tracking in most rooms of office or living room sizet.he mea_suremelﬁbh o1, '([ggy)orlentatlon angle and the local
Usually these kind of rooms contains a dense set of natural pofge0rdinate of the robat; ™" can be measured as
landmarks, making it easy for the robot to update its position. (1W)
In larger areas, with a sparse set of landmarks, like corridors for @ _ % _ < P1 ) )
instance, these kind of measurements are insufficient. This has k < o ) T4+ ¢ — 1
to do with the orientation estimate becoming crucial when
the robot moves long distances in the same direction. OnlyJsing the transformation (25) this can be expressed in terms of
slight error in the orientation estimate will propagate into a larghe state variable as
position error if the robot has to move a long distance before
detecting new landmarks. In a corridor, where the robot task @ <COS(¢) sin(¢) 0) 22 g, (26)
often is to move from one room to another, the natural point ko 0 0 1 B )
landmarks of the reference map can be limited to door posts.
In the worst case, the corridor only contain smooth walls aridhese kind of corridor wall measurements need of course to be
hence no point landmarks at all are available. Because of thegéidated before actually updating the Kalman filter. For this

reasons, a second type of measurement of the roboj@se  purpose thg- ande-validation gates
introduced to handle the case when the robot visits a corridor.

The idea is to estimate the robot pose based on measurements |p1 + p2 — deorr| <4Ap
of the corridor width and orientation. Suppose the corridor is o1 — @a| — 7| < Ay
modeled as a rectangle with a local coordinate system placed

W) (W . N
at (z{™, »™) (Fig. 10). To be general, the™)-axis is as- are ysed wheré,.,. is the corridor width and\p, Ay is the

sumed to be tilted an angig relative to the world coordinate resolution of the local(p, ¢)-grids. In our implementation
z-axis. The relation between these two coordinate systemsn$ — .05 m andAg = 1° and the local grids are of size
then given by (deor:/Ap) x 20. The largep-validation gate 4Ap) is due to
/ / the fact that the corridor width actually may vary a bit. The co-
z(V) _{ cos(¢) sin(¢) 2 (W) V) y may vary
yW) )\ —sin(¢) cos(e) yTW)

“No restriction is put on the parameters and Pr in this case since a tri-
angulation point with lowr, value and largeP actually is likely to originate
(25) from a smooth object, e.g., a corridor wall.

y((:VV)
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Fig.11. Thisfigure illustrates the performance of the pose tracker when being applied to a Nomad 200 robot moving over 1 km in a large scale amoenenvir
Middle boxed picture shows pure odometric data and the outer picture shows the estimated trajectory in world coordinates placed on top of adadddawaasur
of the building. The dark dots in the outer picture are reference map landmarks that have been used in the pose tracking. See text for more details.

variance matrixREf) of a measurement of typg,éf) is set to available which gave centimeter precision. Hence, “ground truth”
was known when doing the tuning. After one year (1), a 1-km new

) (lp1 4 p2 — door:| +0.2 m)? 0 odometry, sonar and laser data set was collected from the envi-
REC ) = L T \2 ronment. The pose tracker was then again run off-line using the
0 ( 1800) one year old reference maps (one map per room). Some of the

reference maps were up to date and some were not because of
where the 0.2 m again has to do with covering up for varyingfurnishing. The result from this experiment is documented in
width of the corridor. Fig. 11. The middle boxed picture shows the collected odometry
Finally it is Worth noting that the complexity of a measureang sonar data. The grey solid line is the robot trajectory and the
ment of typey.” is low because of the Hough transform combjack dots building up the walls of the rooms and corridors are all

plexity being linear with the number of points used. the triangulation points produced by the TBF algorithm. In total
) the orientation angle drifted about 300 during this data collec-
D. Experiments tion, i.e., onaverage 0:3m. The driftwas, however, not constant

To test the proposed pose tracker, a large scale indoor ergiiice it depended on the configuration of the three wheels of the
ronment was chosen, containing 15 rooms and three long corgibot with respect to the current motion direction. In the worst
dors. A world coordinate system was defined with the origin i@ase, the drift was about 0,8m.
the living room (see Fig. 8). Landmarks were then recorded forThe outer picture shows how the pose tracker has compen-
each room/corridor according to the guidelines of Section IlI-Aated the robot trajectory, which has been plotted on top of
After this, a 1.8-km odometry and sonar data set was collectedirawing of the environment (hand measured in world coor-
for off-line tuning of the pose tracker. The various parametedinates). The black circles appearing in this figure are land-
(validation gates etc.) were then trimmed and chosen as sp&carks in the reference maps that have been used during the
fied in Sections IlI-B and 11I-C. A fact that simplified the tuningpose tracking. As seen from this picture only a few landmarks
was that data from a well established laser pose tracker [6] wasre matched in certain areas, like for instance the left corridor,
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Fig. 12. Repeated experiment from Fig. 11 but without using the wall measurements in the corridors. The degrade in performance is clear. Wratedhe estim
robot pose differed from the true pose more than 3 m, the sonar pose tracker was reset. In this run the sonar pose tracker was reset seven times.

which contains few doors, and the room marked “Lab,” whictWhen comparing the sonar pose tracker data with corresponding
had been completely refurnished since the acquisition of the rd&ta from the laser pose tracker, the state estimates was found to
erence map. Inthe left corridor the pose tracker was very depée-almost overlapping, differing only a few centimeters in most
dent on the Hough transform-based measurements of the oriemses. However, at one instance the sonar pose tracker failed
tation angle and robot position. In the Lab the robot had to suradly in its estimate. If looking closer at Fig. 11 an arrow marks
vive on pure odometry information. a place where the sonar pose tracking estimate almost diverged
The pose tracker was implemented in a way so that the rol§atmost crossing corridor wall) but being saved by Hough mea-
not only used the reference map corresponding to the roonsitrement corrections against the corridor walls. It was the lack
was currently visiting, but also the reference maps of the adjacefiHough measurements earlier on that caused a somewhat bad
rooms. This made it possible to track landmarks in several rooorgentation estimate propagating into a large position error. The
atthe sametime, whichisimportantwhenthe robotshould chargek of hough measurements could be blamed on that in an ear-
room. The presence of thresholds in door openings can easigy part of this corridor one of the walls was missing, which had
cause sudden changes in the robot pose and hence it is impomanteen modeled in our map.
to have access to as many landmark measurements (door post$d illustrate how the corridor wall measurements influence
as possible in such cases. Since the pose tracker had informattienperformance of the pose tracker, the experiment was re-
about where the doors should be in world coordinates, it coyp@ated, but with the Hough component removed. The result is
estimate when it actually crossed a door opening. When a rodhastrated in Fig. 12 where the degrade in performace is clear. In
change occurred, or was believed to occur, extra uncertainty vilais experiment, the sonar pose tracker was reseted by the laser
added to the state covariance matrix to cover up for slippage grabke tracker whenever the robot pose estimate differed more

rotation errors when crossing a threshold than 3 m. This happened seven times during the run. Hence,
wall measurements are necessary for acceptable performance

p11 = (v/p1r +0.15 m)2 in corridors. Note that this result implies that the presented pose

p22 = (\/pa2 +0.15 m)2 tracker may perform badly in a large room with a sparse set of

. T \2 landmarks and no wall measurements available. From the exper-
Pz = (vp33 +1 1800) iment in Fig. 12, the just mentioned example is best illustrated
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in the left vertical corridor. The pose tracker diverged twice in
this corridor when not having access to wall measurements, both
times due to an orientation error propagated into a large position
error when the robot passed areas with only a few landmarks.
Although this corridor contain an area with a dense population
of landmarks, the position error had already become too large
when the robot entered this area. Basically the robot becomes
lost when the position error has grown above the maximum size
of the landmark validation gates. This fact can be used to trig
local re-localization of the robot. Indeed it is strong evidence
for divergence of the Kalman filter if the landmark validation
gates have grown to maximum size and the robot still fails to
validate landmarks, although being in a dense landmark area
(implied by state estimate and reference maps). When re-local-
izing the robot locally or globally, one could for instance use
old Monte Carlo techniques that lately have become popular in
mobile robotics [4], [8], [9]. Contrary to the Kalman filter, these
methods can handle a multimodal non-Gaussian distribution of
the robot pose, but at the expense of an increased computational
cost.

IV. CONCLUSIONS

A sensor fusion scheme called TBF of sonar data has been
presented. The method produce stable estimates of static (ver-
tical) edges in the environment and can be run at a low com-
putational cost. There are many applications for the TBF al-
gorithm in mobile robotics, for instance mapping and localiza-
tion. In this article the case of robot pose tracking was studied.
The performance of the pose tracker was shown to be robust in
most parts of a large scale indoor office environment. The ex-
perimental section also indicated under what circumstances the
pose tracker might fail, i.e., in large rooms with areas containing
only a sparse set of landmarks. For more information about the
TBF algorithm and its application areas, see [8], [20], and [21].

APPENDIX
GRADIENT AND JACOBEAN EXPRESSIONS

In the Newton—Raphson minimization of the object function
(18) the gradient and Jacobian expressioiiéf(x) is needed.
These formulas are given as follows:

_ 2

Py — 3
97 (@) cos(a) -
97 (@) sina) +

VF®(x)

98 (x) sin(a)

95)(x) cos(a)

oo dh$ Gy dhd
@) g 9y (@)
g (@) =p5 0 (@) = p” 1y (x)
05" (2) =p () = pn) (@)
dhgi) : W) _ (W) y W) (W)
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