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From Sensors to Human Spatial Concepts:
An Annotated Data Set

Zoran Zivkovic, Olaf Booij, Ben Kröse, Elin A. Topp,
and Henrik I. Christensen

Abstract—An annotated data set is presented meant to help researchers
in developing, evaluating, and comparing various approaches in robotics
for building space representations appropriate for communicating with
humans. The data consist of omnidirectional images, laser range scans,
sonar readings, and robot odometry. A set of base-level human spatial
concepts is used to annotate the data.

Index Terms—Human–robot interaction, map building, robot space
representation.

I. INTRODUCTION

Mobile robots are expected to become part of our daily life in the
near future. Numerous studies show that people tend to perceive robots
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as social actors and not just tools, and therefore, expect to communicate
with them in a natural way [1], [6], [22]. One of the basic skills of the
future home robot is goal-directed navigation, including localization,
path planning, and path following. This requires an internal model of
the environment. Traditionally, mapping and localization have focussed
on metric properties and the feature model has typically been point
and line based. In general, metric place specification is a poor match to
human instructions; it is more natural to use cognitive concepts used by
humans when communicating about the space, e.g., rooms. In addition,
object type entities, a common human concept related to space, should
be included in the robot space representation.

In this sense, the problem is basically a pattern recognition problem.
Most pattern recognition approaches use large data sets to learn to rec-
ognize concepts. In many application fields (object recognition, speech
understanding), annotated databases of sensory data and corresponding
labels (concepts) are available [21]. The databases currently available
in the robotics community are mainly focused on the geometrical rep-
resentations [8]. In order to make progress on learning conceptual
representations of space, it is essential to have access to appropriate
annotated data sets that enable supervised learning and performance
benchmarking against ground truth. It would be ideal to have huge data
sets from extensive user studies for various situations. However, it is
difficult to provide such a general data set and it is realistic to start with
some specific scenarios that might be of broad interest. In this brief, we
present a data set that is closely related to the so-called “home tour”
scenario. This scenario describes a hypothetical situation in which a
person receives a new robot and shows the robot how the home looks
like. The data set contains sensor readings from some typical sensors
used in robotics. Furthermore, we define a set of base-level human spa-
tial concepts and annotate the data. The annotation contains the room
where each sensor reading was recorded and the objects visible in the
current omnicam image. A flexible annotation tool is provided to allow
for other annotations.

In Section II of this brief, we give a short overview of the cur-
rent research in robotics that address the problem of building spatial
representations that are suited for communication with humans. In ad-
dition, references to the more widely studied domain of localization
and mapping are presented. Some links are also made to the related
research activities in the cognitive science and computer vision. In
Section III, we describe the structure of the provided data set, the de-
sign principles, and some related practical issues. Section IV identifies
the type of evaluation schemes that can be performed using the pre-
sented data set. The conclusions and our final remarks are listed in
Section V.

II. RELATED WORK

Most traditional map-building methods in robotics represent ge-
ometric properties of the environment, such as occupancy grids or
polygonal representations of free space [3]. Another common space
representation in robotics is the topological map. A topological map
[2], [9], [14] describes the environment as a graph structure with
nodes representing distinctive places and edges representing possible
transitions.

The traditional maps in robotics are mainly related to the robot
navigation task. In order to design space representations appropriate
for communicating with humans, extensive user studies and results
from cognitive psychology are often considered. In “The intelligent
use of space” [11], Kirsh stated that to understand complex (human)
models of an environment, we have to observe the interaction of the
(human) agent with and within the environment. An example of a
robot map representation based on findings from cognitive psychology
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Fig. 1. One of the robots we used for collecting data. The camera axis is ap-
proximately aligned with the robot center of rotation. The scanner was mounted
so that the origin of the scans had an offset of ≈70 mm in the direction of the
x-axis of the robot.

research is the “Spatial Semantic Hierarchy” by Kuipers [13], enabling
a robot to explore an environment autonomously along the lines of
human exploration strategies. Furthermore, a number of researchers
report human–robot interaction studies in a guided tour scenario in
which a person is guiding a robot [7], [15], [24], [26]. Kruijff et al. [12]
consider the issue of clarification dialogues in ambiguous situations
of a guided tour. Another important issue is the adaptation of the
environment model to the current situation, i.e., personalization. A
number of observations from human–robot interaction user studies [7],
[24] support the assumption that personal preferences result in quite
large variations in what the persons actually presented to the robot
during a guided tour.

The reported human–robot interaction studies indicate that hierar-
chical (or partially hierarchical) models, as could be confirmed with
psychological studies [17], become explicit in the interaction of a hu-
man with a robot and form a useful base for communication. An indoor
environment is typically divided into “delimited regions” (e.g., rooms).
The second common concept is that of “object.” Particular positions
are often described by the relationship to large objects. Our annotation
contains objects and rooms in indoor environments.

III. ANNOTATED DATA SET

We describe here how we collected the data and the base-level
human spatial concepts we used to annotate the data. The data set with
annotations is available from: www2.science.uva.nl/sites/cogniron.

A. Data Gathering

The acquisition of the data set took place in three home environ-
ments, see Fig. 2. The mobile robot was driven around by tele-operation
to collect the data, see Fig. 1. The following sensors were used.

1) Omnidirectional camera: On average, 7.5 omnidirectional im-
ages per second were taken by a camera with a hyperbolic mir-
ror. The 1024 × 768 pixel images are in YUV422 color format.
The camera is calibrated and images for calibration are avail-
able. More information on the omnidirectional vision sensor is
presented in the related technical report [28]. The pose of the
camera with respect to the robot is known, and a Matlab toolbox
is provided for performing basic geometric transformations.

2) Laser scanner: A SICK-laser (LMS-200) was used to record
range scans at the front of the robot. The scanner was running in

Fig. 2. 2-D maps of the home environments where the data was recorded. The
location of the furniture in the drawing is approximate.

millimeter precision, 0.5◦ angular resolution over 180◦ and had
approximately 8 m maximum range. On average 3.5 scans were
conducted per second.

3) Odometry + sonar: On average, 12 odometry measurements
per second were taken. Because the robot has solid wheels, the
odometry is quite accurate. At the same time, the current values
of the 16 ultrasonic sonar sensors were recorded giving a 360◦

range scan.
These are the sensors typically used for map building in robotics. An
omnidirectional camera was chosen to provide the maximum field of
view for navigation. In addition, “low-resolution” rectified images can
be resampled from the omnidirectional camera.

The robot was driven through the environment under three different
types of conditions.

1) Clean data: We performed two tours by driving the robot at a
more or less constant speed, without many people around and
with constant lighting.

2) Noisy data: Two tours were performed by driving the robot with
people walking around and with more difficult lighting. Further-
more, a number of objects were moved or changed in appearance.
These tours were intended to generate more challenging data.

3) Home tour data: Finally, we simulated the so-called home tour
scenario where a person is leading the robot around an environ-
ment. Again, two tours are performed with two different persons
leading the robot. These data are different from the previous runs
since there is always a person close to the robot, and the persons
tend to stop the robot at certain places in the environment to give
explanations about the environment. These data were not meant
as a user study, but just to simulate the type of sensory inputs the
robot would receive in such a situation.

For our small home environments, each run took just a few minutes.
The robot followed a different path in each run. The laser data and the
odometry from one of the runs are shown in Fig. 3. For each type
of conditions mentioned before, we recorded two runs assuming that
typically there will be one training run used to build and learn the
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Fig. 3. Laser scan data and the extracted geometric properties, home 1.
(a) Range scans and odometry, (b) Range scans and odometry aligned using
SLAM procedure [10], (c) Object visual hull reconstructed from annotations.

environment representation and the second run can be used for eval-
uation. It is more challenging to use training and testing runs with
different conditions.

B. Base Level Concepts and Data Annotation

We constrain ourselves here to a simple but still rich set of spatial
concepts. An indoor environment is typically divided into rooms. The
second common concept is that of “object.” We selected a number of
prominent objects from the environment. The person who annotated
the data was supplied with a list of objects, and the task was to segment
the objects in the omnidirectional images taken from the robot. The
task was also to decide when the robot entered each of the rooms based
on the images. The structure of the XML annotation is given in Fig. 4
and Fig. 5 illustrates the annotation.

C. Toolbox

In order to allow the researchers a quick start, we provide a Mat-
lab toolbox with a set of functions for accessing the data; the data
annotations, and the information about sensor calibration and their
positioning on the robot. The provided functions can be divided into
following groups.

1) Geometrical: A set of functions that can be used to perform vari-
ous geometric transformations on the sensory data. For example,
a laser scan can be transformed to 3-D world coordinates with
respect to the robot, and then, these points can be projected to
the omnidirectional camera image.

Fig. 4. Basic structure of the XML annotation.

Fig. 5. Example annotated omnidirectional image. The visible objects and
persons are segmented using the polygonal lines. The current robot position is
denoted as being in the corridor area.

2) Annotation: A data annotation tool is provided visualizing and
generating new annotations.

3) Demonstrations: A set of demonstration scripts that illustrate
usage of the functions from the toolbox. The images from Fig. 3
are the result of a demo script.

Finally, the provided XML annotation can be transformed to the
“Label Me” object database format [21].

IV. EVALUATION METHODS

Proper evaluation of a robot space representation that contains hu-
man cognitive spatial concepts would consist of extensive user studies
where users would interact with the robot in various scenarios. How-
ever, it is realistic to start with some specific scenarios and evaluation
criteria that might be of broad interest. We concentrate on the so-called
“home tour” scenario and identify the following type of evaluation
criteria that can be performed using the presented data set.

A. Object and Location Instance Recognition

One could simulate a realistic learning situation by using the anno-
tation from one run to learn the representation. The annotation from
another run from the same environment can be used for the evaluation.
The evaluation would consist of testing if the robot can recognize if
it revisits a certain location, e.g., room. Recognition of location was
reported on the basis of range data [20], [23], or on the basis of visual
information [27]. A related topic is the “scene recognition” in image re-
trieval applications [4]. The robot should also be able to recognize and
localize the objects when it observes them again. Object recognition
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is well studied in the computer vision area and robust algorithms are
available [16]. While the annotation can be used for evaluating standard
algorithms for either recognizing locations or recognizing objects, we
encourage algorithms combining these two [25] and also combining
the information from different sensors.

B. Object and Location Category Recognition

The evaluation in the previous section assumes that the robot needs
to consider all possible objects and locations in a new environment. On
the other hand, from a more advanced home robot, we would expect
that it already has knowledge about some concepts, for example, recog-
nizing a TV, a chair, a kitchen, a living room, etc. Evaluating the object
(location) category recognition involves learning the representations
on one set of home environments and testing it on other previously
unseen environments. Currently, the data set contained just three home
environments, but this will be extended in the future. The object (loca-
tion) category recognition algorithms can also be trained on other data
sources such as other object databases [18], internet [5], etc, and tested
on the presented data set.

C. Object and Location Geometric Properties

Traditional map building methods in robotics, i.e., simultaneous
localization and mapping (SLAM), concentrate on geometric recon-
struction, which is important for robot navigation and/or the task of
object grasping. The estimated geometric properties are useful for
communicating with humans, e.g., the robot can decide if a room is
elongated, one object is larger than the other object, etc. We provide a
base line geometric reconstruction as a starting point. First, the data set
contains results of a SLAM algorithm based on laser range finder data
and line features [10], see Fig. 3(b). Geometric reconstruction of the
objects is more difficult. As a base-line approach, we provide a simple
algorithm for estimating the 2-D space occupied by the objects. The
annotation from the omnidirectional images is back-projected onto a
2-D grid and intersected, the resulting grid cells are the inferred visual
hull of the object [19], see Fig. 3(c). We also provide the hand made
drawings made by measuring various distances in the environment, see
Fig. 2. Note that the focus of data set are the semantic concepts, and the
data set is not intended to provide very precise geometric ground truth
for evaluating SLAM approaches. Furthermore, home environments
are usually not large and do not present a real challenge for current
SLAM approaches.

V. CONCLUSION

We described, in this brief, an annotated data set, its design princi-
ples, and related practical issues. We also propose a set of evaluation
criteria. We hope that the annotated data set will be useful for devel-
oping, testing, and comparing algorithms for inferring human spatial
concepts from sensory data. The data set simulates the home tour sce-
nario currently in three different home environments. In our future
work, we aim to extend our data set to more different home envi-
ronments as well to other types of environments, for example, office
environments. Furthermore, additional effort should be made in study-
ing how to compare and evaluate different conceptual representations
through extensive users studies. Recently, some initial efforts have been
reported in the EU FP6-002020 project Cogniron.
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Development of the Tactile Sensor System
of a Human-Interactive Robot “RI-MAN”

Toshiharu Mukai, Masaki Onishi, Tadashi Odashima,
Shinya Hirano, and Zhiwei Luo

Abstract—Human-interactive robots, such as those used for nursing,
which share humans’ environments and interact with them, should be
covered with soft areal tactile sensors for safety and dexterous manipula-
tion. We report the successful development of the tactile sensor system of
our human-interactive robot named RI-MAN, which can lift up a dummy
human.

Index Terms—Human-interactive robots, tactile sensors, tactile systems.

I. INTRODUCTION

With the advent of an aging society, the demand for human-
interactive robots that can help on-site caregivers by playing a part
in nursing humans, particularly the elderly, is increasing. Such human-
interactive robots share humans’ environments and interact with them,
and should be designed on the basis of different criteria from those of
conventional industrial robots.

We have developed a robot named RI-MAN [1], [2] (Fig. 1), as a
platform for physical human-robot interaction research. Our ultimate
goal for RI-MAN is to help nurse elderly people in their daily lives.
Having a size similar to a human (158 cm in height and 100 kg in
weight), RI-MAN can perform the task of lifting up a dummy human of
16 kg in its arms. To skillfully perform such tasks that involve physical
contact with humans, RI-MAN is equipped with a tactile sensor system.

Tactile sensors have interested many researchers, and various types
of tactile sensors have been proposed so far. Many tactile sensors
have been developed on the basis of microelectro-mechanical system
(MEMS) technology (for example, [3], [4]). They have a high density
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Fig. 1. RI-MAN is a platform for physical human–robot interaction research.

and narrow covering area realized by applying the MEMS technol-
ogy, and as a result, are not suitable for covering a large area of a
robot’s surface. Some tactile sensors suitable for use on robot fingers
or grippers have also been developed [5]–[7]. Many of them have the
ability to the detect tangential stress, and can be used in grasping the
force control. Their main target is robot fingers, and consequently, they
were not designed to cover a large area. There are also commercially
available tactile sensors such as those offered by Tekscan [8], based on
the pressure-sensitive ink or rubber and KINOTEX tactile sensors [9],
utilizing the change in the intensity of light scattered by the cover-
ing urethane foam when deformed. However, they are not sufficiently
accurate because of strong hysteresis and creep characteristics.

The idea of covering a large area of a robot’s surface with soft
tactile skinlike sensors is currently attracting researchers [10]. Tactile
sensors for a human-interactive robot that can manipulate objects, and
interact and communicate with humans by touch should be soft and
compatible with curved robot surfaces. The sensors also need to be able
to cover a large area and provide sufficient measurable pressure range,
measurement resolution, and spatiotemporal resolution. In addition,
the sensors should be stable over a long period, and easily replaceable
in case of a malfunction.

To realize skinlike softness, tactile sensors should be composed of
or covered with an elastic/viscoelastic material. The effect of such
materials on tactile sensors has been discussed in the literature. Fear-
ing and coworkers conducted a mechanical analysis of tactile sensors
in cylindrical fingers with a solid core and elastic surface [11]–[14].
Shimojo [15] analyzed and quantified the low-pass filtering effect of an
elastic cover. Shinoda et al. [16] proposed a tactile sensor using a tensor
cell that detects the stress in the elastic body to determine the struc-
ture of the contacting object. More recently, robotic hands with fingers
covered with the elastic material have been developed [17]–[19].

Some human-interactive robots for which a large area of their sur-
face is covered with soft tactile sensors have actually been developed
[20]–[24]. However, the tactile sensors are not suitable for human-
interactive robots, particularly when a physical labor using a tactile
sensation is required. For example, one tactile sensor in [21] has only
three values as its output, and another tactile sensor in [21] is gel-type,
and cannot be used over a long period because of the evaporation of
the contained water. The tactile sensor in [23] has only 56 elements
in total. Flexible fabric-based tactile sensors using an electrically con-
ductive fabric have also been proposed for covering a robot [20], but
the sensors are binary switches, and are difficult to fabricate. The idea
of using the resistance changes of electrically conductive strings in
fabric to obtain a strain distribution was also proposed [25], but there
are problems in the response accuracy, the stability over time, and the
complexity of the electronic acquisition system. To our knowledge, the
tactile sensor used by Ohmura et al. [24] has been the most successful
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