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Abstract. In today’s vector space information retrieval systems, dimension reduction is imper-
ative for efficiently manipulating the massive quantity of data. To be useful, this lower-dimensional
representation must be a good approximation of the full document set. To that end, we adapt and
extend the discriminant analysis projection used in pattern recognition. This projection preserves
cluster structure by maximizing the scatter between clusters while minimizing the scatter within
clusters. A common limitation of trace optimization in discriminant analysis is that one of the
scatter matrices must be nonsingular, which restricts its application to document sets in which the
number of terms does not exceed the number of documents. We show that by using the generalized
singular value decomposition (GSVD), we can achieve the same goal regardless of the relative dimen-
sions of the term-document matrix. In addition, applying the GSVD allows us to avoid the explicit
formation of the scatter matrices in favor of working directly with the data matrix, thus improving
the numerical properties of the approach. Finally, we present experimental results that confirm the
effectiveness of our approach.
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1. Introduction. The vector space–based information retrieval system, origi-
nated by Salton [13, 14], represents documents as vectors in a vector space. The
document set comprises an m × n term-document matrix A = (aij), in which each
column represents a document and each entry aij represents the weighted frequency
of term i in document j. A major benefit of this representation is that the algebraic
structure of the vector space can be exploited [1]. Modern document sets are huge
[3], so we need to find a lower-dimensional representation of the data. To achieve
higher efficiency in manipulating the data, it is often necessary to reduce the dimen-
sion severely. Since this may result in loss of information, we seek a representation in
the lower-dimensional space that best approximates the document collection in the
full space [8, 12].

The specific method we present in this paper is based on the discriminant analysis
projection used in pattern recognition [4, 15]. Its goal is to find the mapping that
transforms each column of A into a column in the lower-dimensional space, while
preserving the cluster structure of the full data matrix. This is accomplished by
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forming scatter matrices from A, the traces of which provide measures of the quality
of the cluster relationship. After defining the optimization criterion in terms of these
scatter matrices, the problem can be expressed as a generalized eigenvalue problem.

As we explain in the next section, the current discriminant analysis approach can
be applied only in the case where m ≤ n, i.e., when the number of terms does not
exceed the number of documents. By recasting the generalized eigenvalue problem in
terms of a related generalized singular value problem, we circumvent this restriction
on the relative dimensions of A, thus extending the applicability to any data matrix.
At the same time, we improve the numerical properties of the approach by working
with the data matrix directly rather than forming the scatter matrices explicitly. Our
algorithm follows the generalized singular value decomposition (GSVD) [2, 5, 16] as
formulated by Paige and Saunders [11]. For a data matrix with k clusters, we can
limit our computation to the generalized right singular vectors that correspond to the
k−1 largest generalized singular values. In this way, our algorithm remains computa-
tionally simple while achieving its goal of preserving cluster structure. Experimental
results demonstrating its effectiveness are described in section 5 of the paper.

2. Dimension reduction based on discriminant analysis. Given a term-
document matrix A ∈ R

m×n, the general problem we consider is to find a linear
transformation GT ∈ R

l×m that maps each column ai, 1 ≤ i ≤ n, of A in the m-
dimensional space to a column yi in the l-dimensional space:

GT : ai ∈ R
m×1 → yi ∈ R

l×1.(1)

Rather than looking for the mapping that achieves this explicitly, one may rephrase
this as an approximation problem where the given matrix A is decomposed into two
matrices B and Y as

A ≈ BY,(2)

where both B ∈ R
m×l with rank(B) = l and Y ∈ R

l×n with rank(Y ) = l are to be
found. Note that what we need ultimately is the lower-dimensional representation Y of
the matrix A, where B and Y are both unknown. In [8, 12], methods that determine
the matrix B have been presented. In those methods, after B is determined, the
matrix Y is computed, for example, by solving the least squares problem [2]

min
B,Y

‖BY −A‖F ,(3)

where B and A are given. The method we present here computes the matrix GT

directly from A without reformulating the problem as a matrix approximation problem
as in (2).

Now our goal is to find a linear transformation such that the cluster structure
existing in the full-dimensional space is preserved in the reduced-dimensional space,
assuming that the given data are already clustered. For this purpose, first we need
to formulate a measure of cluster quality. To have high cluster quality, a specific
clustering result must have a tight within-cluster relationship while the between-
cluster relationship has to be remote. To quantify this, in discriminant analysis [4,
15], within-cluster, between-cluster, and mixture scatter matrices are defined. For
simplicity of discussion, we will assume that the given data matrix A ∈ R

m×n is
partitioned into k clusters as

A = [A1 A2 · · · Ak], where Ai ∈ R
m×ni , and

k∑
i=1

ni = n.
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Let Ni denote the set of column indices that belong to the cluster i. The centroid c(i)

of each cluster Ai is computed by taking the average of the columns in Ai, i.e.,

c(i) =
1

ni
Aie

(i), where e(i) = (1, . . . , 1)T ∈ R
ni×1,

and the global centroid is

c =
1

n
Ae, where e = (1, . . . , 1)T ∈ R

n×1.

Then the within-cluster scatter matrix Sw is defined as

Sw =

k∑
i=1

∑
j∈Ni

(aj − c(i))(aj − c(i))T ,

and the between-cluster scatter matrix Sb is defined as

Sb =

k∑
i=1

∑
j∈Ni

(c(i) − c)(c(i) − c)T

=

k∑
i=1

ni(c
(i) − c)(c(i) − c)T .

Finally, the mixture scatter matrix is defined as

Sm =

n∑
j=1

(aj − c)(aj − c)T .

It is easy to show [7] that the scatter matrices have the relationship

Sm = Sw + Sb.(4)

Writing aj − c = aj − c(i) + c(i) − c for j ∈ Ni, we have

Sm =

k∑
i=1

∑
j∈Ni

(aj − c(i) + c(i) − c)(aj − c(i) + c(i) − c)T(5)

=
k∑

i=1

∑
j∈Ni

[(aj − c(i))(aj − c(i))T + (c(i) − c)(c(i) − c)T ](6)

+

k∑
i=1

∑
j∈Ni

[(aj − c(i))(c(i) − c)T + (c(i) − c)(aj − c(i))T ].(7)

This gives the relation (4), since each inner sum in (7) is zero.
Defining the matrices,

Hw = [A1 − c(1)e(1)
T

, A2 − c(2)e(2)
T

, . . . , Ak − c(k)e(k)T ] ∈ R
m×n,(8)

Hb = [
√
n1(c

(1) − c),
√
n2(c

(2) − c), . . . ,
√
nk(c

(k) − c)] ∈ R
m×k,(9)
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and

Hm = [a1 − c, . . . , an − c] = A− ceT ∈ R
m×n,(10)

the scatter matrices can be expressed as

Sw = HwH
T
w , Sb = HbH

T
b , and Sm = HmH

T
m.(11)

Note that another way to define Hb is

Hb = [(c(1) − c)e(1)
T

, (c(2) − c)e(2)
T

, . . . , (c(k) − c)e(k)T ] ∈ R
m×n,

but using the lower-dimensional form in (9) reduces the storage requirements and
computational complexity of our algorithm.

Now, trace(Sw), which is

trace(Sw) =

k∑
i=1

∑
j∈Ni

(aj − c(i))T (aj − c(i)) =

k∑
i=1

∑
j∈Ni

‖aj − c(i)‖2
2,(12)

provides a measure of the closeness of the columns within the clusters over all k
clusters, and trace(Sb), which is

trace(Sb) =

k∑
i=1

∑
j∈Ni

(c(i) − c)T (c(i) − c) =

k∑
i=1

∑
j∈Ni

‖c(i) − c‖2
2,(13)

provides a measure of the distance between clusters. When items within each cluster
are located tightly around their own cluster centroid, then trace(Sw) will have a small
value. On the other hand, when the between-cluster relationship is remote, and hence
the centroids of the clusters are remote, trace(Sb) will have a large value. Using the
values trace(Sw), trace(Sb), and relationship (4), the cluster quality can be measured.
In general, when trace(Sb) is large while trace(Sw) is small, or trace(Sm) is large while
trace(Sw) is small, we expect the clusters of different classes to be well separated and
the items within each cluster to be tightly related, and therefore the cluster quality
will be high. There are several measures of cluster quality which involve the three
scatter matrices [4, 15], including

J1 = trace(S−1
w Sb)(14)

and

J2 = trace(S−1
w Sm).(15)

Note that both of the above criteria require Sw to be nonsingular or, equivalently, Hw

to have full rank. For more measures of cluster quality, their relationships, and their
extension to document data, see [6].

In the lower-dimensional space obtained from the linear transformation GT , the
within-cluster, between-cluster, and mixture scatter matrices become

SY
w =

k∑
i=1

∑
j∈Ni

(GTaj −GT c(i))(GTaj −GT c(i))T = GTSwG,

SY
b =

k∑
i=1

∑
j∈Ni

(GT c(i) −GT c)(GT c(i) −GT c)T = GTSbG,

SY
m =

n∑
j=1

(GTaj −GT c)(GTaj −GT c)T = GTSmG,
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where the superscript Y denotes values in the l-dimensional space. Given k clusters in
the full dimension, the linear transformation GT that best preserves this cluster struc-
ture in the reduced dimension would maximize trace(SY

b ) and minimize trace(SY
w ).

We can approximate this simultaneous optimization using measure (14) or (15) by
looking for the matrix G that maximizes

J1(G) = trace((GTSwG)
−1(GTSbG))

or

J2(G) = trace((GTSwG)
−1(GTSmG)).

For computational reasons, we will focus our discussion on the criterion of maximizing
J1. Although J1 is a less obvious choice than the quotient

trace(GTSbG)/trace(G
TSwG),

it is formulated to be invariant under nonsingular linear transformations, a property
that will prove useful below.

When Sw = HwH
T
w is assumed to be nonsingular, it is symmetric positive definite.

According to results from the symmetric-definite generalized eigenvalue problem [5],
there exists a nonsingular matrix X ∈ R

m×m such that

XTSbX = Λ = diag(λ1 . . . λm) and XTSwX = Im.

Letting xi denote the ith column of X, we have

Sbxi = λiSwxi,(16)

which means that λi and xi are an eigenvalue-eigenvector pair of S−1
w Sb, and

trace(S−1
w Sb) = λ1 + · · ·+ λm.

Expressing (16) in terms of Hb and Hw and premultiplying by xTi , we see that

‖HT
b xi‖2

2 = λi‖HT
wxi‖2

2.(17)

Hence λi ≥ 0 for 1 ≤ i ≤ m.
The definition ofHb in (9) implies that rank(Hb) ≤ k−1. Accordingly, rank(Sb) ≤

k − 1, and only the largest k − 1 λi’s can be nonzero. In addition, by using a permu-
tation matrix to order Λ (and likewise X), we can assume that λ1 ≥ · · · ≥ λk−1 ≥
λk = · · · = λm = 0.

We have

J1(G) = trace((SY
w )−1SY

b )

= trace((GTX−TX−1G)−1GTX−TΛX−1G)

= trace((G̃T G̃)−1G̃TΛG̃),

where G̃ = X−1G. The matrix G̃ has full column rank provided G does, so it has the
reduced QR factorization G̃ = QR, where Q ∈ R

m×l has orthonormal columns and
R is nonsingular. Hence

J1(G) = trace((RTR)−1RTQTΛQR)

= trace(R−1QTΛQR)

= trace(QTΛQRR−1)

= trace(QTΛQ).
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This shows that once we have diagonalized, the maximization of J1(G) depends only
on an orthonormal basis for range(X−1G); i.e.,

max
G

J1(G) = max
QTQ=I

trace(QTΛQ)

≤ λ1 + · · ·+ λk−1 = trace(S−1
w Sb).

When l ≥ k − 1, this upper bound on J1(G) is achieved for

Q =

(
Il
0

)
or G = X

(
Il
0

)
R.

Note that the transformation G is not unique in the sense that J1(G) = J1(GW ) for
any nonsingular matrix W ∈ R

l×l since

J1(GW ) = trace((WTGTSwGW )−1(WTGTSbGW ))

= trace(W−1(GTSwG)
−1W−TWT (GTSbG)W )

= trace((GTSwG)
−1(GTSbG)WW−1) = J1(G).

Hence, the maximum J1(G) is also achieved for

G = X

(
Il
0

)
.

This means that

trace((SY
w )−1SY

b ) = trace(S−1
w Sb)

whenever G ∈ R
m×l consists of l eigenvectors of S−1

w Sb corresponding to the l largest
eigenvalues. Therefore, if we choose l = k − 1, dimension reduction results in no loss
of cluster quality as measured by J1.

Now, a limitation of the criterion J1(G) in many applications, including text
processing in information retrieval, is that the matrix Sw must be nonsingular. For
Sw to be nonsingular, we can allow only the case m ≤ n, since Sw is the product of
an m × n matrix, Hw, and an n × m matrix, HT

w . In other words, the number of
terms cannot exceed the number of documents, which is a severe restriction. We seek
a solution which does not impose this restriction, and which can be found without
explicitly forming Sb and Sw from Hb and Hw, respectively. Toward that end, we use
(17) to express λi as α

2
i /β

2
i , and the problem (16) becomes

β2
iHbH

T
b xi = α2

iHwH
T
wxi.(18)

(λi will be infinite when βi = 0, as we discuss later.) This has the form of a problem
that can be solved using the GSVD [5, 11, 16], as described in the next section.

3. GSVD. The following theorem introduces the GSVD as was originally defined
by Van Loan [16].

Theorem 1. Suppose two matrices KA ∈ R
m×n with m ≥ n and KB ∈ R

p×n

are given. Then there exist orthogonal matrices U ∈ R
m×m and V ∈ R

p×p and a
nonsingular matrix X ∈ R

n×n such that

UTKAX = diag(α1, . . . , αn) and V TKBX = diag(β1, . . . , βq),

where q = min(p, n), αi ≥ 0 for 1 ≤ i ≤ n, and βi ≥ 0 for 1 ≤ i ≤ q.
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This formulation cannot be applied to the matrix pair KA and KB when the
dimensions of KA do not satisfy the assumed restrictions. Paige and Saunders [11]
developed a more general formulation which can be defined for any two matrices with
the same number of columns. We restate theirs as follows.

Theorem 2. Suppose two matrices KA ∈ R
m×n and KB ∈ R

p×n are given.
Then for

K =

(
KA

KB

)
and t = rank(K),

there exist orthogonal matrices

U ∈ R
m×m, V ∈ R

p×p, W ∈ R
t×t, and Q ∈ R

n×n

such that

UTKAQ = ΣA(W
TR︸ ︷︷ ︸
t

, 0︸︷︷︸
n−t

) and V TKBQ = ΣB(W
TR︸ ︷︷ ︸
t

, 0︸︷︷︸
n−t

),

where

ΣA
m×t

=


 IA

DA

0A


 , ΣB

p×t
=


 OB

DB

IB


 ,(19)

and R ∈ R
t×t is nonsingular with its singular values equal to the nonzero singular

values of K. The matrices

IA ∈ R
r×r and IB ∈ R

(t−r−s)×(t−r−s)

are identity matrices, where the values of r and s depend on the data,

0A ∈ R
(m−r−s)×(t−r−s) and 0B ∈ R

(p−t+r)×r

are zero matrices with possibly no rows or no columns, and

DA = diag(αr+1, . . . , αr+s) and DB = diag(βr+1, . . . , βr+s)

satisfy

1 > αr+1 ≥ · · · ≥ αr+s > 0, 0 < βr+1 ≤ · · · ≤ βr+s < 1,(20)

and

α2
i + β2

i = 1 for i = r + 1, . . . , r + s.

Paige and Saunders gave a constructive proof of Theorem 2, which starts with
the complete orthogonal decomposition [5, 2, 10] of K, or

PTKQ =

(
R 0
0 0

)
,(21)

where P and Q are orthogonal and R is nonsingular with the same rank as K. The
construction proceeds by exploiting the SVDs of submatrices of P . Partitioning P as

P =

(
P11 P12

P21 P22

)
, where P11 ∈ R

m×t and P21 ∈ R
p×t,
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implies ‖P11‖2 ≤ 1. This means that the singular values of P11 do not exceed one,
so its SVD can be written as UTP11W = ΣA, where U ∈ R

m×m and W ∈ R
t×t are

orthogonal and ΣA has the form in (19). Next P21W is decomposed as P21W = V L,
where V ∈ R

p×p is orthogonal and L = (lij) ∈ R
p×t is lower triangular with lij = 0 if

p− i > t− j and lij ≥ 0 if p− i = t− j. This triangularization can be accomplished
in the same way as QR decomposition except that columns are annihilated above the
diagonal p− i = t− j, working from right to left. Then the matrix(

ΣA

L

)

has orthonormal columns, which implies that L = ΣB . These results can be combined
with (21) to obtain(

KA

KB

)
Q =

(
P11 P12

P21 P22

)(
R 0
0 0

)
=

(
P11R 0
P21R 0

)
=

(
UΣAW

TR 0
V ΣBW

TR 0

)
,

which completes the proof. In [11], this form of GSVD is related to that of Van Loan
by

UTKAX = (ΣA, 0) and V TKBX = (ΣB , 0),(22)

where

X
n×n

= Q

(
R−1W 0
0 I

)
.

From the form in (22) we see that

KA = U(ΣA, 0)X
−1 and KB = V (ΣB , 0)X

−1,

which imply that

KT
AKA = X−T

(
ΣT

AΣA 0
0 0

)
X−1 and KT

BKB = X−T

(
ΣT

BΣB 0
0 0

)
X−1.

Defining

αi = 1, βi = 0 for i = 1, . . . , r

and

αi = 0, βi = 1 for i = r + s+ 1, . . . , t,

we have, for 1 ≤ i ≤ t,

β2
iK

T
AKAxi = α2

iK
T
BKBxi,(23)

where xi represents the ith column of X. For the remaining n− t columns of X, both
KT

AKAxi and K
T
BKBxi are zero, so (23) is satisfied for arbitrary values of αi and βi

when t + 1 ≤ i ≤ n. Therefore, the columns of X are the generalized right singular
vectors for the matrix pair KA and KB .

In terms of the generalized singular values, or the αi/βi quotients, r of them are
infinite, s are finite and nonzero, and t− r − s are zero. To determine the number of
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generalized singular values of each type, we write explicit expressions for the values
of r and s. From (22) and (19), we see that

rank(KA) = r + s and rank(KB) = t− r.

Hence, the number of infinite generalized singular values is

r = rank

(
KA

KB

)
− rank(KB)

and the number of finite and nonzero generalized singular values is

s = rank(KA) + rank(KB)− rank

(
KA

KB

)
.

4. Application of the GSVD to dimension reduction. Recall that for the
m×n term-document matrix A, when m ≤ n and the scatter matrix Sw is nonsingu-
lar, a criterion such as maximization of J1 can be applied. However, one drawback of
this criterion is that both Sw = HwH

T
w and Sb = HbH

T
b must be explicitly formed.

Forming these cross-product matrices can cause a loss of information [5, p. 239, Ex-
ample 5.3.2], but by using the GSVD, which works directly with Hw and Hb, we can
avoid a potential numerical problem.

Applying the GSVD to the nonsingular case, we include in G those xi’s which
correspond to the k−1 largest λi’s, where λi = α2

i /β
2
i . When the GSVD construction

orders the singular value pairs as in (20), the generalized singular values, or the αi/βi
quotients, are in nonincreasing order. Therefore, the first k − 1 columns of X are
all we need. Our algorithm first computes the matrices Hb and Hw from the term-
document matrix A. We then solve for a very limited portion of the GSVD of the
matrix pair HT

b and HT
w . This solution is accomplished by following the construction

in the proof of Theorem 2. The major steps are limited to the complete orthogonal
decomposition of K = (Hb, Hw)

T , which produces orthogonal matrices P and Q and
a nonsingular matrix R, followed by the SVD of a leading principal submatrix of P .
The steps are summarized in Algorithm LDA/GSVD, where LDA stands for linear
discriminant analysis.

When m > n, the scatter matrix Sw is singular. Hence, we cannot even define
the J1 criterion, and discriminant analysis fails. Consider a generalized right singular
vector xi that lies in the null space of Sw. From (18), we see that either xi also lies
in the null space of Sb or the corresponding βi equals zero. We will discuss each of
these cases in terms of the simultaneous optimization

max
G

trace(GTSbG) and min
G

trace(GTSwG)(24)

that criterion J1 is approximating.
When xi ∈ null(Sw) ∩ null(Sb), (18) is satisfied for arbitrary values of αi and βi.

As explained in section 3, this will be the case for the rightmost m− t columns of X.
To determine whether these columns should be included in G, consider

trace(GTSbG) =
∑

gTj Sbgj and trace(GTSwG) =
∑

gTj Swgj ,

where gj represents a column of G. Adding the column xi to G has no effect on
these traces, since xTi Swxi = 0 and xTi Sbxi = 0, and therefore does not contribute to
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Algorithm 1 LDA/GSVD.

Given a data matrix A ∈ R
m×n with k clusters, it computes the columns of the matrix

G ∈ R
m×(k−1), which preserves the cluster structure in the reduced-dimensional space,

and it also computes the (k − 1)-dimensional representation Y of A.
1. Compute Hb ∈ R

m×k and Hw ∈ R
m×n from A according to (9) and (8),

respectively.
2. Compute the complete orthogonal decomposition of K = (Hb, Hw)

T ∈
R

(k+n)×m, which is

PTKQ =

(
R 0
0 0

)
.

3. Let t = rank(K).
4. Compute W from the SVD of P (1 : k, 1 : t), which is UTP (1 : k, 1 : t)W =

ΣA.
5. Compute the first k − 1 columns of

X = Q

(
R−1W 0
0 I

)

and assign them to G.
6. Y = GTA.

either maximization or minimization in (24). For this reason, we do not include these
columns of X in our solution.

When xi ∈ null(Sw) − null(Sb), then βi = 0. As discussed in section 3, this
implies that αi = 1, and hence that the generalized singular value αi/βi is infinite.
The leftmost columns of X will correspond to these. Including these columns in G
increases trace(GTSbG) while leaving trace(GTSwG) unchanged. We conclude that,
even when Sw is singular, the rule regarding which columns ofX to include inG should
remain the same as for the nonsingular case. Our experiments show that Algorithm
LDA/GSVD works very well when Sw is singular, thus extending its applicability
beyond that of the original discriminant analysis.

In terms of the matrix pair HT
b and HT

w , the columns of X correspond to the
generalized singular values as follows. The first

r = rank

(
HT

b

HT
w

)
− rank(HT

w )

columns correspond to infinite values and the next

s = rank(HT
b ) + rank(HT

w )− rank

(
HT

b

HT
w

)

columns correspond to finite and nonzero values. The following

t− r − s = rank

(
HT

b

HT
w

)
− rank(HT

b )

columns correspond to zero values and the last

m− t = m− rank

(
HT

b

HT
w

)
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Algorithm 2 Centroid.

Given a data matrix A ∈ R
m×n with k clusters, it computes a k-dimensional repre-

sentation Y of A.
1. Compute the centroid c(i) of the ith cluster, 1 ≤ i ≤ k.
2. Set C =

(
c(1) c(2) · · · c(k)

)
.

3. Solve minY ‖CY −A‖F .

Algorithm 3 Orthogonal Centroid.

Given a data matrix A ∈ R
m×n with k clusters, it computes a k-dimensional repre-

sentation Y of A.
1. Compute the centroid c(i) of the ith cluster, 1 ≤ i ≤ k.
2. Set C =

(
c(1) c(2) · · · c(k)

)
.

3. Compute the reduced QR decomposition of C, which is C = QkR.
4. Solve minY ‖QkY −A‖F (in fact, Y = QT

kA).

columns correspond to the arbitrary values. If Sw is nonsingular, both r = 0 and
m−t = 0, so s = rank(HT

b ) generalized singular values are finite and nonzero, and the
rest are zero. In either case, G should be comprised of the leftmost r+ s = rank(HT

b )
columns of X.

Assuming the centroids are linearly independent, we see from (9) that rank(Hb)
is k − 1, so Algorithm LDA/GSVD includes the minimum number of columns in G
that are necessary to preserve the cluster structure after dimension reduction. If
rank(Hb) < k − 1, then including extra columns in G (some which correspond to the
t − r − s zero generalized singular values and, possibly, some which correspond to
the arbitrary generalized singular values) will have approximately no effect on cluster
preservation.

5. Experimental results. We compare classification results in the full-dimen-
sional space with those in the reduced-dimensional space using Algorithm LDA/GSVD
and two other dimension reduction algorithms we have developed, namely, Algorithms
Centroid and Orthogonal Centroid [8, 12]. The latter two algorithms assume that the
centroids are linearly independent, an assumption for which we have encountered
no counterexample in practice. As outlined in Algorithms 2 and 3, centroid and
orthogonal centroid solve the same least squares problem (3) for different choices of
B. The centroid method chooses the k cluster centroids as the columns of B, whereas
orthogonal centroid chooses an orthonormal basis for the cluster centroids.

We employ both a centroid-based classification method and a nearest neighbor
classification method [15], which are presented in Algorithms 4 and 5. For the full data
matrix A, we apply the classification method with each column of A as the vector q and
report the percentage that are misclassified. Likewise, for each dimension reduction
method, we apply the classification method to the lower-dimensional representation
Y of A. In addition, the quality of classification is assessed by examining traces of
the within-class scatter matrix Sw and the between-class scatter matrix Sb.

Two different data types are used to verify the effectiveness of LDA/GSVD. In
the first data type, the column dimension of the term-document matrix is higher than
the row dimension. This can be dealt with by using the original J1 criterion, assuming
that Sw is nonsingular. In the second data type, the row dimension is higher than
the column dimension, so Sw is singular. This means that neither criterion J1 nor
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Algorithm 4 Centroid-Based Classification.

Given a data matrix A with k clusters and k corresponding centroids, c(i), 1 ≤ i ≤ k,
it finds the index j of the cluster in which the vector q belongs.

• Find the index j such that sim(q, c(i)), 1 ≤ i ≤ k, is minimum (or maximum),
where sim(q, c(i)) is the similarity measure between q and c(i). (For example,
sim(q, c(i)) = ‖q − c(i)‖2 using the L2 norm, and we take the index with the
minimum value. Using the cosine measure,

sim(q, c(i)) = cos(q, c(i)) =
qT c(i)

‖q‖2‖c(i)‖2
,

and we take the index with the maximum value.)

Algorithm 5 k Nearest Neighbor (knn) Classification.

Given a data matrix A = [a1, . . . , an] with k clusters, it finds the cluster in which the
vector q belongs.

1. From the similarity measure sim(q, aj) for 1 ≤ j ≤ n, find the k∗ nearest
neighbors of q. (We use k∗ to distinguish the algorithm parameter from the
number of clusters.)

2. Among these k∗ vectors, count the number belonging to each cluster.
3. Assign q to the cluster with the greatest count in the previous step.

J2 can be applied, but the dimension can be reduced very effectively using our new
LDA/GSVD algorithm.

For the first data type, in Test I we use clustered data that are artificially gen-
erated by an algorithm adapted from [7, Appendix H]. Table 1 shows the dimensions
of the term-document matrix and classification results using the L2 norm similarity
measure. The data consist of 2000 150-dimensional documents with seven clusters.
Algorithm LDA/GSVD reduces the dimension from 150 to k − 1 = 6, where k is the
number of classes. The other methods reduce it to k = 7. In Table 1, we also present
the results obtained by using the LDA/GSVD algorithm to reduce the dimension to
k − 2 = 5 and k = 7 , which are one less than and one greater than the theoretical
optimum of k − 1, respectively. The results confirm that the theoretical optimum
does indeed maximize trace((SY

w )−1SY
b ), and that its value is preserved exactly from

the full dimension. In addition, using LDA/GSVD to reduce the dimension to k − 1
results in the lowest misclassification rates for both centroid-based and nearest neigh-
bor methods. All three dimension reduction methods produce classification results
that are, with one exception, at least as good as the results from the full space. This
is remarkable in light of the fact that the row dimension was reduced from 150 to at
most 7.

As mentioned in section 2, in a higher quality cluster structure, we will have a
smaller value for trace(Sw) and a larger value for trace(Sb). With this in mind, the
ratio trace(Sb)/trace(Sw) is another measure of how well trace(GTSbG) is maximized
while trace(GTSwG) is minimized in the reduced space. We observe in Table 1 that
the ratio produced by each of the three dimension reduction methods is greater than
that of the full-dimensional data. This may explain why, in general, our dimension
reduction methods give better classification results than those produced in the full-
dimensional space.
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Table 1
Test I: Traces and misclassification rates (in %) with L2 norm similarity.

Orthogonal
Method Full centroid Centroid LDA/GSVD

Dim 150 × 2000 7 × 2000 7 × 2000 5 × 2000 6 × 2000 7 × 2000

trace(Sw) 299750 14238 942.3 1.6 2.0 3.0
trace(Sb) 23225 23225 1712 3.4 4.0 4.0
trace(Sb)
trace(Sw)

0.078 1.63 1.82 2.2 2.0 1.3

trace(S−1
w Sb) 12.3 11.42 11.42 11.0 12.3 12.3

centroid 2.8 2.8 3.2 4.6 2.6 2.6
5nn 20.5 3.3 3.5 5.3 3.0 3.1
15nn 10.2 3.1 3.2 4.6 2.5 2.8
50nn 6.3 3.0 3.4 4.2 2.7 2.8

As proved in our previous work [8], the misclassification rates obtained using the
centroid-based classification algorithm in the full space and in the orthogonal centroid-
reduced space are identical. It is interesting to observe that the values of trace(Sb)
in these two spaces are also identical, although the motivation for the orthogonal
centroid algorithm was not the preservation of trace(Sb) after dimension reduction.
We state this result in the following theorem.

Theorem 3. Let Qk ∈ R
m×k be the matrix with orthonormal columns in the

reduced QR decomposition of the matrix C ∈ R
m×k whose columns are the k centroids

(see Algorithm Orthogonal Centroid). Then trace(Sb) = trace(QT
k SbQk) = trace(SY

b ),
where Y = QT

kA.
Proof. There is an orthogonal matrix Q ∈ R

m×m such that

C = Q

(
R
0

)
,

where R ∈ R
k×k is upper triangular. Partitioning Q as Q = (Qk, Q̂), we have

C = (Qk, Q̂)

(
R
0

)
= QkR.(25)

Premultiplying (25) by (Qk, Q̂)
T gives QT

kC = R and Q̂TC = 0. Therefore,

trace(Sb) = trace(QTQSb)
= trace(QTSbQ)

= trace((Qk, Q̂)
THbH

T
b (Qk, Q̂))

= trace(QT
kHbH

T
b Qk)

= trace(QT
k SbQk),

where Hb = [
√
n1(c

(1) − c),
√
n2(c

(2) − c), . . . ,
√
nk(c

(k) − c)] and Q̂THb = 0, since

Q̂T c(i) = 0 and c is a linear combination of the c(i)’s.
In Test II, for the second data type, we use five categories of abstracts from the

MEDLINE1 database. Each category has 40 documents. The total number of terms
is 7519 (see Table 2) after preprocessing with stopping and stemming algorithms [9].
For this 7519× 200 term-document matrix, the original discriminant analysis breaks
down, since Sw is singular. However, our improved LDA/GSVD method circumvents
this singularity problem.

1http://www.ncbi.nlm.nih.gov/PubMed



178 PEG HOWLAND, MOONGU JEON, AND HAESUN PARK

Table 2
Medline data set for Test II.

Data from MEDLINE
Class Category No. of documents

1 heart attack 40
2 colon cancer 40
3 diabetes 40
4 oral cancer 40
5 tooth decay 40

dimension 7519 × 200

Table 3
Test II: Traces and misclassification rate with L2 norm similarity.

Orthogonal
Method Full centroid Centroid LDA/GSVD

Dim 7519 × 200 5 × 200 5 × 200 4 × 200

Trace trace(Sw) 73048 4210 90 0.05
values trace(Sb) 6229 6229 160 3.95

trace(Sb)
trace(Sw)

0.09 1.5 1.8 79

Misclassification centroid 5 5 2 1
rate in % 1nn 40 3 2.5 1

By Algorithm LDA/GSVD the dimension 7519 is dramatically reduced to 4, which
is one less than the number of classes. The other methods reduce the dimension to
the number of classes, which is 5. Table 3 shows classification results using the L2

norm similarity measure. As in the results of Test I, LDA/GSVD produces the lowest
misclassification rate using both classification methods. Because the J1 criterion is
not defined in this case, we compute the ratio trace(Sb)/trace(Sw) as an approximate
optimality measure. We observe that the ratio is strikingly higher for the LDA/GSVD
reduction than for the other methods, and that, once again, the ratio produced by each
of the three dimension reduction methods is greater than that of the full-dimensional
data.

6. Conclusion. Our experimental results verify that the J1 criterion, when ap-
plicable, effectively optimizes classification in the reduced-dimensional space, while
our LDA/GSVD extends the applicability to cases which the original discriminant
analysis cannot handle. In addition, our LDA/GSVD algorithm avoids the numerical
problems inherent in explicitly forming the scatter matrices.

In terms of computational complexity, the most expensive part of Algorithm
LDA/GSVD is step 2, where a complete orthogonal decomposition is needed. Assum-
ing k ≤ n, t ≤ m, and t = O(n), the complete orthogonal decomposition of K costs
O(nmt) when m ≤ n, and O(m2t) when m > n. Therefore, a fast algorithm needs to
be developed for step 2.

Finally, we observe that dimension reduction is only a preprocessing stage. Even
if this stage is a little expensive, it will be worthwhile if it effectively reduces the cost
of the postprocessing involved in classification and document retrieval, which will be
the dominating parts computationally.
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