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Abstract
7

Linear discriminant analysis (LDA) is a dimension reduction method which finds an optimal linear transformation that maximizes the
class separability. However, in undersampled problems where the number of data samples is smaller than the dimension of data space, it is9
difficult to apply the LDA due to the singularity of scatter matrices caused by high dimensionality. In order to make the LDA applicable,
several generalizations of the LDA have been proposed recently. In this paper, we present theoretical and algorithmic relationships among11
several generalized LDA algorithms and compare their computational complexities and performances in text classification and face recognition.
Towards a practical dimension reduction method for high dimensional data, an efficient algorithm is proposed, which reduces the computational13
complexity greatly while achieving competitive prediction accuracies. We also present nonlinear extensions of these LDA algorithms based on
kernel methods. It is shown that a generalized eigenvalue problem can be formulated in the kernel-based feature space, and generalized LDA15
algorithms are applied to solve the generalized eigenvalue problem, resulting in nonlinear discriminant analysis. Performances of these linear
and nonlinear discriminant analysis algorithms are compared extensively.17
� 2007 Published by Elsevier Ltd on behalf of Pattern Recognition Society.

Keywords: Dimension reduction; Feature extraction; Generalized linear discriminant analysis; Kernel methods; Nonlinear discriminant analysis; Undersampled19
problems

21

1. Introduction

Linear discriminant analysis (LDA) seeks an optimal lin-23
ear transformation by which the original data is transformed
to a much lower dimensional space. The goal of LDA is to25
find a linear transformation that maximizes class separability
in the reduced dimensional space. Hence the criteria for di-27
mension reduction in LDA are formulated to maximize the
between-class scatter and minimize the within-class scatter. The29
scatters are measured by using scatter matrices such as the31
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between-class scatter matrix (Sb), within-class scatter matrix
(Sw) and total scatter matrix (St ). Let us denote a data set A as 33

A = [a1, . . . , an] = [A1, A2, . . . , Ar ] ∈ Rm×n, (1)

where a collection of data items in the class i (1� i�r) is 35
represented as a block matrix Ai ∈ Rm×ni and Ni is the index
set of data items in the class i. Each class i has ni elements 37
and the total number of data is n = ∑r

i=1ni . The between-
class scatter matrix Sb, within-class scatter matrix Sw and total 39
scatter matrix St are defined as

Sb =
r∑

i=1

ni(ci − c)(ci − c)T,
41

Sw =
r∑

i=1

∑
j∈Ni

(aj − ci)(aj − ci)
T,

St =
n∑

j=1

(aj − c)(aj − c)T,
43
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where ci = (1/ni)
∑

j∈Ni
aj and c = (1/n)

∑n
j=1aj are class1

centroids and the global centroid, respectively.
The optimal dimension reducing transformation GT ∈ Rl×m3

(l < m) for LDA is the one that maximizes the between-class
scatter and minimizes the within-class scatter in a reduced di-5
mensional space. Common optimization criteria for LDA are
formulated as the maximization problem of objective functions7

J1(G) = trace(GTSbG)

trace(GTSwG)
,

J2(G) = trace((GTSwG)−1(GTSbG)),9

J3(G) = |GTSbG|
|GTSwG| , (2)

where S̃i = GTSiG for i = b, w are scatter matrices in the11
space transformed by GT. It is well known [1,2] that when Sw

is nonsingular, the transformation matrix G is obtained by the13
eigenvectors corresponding to the r − 1 largest eigenvalues of

S−1
w Sbg = �g. (3)15

However, for undersampled problems such as text classifica-
tion and face recognition where the number of data items is17
smaller than the data dimension, scatter matrices become sin-
gular and their inverses are not defined. In order to overcome19
the problems caused by the singularity of the scatter matri-
ces, several methods have been proposed [3–8]. In this paper,21
we present theoretical relationships among several generalized
LDA algorithms and compare computational complexities and23
performances of them.

While linear dimension reduction has been used in many ap-25
plication areas due to its simple concept and easiness in com-
putation, it is difficult to capture a nonlinear relationship in the27
data by a linear function. Recently kernel methods have been
widely used for nonlinear extension of linear algorithms [9].29
The original data space is transformed to a feature space by an
implicit nonlinear mapping through kernel methods. As long31
as an algorithm can be formulated with inner product compu-
tations, without knowing the explicit representation of a non-33
linear mapping we can apply the algorithm in the transformed
feature space, obtaining nonlinear extension of the original al-35
gorithm. We present nonlinear extensions of generalized LDA
algorithms through the formulation of a generalized eigenvalue37
problem in the kernel-based feature space.

The rest of the paper is organized as follows. In Section39
2, a theoretical comparison of generalized LDA algorithms is
presented. We study theoretical and algorithmic relationships41
among several generalized LDA algorithms and compare their
computational complexities and performances. Computation-43
ally, efficient algorithm is also proposed which computes the
exactly same solution as that in Refs. [4,10] but saves com-45
putational complexities greatly. In Section 3, nonlinear exten-
sions of these generalized LDA algorithms are presented. A47
generalized eigenvalue problem is formulated in the nonlin-
early transformed feature space for which all the generalized49
LDA algorithms can be applied resulting in nonlinear dimen-
sion reduction methods. Extensive comparisons of these linear51

Table 1
Summary of the notations used

Notations Description

m Data dimension
n Number of data items
r Number of classes
ni Number of data items in class i
c, ci The global and class centroids
A Data matrix of size m × n

Sb, Sw, St Scatter matrices of size m × m

Hb The matrix of size m × r such that Sb = HbH
T
b

Hw The matrix of size m × n such that Sw = HwHT
w

Ht The matrix of size m × n such that St = HtH
T
t

s Rank of the matrix [Hb Hw]
I�, 0� Identity and zero matrices of size � × �

and nonlinear discriminant analysis algorithms are conducted.
Conclusion follows in Section 4. 53

For convenience, important notations used throughout the
rest of the paper are listed in Table 1. 55

2. A comparison of generalized LDA algorithms for
undersampled problems 57

2.1. Regularized LDA

In the regularized LDA (RLDA) [3], when Sw is singular 59
or ill-conditioned, a diagonal matrix �I with � > 0 is added
to Sw. Since Sw is symmetric positive semidefinite, Sw + �I 61
is nonsingular with any � > 0. Therefore, we can apply the
algorithm for the classical LDA to solve the eigenvalue problem 63

Sbg = �(Sw + �I )g. (4)

2.1.1. Two-class problem 65
We now consider a simple case when the data set has two

classes, since in that case a comparison of generalized LDA 67
algorithms is easy to illustrate. The two-class problem in LDA
is known as Fisher discriminant analysis (FDA) [2]. In a two- 69
class case, Sb can be expressed as

Sb = n1n2

n
(c1 − c2)(c1 − c2)

T, (5) 71

and the eigenvalue problem (3) is simplified to

S−1
w (c1 − c2)(c1 − c2)

Tg = �g, (6) 73

when Sw is nonsingular. The solution for Eq. (6) is a nonzero
multiple of g = S−1

w (c1 − c2), and the 1-dimensional represen- 75
tation of any data item z ∈ Rm×1 by LDA is obtained as

gTz = (c1 − c2)
TS−1

w z = (c1 − c2)
TUw�−1

w UT
wz, 77

where Sw = Uw�wUT
w is the eigenvalue decomposition (EVD)

of Sw. Since Sw +�I =Uw(�w +�I )UT
w, the regularized LDA 79
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gives the solution1

gTz = (c1 − c2)
TUw(�w + �I )−1UT

wz,

and the regularization parameter � affects the scales of the3
principal components of Sw.

In the regularized LDA, the parameter � is to be optimized5
experimentally since no theoretical procedure for choosing an
optimal parameter is easily available. Recently, a generalization7
of LDA through simultaneous diagonalization of Sb and Sw

using the generalized singular value decomposition (GSVD)9
has been developed [4]. This LDA/GSVD, summarized in the
next section, does not require any parameter optimization.11

2.2. LDA based on the GSVD

Howland et al. [4,10] applied the generalized singular value13
decomposition (GSVD) due to Paige and Saunders [11] to over-
come the limitation of the classical LDA. When the GSVD is15
applied to two matrices Z1 and Z2 with the same number of
columns, p , we obtain17

UT
1 Z1X = [ �1︸︷︷︸

�

0︸︷︷︸
p−�

] and UT
2 Z2X = [ �2︸︷︷︸

�

0︸︷︷︸
p−�

]

for � = rank

([
Z1

Z2

])
,

where U1 and U2 are orthogonal and X is nonsingular, �T
1 �1 +19

�T
2 �2 = I� and �T

1 �1 and �T
2 �2 are diagonal matrices with

nonincreasing and nondecreasing diagonal components, respec-21
tively.

The method in Ref. [4] utilized the representations of the23
scatter matrices

Sb = HbH
T
b , Sw = HwHT

w, and St = HtH
T
t . (7)25

where

Hb = [√n1(c1 − c), . . . ,
√

nr(cr − c)] ∈ Rm×r , (8)27

Hw = [A1 − c1e1, . . . , Ar − crer ] ∈ Rm×n, (9)

Ht = [a1 − c, . . . , an − c] ∈ Rm×n, (10)29

and ei = [1, . . . , 1] ∈ R1×ni . Suppose the GSVD is applied to
the matrix pair (HT

b , HT
w) and we obtain31

UT
b HT

b X = [�b 0] and UT
wHT

wX = [�w 0], (11)

where Ub ∈ Rr×r and Uw ∈ Rn×n are orthogonal, X ∈ Rm×m33
is nonsingular, and

�T
b�b + �T

w�w = Is for s = rank

([
HT

b

HT
w

])
.

35

Then Eqs. in (11) give

XTSbX = XT(HbH
T
b )X = (XTHbUb)(U

T
b HT

b X)

= [�b 0]T[�b 0],37

XTSwX = XT(HwHT
w)X = (XTHwUw)(UT

wHT
wX)

= [�w 0]T[�w 0]. (12)

From (12) and �T
b�b + �T

w�w = Is , we have 39

XTSbX =
[�T

b�b

0m−s

]
≡

⎡
⎢⎢⎢⎢⎣

I�

D�

0s−�−�

0m−s

⎤
⎥⎥⎥⎥⎦
(13)

and 41

XTSwX =
[�T

w�w

0m−s

]
≡

⎡
⎢⎢⎢⎢⎣

0�

E�

Is−�−�

0m−s

⎤
⎥⎥⎥⎥⎦ ,

(14)

where D� + E� = I� and the subscripts in I and 0 denote the 43
size of square identity and zero matrices. Denoting the diagonal
elements in �T

b�b as 	i’s and the diagonal elements in �T
w�w 45

as 
i’s, we have


iSbxi = 	iSwxi, i = 1, . . . , m, (15) 47

where xi is the column vectors of X. Note that xi , i = s +
1, . . . , m, belong to null(Sb)∩ null(Sw). Hence 	i and 
i for 49
i = s + 1, . . . , m in Eq. (15) can be any arbitrary numbers.

By partitioning X in Eqs. (13)–(14) as 51

X = [ X1︸︷︷︸
�

X2︸︷︷︸
�

X3︸︷︷︸
s−�−�

X4︸︷︷︸
m−s

] ∈ Rm×m, (16)

the generalized eigenvalues and eigenvectors obtained by the 53
GSVD can be classified as shown in Table 2. For the last m− s

vectors x belonging to null(Sw) ∩ null(Sb), 55

0 = xTSbx = (xTHb)(H
T
b x) = ‖xTHb‖2 =

r∑
i=1

ni |xTci − xTc|2

and 57

0 = xTSwx =
n∑

j=1

|xTaj − xTci |2,

where aj belongs to a class i. 59
Hence{
xTci = xTc for i = 1, . . . , r,

xTaj = xTci for all aj in a class i,
(17)

61

therefore

XT
4 z = XT

4 c (18) 63

for any given data item z = ai . This implies that the vectors xi ,
i = s + 1, . . . , m, belonging to null(Sb) ∩ null(Sw) do not con- 65
vey discriminative information among the classes, even though 67
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Table 2
Generalized eigenvalues �i ’s and eigenvectors xi ’s from the GSVD

	i 
i �i = 	i


i
xi belongs to

1� i �� 1 0 ∞ null(Sw) ∩ null(Sb)
c

� + 1� i �� + � 1 > 	i > 0 0 < 
i < 1 ∞ > �i > 0 null(Sw)c ∩ null(Sb)
c

� + � + 1� i � s 0 1 0 null(Sw)c ∩ null(Sb)

s + 1� i �m Any value Any value Any value null(Sw) ∩ null(Sb)

The superscript c denotes the complement.

the corresponding eigenvalues are not necessarily zeros. Since1
rank(Sb)�r − 1, from Eqs. (13)–(14)) we have

xT
i Sbxi = 0 and xT

i Swxi = 1 for r � i�s,3

and the between-class scatter becomes zero by the projection
onto the vector xi . Hence r − 1 leftmost columns of X gives5
an optimal transformation GT

h for LDA. This method is called
LDA/GSVD.7

2.2.1. An efficient algorithm for LDA/GSVD
The algorithm to compute the GSVD for the pair (HT

b , HT
w)9

was presented in Ref. [4] as follows:

(1) Compute the singular value decomposition (SVD) of11

Z =
[

HT
b

HT
w

]
∈ R(r+n)×m: Z = P

[� 0

0 0

]
UT

where s = rank(Z) and P ∈ R(r+n)×(r+n) and U ∈ Rm×m13
are orthogonal and the diagonal components of � ∈ Rs×s

is nonincreasing.15
(2) Compute V from the SVD of P(1 : r, 1 : s),3 which is

P(1 : r, 1 : s) = W�V T.17

(3) Compute the first r − 1 columns of X = U [�−1V
0

0
I
], and

assign them to the transformation matrix Gh.19

Now we show that this algorithm can be computed rather
simply, producing an efficient and intuitive approach for21
LDA/GSVD. Since �T

b�b + �T
w�w = Is, from Eqs. (13)–(14),

we have23

XTStX = XTSbX + XTSwX =
[
Is 0

0 0

]
, (19)

where s = rank(Z). Eq. (19) implies s = rank(St ) and from step25
3 in the LDA/GSVD algorithm

St = X−T

[
Is 0

0 0

]
X−1 = U

[�1 0

0 0

]
UT, �1 = �T�,

(20)27

3 The notation P(1 : r, 1 : s) which may appear as a MATLAB shorthand
denotes a submatrix of P composed of the components from the first to the
rth row and from the first to sth column.

which results in the EVD of St . Partitioning U as U =
[ U1︸︷︷︸

s

U2︸︷︷︸
m−s

], we have
29

X = U

[�−1V 0

0 I

]
= [U1�

−1/2
1 V U2]. (21)

By substituting X in Eq. (13) with Eq. (21), 31

�−1/2
1 UT

1 SbU1�
−1/2
1 = V �T

b�bV
T. (22)

Note that the optimal transformation matrix Gh by LDA/GSVD 33
is obtained by the leftmost r − 1 columns of X, which are the
leftmost r − 1 columns of U1�

−1/2
1 V . Eqs. (20) and (22) show 35

that U1 and �1 can be computed from the EVD of St and V
from the EVD of �−1/2

1 UT
1 SbU1�

−1/2
1 . This new approach for 37

LDA/GSVD is summarized in Algorithm 1.

Algorithm 1. An efficient algorithm for LDA/GSVD.

(1) Compute the EVD of St : St = [U1 U2]
[�1 0

0 0

][
UT

1

UT
2

]
.

(2)Compute V from the EVD of S̃b ≡ �−1/2
1 UT

1 SbU1�
−1/2
1 :

S̃b = V �T
b�bV

T.

(3) Assign the first r − 1 columns of U1�
−1/2
1 V to Gh.

39
In Algorithm 1, the matrices U1 and �1 in the EVD of St ∈

Rm×m can be obtained by the EVD of HT
t Ht ∈ Rn×n instead 41

of HtH
T
t ∈ Rm×m [1] by which computational complexity can

be reduced from O(m3) to O(n3). Especially when m is much 43
bigger than n, computational savings become great. Let the
EVD of HT

t Ht be 45

HT
t Ht = [ J1︸︷︷︸

s

J2︸︷︷︸
n−s

]
[
D1 0

0 0

][
J T

1

J T
2

]
, (23)

where s = rank(Ht ) = rank(St ). From Eq. (23) 47

St (HtJ1) = Ht(H
T
t Ht )J1 = (HtJ1)D1,

and therefore the columns in HtJ1 are eigenvectors of St corre- 49
sponding to nonzero eigenvalues in the diagonal of D1. Since
(HtJ1)

T(HtJ1) = D1, we obtain the orthonormal eigenvectors 51
and corresponding nonzero eigenvalues of St by HtJ1D

−1/2
1

and D1, which are U1 and �1, respectively. In this new ap- 53
proach, we just need to compute the EVD of a much smaller
n × n matrix HT

t Ht instead of m × m matrix St = HtH
T
t when 55

m?n. However, in the regularized LDA or the method by Chen
et al. which is presented next, we cannot resort to this approach. 57
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The regularized LDA needs the entire m eigenvectors of Sw and1
the method based on the projection to null(Sw) needs to com-
pute a basis of null(Sw) which are eigenvectors corresponding3
to zero eigenvalues.

2.2.2. Two-class problem5
Now we consider the two-class problem in LDA/GSVD. By

Eq. (5), we have7

�−1/2
1 UT

1 SbU1�
−1/2
1 = �−1/2

1 UT
1 �(c1 − c2)(c1 − c2)

TU1�
−1/2
1

=
(

w

‖w‖2

)
�‖w‖2

2

(
w

‖w‖2

)T

,

where � = n1n2/n and w = �−1/2
1 UT

1 (c1 − c2). Hence the9
transformation matrix g ∈ Rm×1 is given by

g = 
U1�
−1/2
1 w = 
U1�

−1
1 UT

1 (c1 − c2)11

for some scalar 
, and the dimension reduced representation of
any data item z is given by13

gTz = 
(c1 − c2)
TU1�

−1
1 UT

1 z = 
(c1 − c2)
TS+

t z,

where S+
t denotes the pseudoinverse of St . When Sw is non-15

singular, by applying the Sherman–Morrison formula [12] to
St = Sw + Sb, we have17

S−1
t = (Sw + �(c1 − c2)(c1 − c2)

T)−1 = S−1
w

− S−1
w �(c1 − c2)(c1 − c2)

TS−1
w

1 + �(c1 − c2)
TS−1

w (c1 − c2)

and19

gTz = 
(c1 − c2)
TS−1

t z = 
1(c1 − c2)
TS−1

w z (24)

for a scalar 
1 = 
/(1 + �(c1 − c2)
TS−1

w (c1 − c2)). Eq. (24)21
shows that LDA/GSVD is equal to the classical LDA when Sw

is nonsingular.23

2.3. A method based on the projection onto null(Sw)

In face recognition, in the efforts to overcome the singularity25
of scatter matrices caused by high dimensionality, some meth-
ods have been proposed [5,6]. The basic principle of the algo-27
rithms proposed in Refs. [5,6] is that the transformation using
a basis of either range(Sb) or null(Sw) is performed in the first29
stage and then in the transformed space the second projective
directions are searched. These methods are summarized in this31
and next section where we also present their algebraic relation-
ships.33

Chen et al. [5] proposed a generalized method of LDA which
solves undersampled problems and applied it for face recogni-35
tion. The method projects the original space onto the null space
of Sw using an orthonormal basis of null(Sw), and then in the37
projected space, a transformation that maximizes the between-
class scatter is computed.39

Consider the SVD of Sw ∈ Rm×m,

Sw = Uw�wUT
w. 41

Partitioning Uw as Uw = [Uw1︸︷︷︸
s1

Uw2︸︷︷︸
m−s1

] where s1 = rank(Sw),

null(Sw) = span(Uw2). (25) 43

First, the transformation by Uw2U
T
w2 projects the original

data to null(Sw). Then, the eigenvectors corresponding to 45
the largest eigenvalues of the between-class scatter matrix
S̃b in the projected space are found. Let the EVD of S̃b ≡ 47
Uw2U

T
w2SbUw2U

T
w2 be

S̃b = Ũb�̃bŨ
T
b = [ Ũb1︸︷︷︸

s2

Ũb2︸︷︷︸
m−s2

]
[ �̃b1 0

0 0

][ ŨT
b1

ŨT
b2

]
, (26)

49

where ŨT
b Ũb = I , s2 = rank(S̃b) and �̃b1 ∈ Rs2×s2 . Then, the

transformation matrix Ge is obtained by 51

Ge = Uw2U
T
w2Ũb1. (27)

Let us call this method To-N(Sw) as an abbreviation. 53

2.3.1. Two-class problem
In the two-class problem, Sb is expressed as in Eq. (5) and 55

S̃b = Uw2U
T
w2�(c1 − c2)(c1 − c2)

TUw2U
T
w2

=
(

w

‖w‖2

)
�‖w‖2

2

(
w

‖w‖2

)T

,

where � = n1n2/n and w = Uw2U
T
w2(c1 − c2) ∈ Rm×1. Hence 57

the transformation matrix g ∈ Rm×1 is obtained by

g = Uw2U
T
w2

w

‖w‖2
= 
Uw2U

T
w2(c1 − c2), 59

with 
 = 1/‖w‖2. For any data item z ∈ Rm×1, the dimension
reduced representation is given by 61

gTz = 
(c1 − c2)
TUw2U

T
w2 z.

2.3.2. Relationship with LDA/GSVD 63
From (26), we have[
ŨT

b1

ŨT
b2

]
Uw2U

T
w2SbUw2U

T
w2[Ũb1Ũb2] =

[ �̃b1 0

0 0

]
, (28)

65[
ŨT

b1

ŨT
b2

]
Uw2U

T
w2SwUw2U

T
w2[Ũb1Ũb2] = 0. (29)

The second equation holds due to Eq. (25). Eqs. (28)–(29) 67
imply that the column vectors of Ge given in Eq. (27) belong
to null(Sw) ∩ null(Sb)

c and they are discriminative vectors, 69
since the transformation by these vectors minimizes the within-
class scatter to zero and increases the between-class scatter. 71
The top row of Table 2 shows that the LDA/GSVD solution
also includes the vectors from null(Sw) ∩ null(Sb)

c. Based on 73
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this observation, this method To-N(Sw) can be compared with1
LDA/GSVD. By denoting X in LDA/GSVD as

X = [ X1︸︷︷︸
�

X2︸︷︷︸
�

X3︸︷︷︸
s−�−�

X4︸︷︷︸
m−s

], (30)
3

we find a relationship between X1 and Ge = Uw2U
T
w2Ũb1.

Eq. (14) implies that [X1 X4] is a basis of null(Sw). Hence5
any vector in null(Sw) can be represented as a linear combi-
nation of column vectors in [X1 X4]. The following Theorem7
shows the condition for any vector in null(Sw) to belong to
null(Sw) ∩ null(Sb)

c.9

Theorem I. Any vector x belongs to null(Sw)∩null(Sb)
c if and

only if x is represented as X1h + X4k where h 	= 0 ∈ R�×111
and k ∈ R(m−s)×1.

Proof. Let x ∈ null(Sw) ∩ null(Sb)
c. Since [X1 X4] is a basis13

of null(Sw), x = X1h + X4k for some h ∈ R�×1 and k ∈
R(m−s)×1. Suppose h=0. Then x =X4k ∈ null(Sw)∩null(Sb),15
which contradicts to x ∈ null(Sw) ∩ null(Sb)

c. Hence h 	= 0.
Now let us prove that if h 	= 0 then x = X1h + X4k belongs17

to null(Sw) ∩ null(Sb)
c. Since x = X1h + X4k ∈ null(Sw), it is

enough to show x /∈ null(Sb). From Eq. (13),19

xTSbx = (X1h)TSb(X1h) = hT(XT
1 SbX1)h

= hTI�h = ‖h‖2
2 	= 0. �

By Theorem I,21

Uw2U
T
w2Ũb1 = X1H + X4K

for some matrices H ∈ R�×s2 and K ∈ R(m−s)×s2 with s2 =23
rank(S̃b), where each column of H is nonzero. Hence for any
data item z ∈ Rm×1, the reduced dimensional representation25
by Ge = Uw2U

T
w2Ũb1 is given as

GT
e z = HTXT

1 z + KTXT
4 z. (31)27

As explained in Eq. (17) of Section 2.2, since all data items are
transformed to one point by xT for x ∈ null(Sw) ∩ null(Sb),29
the second part KTXT

4 z in (31) corresponds to the translation
which does not affect the classification performance.31

While the transformation matrix Ge = Uw2U
T
w2Ũb1 by the

method To-N(Sw) is related to X1 of LDA/GSVD as in Eq.33
(31), the main difference between the two methods is due to
the eigenvectors in null(Sw)c ∩ null(Sb)

c, which correspond35
to the second row in Table 2. The projection to null(Sw)

by Uw2U
T
w2 excludes vectors in null(Sw)c, and therefore37

null(Sw)c ∩ null(Sb)
c. When

rank(S̃b) < rank(Sb)�r − 1,39

where r is the number of classes, the reduced dimen-
sion by Ge = Uw2U

T
w2Ũb1 is rank(S̃b), therefore less than41

r − 1, while LDA/GSVD includes r − 1 vectors from both
null(Sw) ∩ null(Sb)

c and null(Sw)c ∩ null(Sb)
c. In order to43

demonstrate this case, we conducted an experiment using data 45
in text classification, of which characteristics will be discussed
in detail in the section for experiments. The data was collected 47
from Reuters-21578 database and contains four classes. Each
class has 80 samples and the data dimension is 2412. After 49
splitting the data set randomly to training data and test data with
a ratio of 4:1, the linear transformations by LDA/GSVD and 51
the method To-N(Sw) were computed by using training data.
While the rank of Sb was 3, the rank of S̃b was 2 in this data 53
set. Hence the reduced dimension by the method To-N(Sw) due
to Chen et al. was 2. On the other hand, LDA/GSVD produced 55
two eigenvectors from null(Sw)∩null(Sb)

c and one eigenvector
from null(Sw)c ∩ null(Sb)

c, resulting in the reduced dimension 57
3. Fig. 1 illustrates the reduced dimensional spaces by both
methods. The top three figures were generated by LDA/GSVD. 59
For the visualization, the data reduced to 3-dimensional space
by LDA/GSVD was projected to 2-dimensional spaces, x–y, 61
x–z and y–z spaces, respectively. In x–y space, two classes (

and ∗) are well separated, while two other classes (O and +) 63
are mixed together. However, as shown in the second and third
figures, two classes mixed in x–y space are separated in x–z 65
and y–z spaces along z axis. This shows the third eigenvector
from null(Sw)c ∩ null(Sb)

c improves the separation of classes. 67
The bottom threefigures were generated by the method based
on the projection to null(Sw). Since rank (S̃b) = 2, the reduced 69
dimension by that method was 2 and the first figure illustrates
the reduced dimensional space. The second and third figures 71
show that adding one more column vector from Uw2U

T
w2Ũb2

and increasing the reduced dimension to 3 does not improve 73
the separation of classes mixed in x–y space, since the one extra
dimension comes from null(Sw)∩ null(Sb). On the other hand, 75
when

rank(S̃b) = rank(Sb) = r − 1, 77

both LDA/GSVD and the method To-N(Sw) obtain transfor-
mation matrices Gh and Ge from null(Sw) ∩ null(Sb)

c. Then 79
the difference between two methods comes from the diagonal
components of Ir−1 and �̃b1 in 81

GT
hSbGh = Ir−1 and GT

e SbGe = �̃b1,

where �̃b1 has nonincreasing diagonal components. As shown 83
in the experimental results of Section 2.7, the effects of dif-
ferent scaling in the diagonal components may depend on the 85
characteristics of data.

2.4. A method based on the transformation by a basis of 87
range(Sb)

In this section, we review another two-step approach by 89
Yu and Yang [6] proposed to handle undersampled problems,
and illustrate its relationship to other methods. Contrary to the 91
method discussed in Section 2.3, the method presented in this
section first transforms the original space by using a basis of 93
range(Sb), and then in the transformed space the minimization
of within-class scatter is pursued. 95
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Fig. 1. The visualization of the data in the reduced dimensional spaces by LDA/GSVD (figures in the first row) and the method To-N(Sw) (figures in the
second row).

Consider the EVD of Sb,1

Sb = Ub�bU
T
b = [Ub1︸︷︷︸

s1

Ub2︸︷︷︸
m−s1

]
[�b1 0

0 0

][
UT

b1

UT
b2

]
,

where Ub is orthogonal, rank(Sb) = s1 and �b1 is a diagonal3
matrix with nonincreasing positive diagonal components. Then
range(Sb) = span(Ub1). In the method by Yu and Yang, the5
original data is first transformed to an s1-dimensional space by
Vy = Ub1 �−1/2

b1 . Then the between-class scatter matrix S̃b in7
the transformed space becomes

S̃b ≡ V T
y SbVy = Is1 .9

Now consider the EVD of S̃w ≡ V T
y SwVy ,

S̃w = Ũw�̃wŨT
w, (32)11

where Ũw ∈ Rs1×s1 is orthogonal and �̃w ∈ Rs1×s1 is a diago-
nal matrix. Then13

ŨT
wV T

y SbVyŨw = Is1 and ŨT
wV T

y SwVyŨw = �̃w. (33)

In most applications, rank(Sw) is greater than rank(Sb), and15
�̃w is nonsingular since

rank(ŨT
wV T

y SwVyŨw) = rank(Sw)�rank(Sb)

= rank(ŨT
wV T

y SbVyŨw) = s1.17

Scaling (33) by �̃
−1/2
w , we have

(�̃
−1/2
w ŨT

wV T
y )Sb(VyŨw�̃

−1/2
w ) = �̃

−1
w ,

(�̃
−1/2
w ŨT

wV T
y )Sw(VyŨw�̃

−1/2
w ) = Is1 . (34) 19

The authors in Ref. [6] proposed the transformation matrix

Gy = VyŨw�̃
−1/2
w . 21

Eqs. (34) imply that each column of Gy belongs to null(Sw)c ∩
null(Sb)

c. We call this method To-R(Sb) for short. 23

2.4.1. Two-class problem
In a two-class problem, since 25

Sb = �(c1 − c2)(c1 − c2)
T

=
(

c1 − c2

‖c1 − c2‖2

)
�‖c1 − c2‖2

2

(
c1 − c2

‖c1 − c2‖2

)T

,

where � = n1n2/n, a data item is transformed to the 1- 27
dimensional space by g = (c1 − c2)/(

√
�‖c1 − c2‖2

2). The
dimension reduced representation of any data item z is given by 29
gTz=
(c1 −c2)

Tz for some scalar 
. Note that no minimization
of within-class scatter in the transformed space is possible. 31

The optimization criteria by J2 and J3 in (2) are invariant
under any nonsingular linear transformation, i.e. for any non- 33
singular matrix F whose order is the same as that of the column
dimension of G, 35

Ji(G) = Ji(GF), i = 2, 3, (35)
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Table 3
The prediction accuracies (%)

Face data Transformation matrix

Gy = Vy Gy = VyŨw Gy = VyŨw�̃
−1/2
w

AT&T 94.3 94.3 99.0
Yale 80.6 80.6 89.7

while the objective function J1 is not. Hence in the transforma-1

tion matrix Gy=VyŨw�̃
−1/2
w obtained by the method To-R(Sb),

none of the components �̃
−1/2
w and Ũw�̃

−1/2
w involved in the3

second step (those in Eqs. (32)–(34)) improves the optimization
criteria by J2 and J3. However, the following experimental re-5

sults show that the scaling by �̃
−1/2
w can make dramatic effects

on the classification performances. Postponing the detailed ex-7
planation on the data sets and experimental setting until Section
2.7, experimental results on the face recognition data sets are9
shown in Table 3. After dimension reduction, 1-NN classifier
was used in the reduced dimensional space.11

2.5. A method of PCA plus transformations to range(Sw) and
null(Sw)13

As shown in the analysis of the compared methods, they
search for discriminative vectors in null(Sw)∩ null(Sb)

c and15
null(Sw)c∩ null(Sb)

c. The method To-N(Sw) by Chen et al.
finds solution vectors in null(Sw)∩ null(Sb)

c and To-R(Sb) by17
Yu et al. restricts the search space to null(Sw)c∩ null(Sb)

c.
LDA/GSVD by Howland et al. finds solution from both spaces,19
however, the number of possible discriminative vectors cannot
be greater than rank(Sb), possibly resulting in solution vectors21
only from null(Sw)∩ null(Sb)

c in the case of high dimensional
data. Recently Yang et al. [7] have proposed a method to obtain23
solution vectors in both spaces, which we will call To-NR(Sw).

In the method by Yang et al., first, the transformation by the25
orthonormal basis of range(St ), as in PCA, is performed. Let
the SVD of St be27

St = Ut�tU
T
t = [ Ut1︸︷︷︸

s

Ut2︸︷︷︸
m−s

]
[�t1 0

0 0

][
UT

t1

UT
t2

]
,

where s = rank(St ). In the transformed space by Ut1, let the29
within-scatter matrix be S̃w = UT

t1SwUt1. Then the basis of
null(S̃w) and range(S̃w) can be found by the EVD of S̃w as31

S̃w = Ũw�̃wŨT
w = [Ũw1 Ũw2]

[ �̃w1 0

0 0

][ ŨT
w1

ŨT
w2

]
. (36)

In the transformed space by the basis Ũw2 of null(S̃w), let Y be33
the matrix whose columns are the eigenvectors corresponding
to nonzero eigenvalues of35

S̄b ≡ ŨT
w2U

T
t1SbUt1Ũw2. (37)

On the other hand, in the transformed space by the basis37
Ũw1 of range(S̃w), let Z be the matrix whose columns are the

eigenvectors4 with the k largest nonzero eigenvalues of Ŝ−1
t Ŝb 39

where Ŝb ≡ ŨT
w1U

T
t1SbUt1Ũw1 and Ŝt ≡ ŨT

w1U
T
t1StUt1Ũw1.

Then the transformation matrix by the method To-NR(Sw) is 41
constructed as

Gd = [Ut1Ũw2Y Ut1Ũw1Z]. (38) 43

When two parts Ut1Ũw2Y and Ut1Ũw1Z are used for transfor-
mation matrix Gd , it will be better to normalize the columns 45
in Ut1Ũw1Z so that effects of both parts can be balanced.

2.5.1. Relationship with the method To-N(Sw) 47
Recall from Section 2.3 that the method To-N(Sw) projects

the original space onto the null space of Sw using an orthonor- 49
mal basis of null(Sw), and then in the projected space, a trans-
formation that maximizes the between-class scatter is com- 51
puted.

Since Ut2 is a basis of null(St ) and null(St ) ⊂ null(Sw), 53
from (36)[

UT
t1

UT
t2

]
Sw [Ut1 Ut2 ] =

[
Ũw�̃wŨT

w 0

0 0

]
. (39)

55

By Eq. (39), we can obtain the EVD of Sw as

Sw = [Ut1Ũw Ut2]
[ �̃w 0

0 0

][
ŨT

wUT
t1

UT
t2

]

= [Ut1Ũw1 Ut1Ũw2 Ut2 ]

[ �̃w1 0

0 0

]⎡⎢⎢⎣
ŨT

w1U
T
t1

ŨT
w2U

T
t1

UT
t2

⎤
⎥⎥⎦ .

(40) 57

Eq. (40) shows that the columns of V ≡ [Ut1Ũw2 Ut2] is an
orthonormal basis of null(Sw). Hence the transformation by 59
V V T gives the projection onto the null space of Sw.

Now by notation (37) and span(Ut2) = null(St ) ⊂ null(Sb), 61

[Ut1Ũw2 Ut2]
[
(Ut1Ũw2)

T

UT
t2

]
Sb[Ut1Ũw2 Ut2]

[
(Ut1Ũw2)

T

UT
t2

]

= Ut1Ũw2S̄bŨ
T
w2U

T
t1,

which is the between-class scatter matrix in the projected space 63
by V V T. Let the EVD of S̄b be

S̄b = [Ūb1 Ūb2]
[ �̄b1 0

0 0

][
ŪT

b1

ŪT
b2

]
.

65

4 In Ref. [7], it was claimed that the orthonormal eigenvectors of Ŝ−1
t Ŝb

should be used. However, Ŝ−1
t Ŝb may not be symmetric therefore it is not

guaranteed that there exist orthonormal eigenvectors of Ŝ−1
t Ŝb .
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Then we have the transformation matrix Ge by the method To-1
N(Sw) as

Ge = [Ut1Ũw2 Ut2]
[
(Ut1Ũw2)

T

UT
t2

]
Ut1Ũw2Ūb1

= Ut1Ũw2Ūb1, (41)3

which is exactly same as Ut1Ũw2Y in Gd of (38).

2.6. Other approaches for generalized LDA5

2.6.1. PCA plus LDA
Using PCA as a preprocessing step before applying LDA has7

been a traditional technique for undersampled problems and
successfully applied for face recognition [13]. In this approach,9
data dimension is reduced by PCA so that in the reduced dimen-
sional space the within-class scatter matrix becomes nonsingu-11
lar and classical LDA can be performed. However, choosing
optimal dimensions reduced by PCA is not easy and experi-13
mental process for it can be expensive. In Section 2.7 where we
present experimental comparison of the discussed algorithms,15
we demonstrate the difficulty with choosing the optimal dimen-
sion reduced by PCA.17

2.6.2. GSLDA
Zheng et al. claimed that the most discriminant vectors for19

LDA can be chosen from

null(St )
⊥ ∩ null(Sw), (42)21

where null(St )
⊥ denotes the orthogonal complement of null(St )

[8]. They also proposed a computationally efficient method23
called GSLDA [14] which uses the modified Gram–Schmidt
orthogonalization (MGS) in order to obtain an orthogonal basis25
of null(St )

⊥ ∩null(Sw). In Ref. [14], under the assumption that
the given data items are independent, MGS is applied to27

[H ∗
w, H ∗

b ], (43)

obtaining an orthogonal basis Q of Eq. (43), where H ∗
w is con-29

structed by deleting one column from each subblock Ai −cie1,
1� i�r , in Hw and H ∗

b =[c1 − c, . . . , cr−1 − c]. Then the last31
r −1 columns of Q give an orthogonal basis of Eq. (42). When
applying L2-norm as a similarity measure, using any orthog-33
onal basis of null(St )

⊥ ∩ null(Sw) as a transformation matrix
gives the same classification performances [14].35

In Section 2.5, it was shown that a transformation matrix Ge

by the method To-N(Sw) is same as the first part Ut1Ũw2Y in37
the transformation matrix Gd by the method To-NR(Sw). In
fact, it is not difficult to prove that under the assumption of the39
independence of data items, Ut1Ũw2Y is an orthogonal basis
of Eq. (42), and therefore prediction accuracies by the method41
To-N(Sw) and GSLDA should be same.

2.6.3. Uncorrelated LDA43
Instead of the orthogonality of the columns {gi} in the trans-

formation matrix G, i.e., gT
i gj = 0 for i 	= j , uncorrelated45

LDA (ULDA) imposes the St -orthogonal constraint, gT
i Stgj =047

for i 	= j [15]. In Ref. [16], it was shown that discriminant
vectors obtained by the LDA/GSVD solve the St -orthogonal 49
constraint. Hence the proposed algorithm 1 can also give solu-
tions for ULDA more efficiently. 51

2.7. Experimental comparisons of generalized LDA algorithms

In order to compare the discussed methods, we conducted 53
extensive experiments using two types of data sets in text clas-
sification and face recognition. 55

Text classification is a task to assign a class label to a new
document based on the information from pre-classified doc- 57
uments. A collection of documents are assumed to be repre-
sented as a term-document matrix, where each document is 59
represented as a column vector and the components of the col-
umn vector denote frequencies of words appeared in the docu- 61
ment. The term-document matrix is obtained after preprocess-
ing with common words and rare term removal, stemming, term 63
frequency and inverse term frequency weighting and normal-
ization [17]. The term-document matrix representation often 65
makes the high dimensionality inevitable.

For all text data sets,5 they were randomly split to the train- 67
ing set and the test set with the ratio of 4:1. Experiments are re-
peated 10 times to obtain mean prediction accuracies and stan- 69
dard deviation as a performance measure. Detailed description
of text data sets is given in Table 4. After computing a transfor- 71
mation matrix using training data, both training data and test
data were represented in the reduced dimensional space. In the 73
transformed space, the nearest neighbor classifier was applied
to compute the prediction accuracies for classification. For each 75
data item in test set, it finds the nearest neighbor from the train-
ing data set and predicts a class label for the test data according 77
to the class label of the nearest neighbor. Table 5 reports the
mean prediction accuracies from 10 times random splitting to 79
training and test sets.

The second experiment, face recognition, is a task to iden- 81
tify a person based on given face images with different facial
expressions, illumination and poses. Since the number of pic- 83
tures for each subject is limited and the data dimension is the
number of pixels of a face image, face recognition data sets are 85
typically severely undersampled.

Our experiments used two data sets, AT&T (formerly ORL) 87
face database and Yale face database. The AT&T database has
400 images, which consists of 10 images of 40 subjects. All the 89
images were taken against a dark homogeneous background,
with slightly varying lighting, facial expressions (open/closed 91
eyes, smiling/nonsmiling), and facial details (glasses/no-
glasses). The subjects are in up-right, frontal positions with 93
tolerance for some side movement [18]. For the manageable
data sizes, the images have been downsampled from the size 95
92×112 to 46×56 by averaging the grey level values on 2×2
blocks. Yale face database contains 165 images, 11 images 97

5 The text data sets were downloaded from http://www-users.cs.umn.edu/
∼karypis/cluto/download.html which were collected from Reuter-21578 and
TREC-5, TREC-6, TREC-7 database and preprocessed to reduce to manage-
able data size.
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Table 4
The description of data sets

Data Re1 Tr12 Tr23 Tr31 Tr41 Tr45 AT&T Yale

Dim. 3094 5896 5825 8104 7362 8175 2576 8586
No. data 490 210 187 841 757 575 400 165
Classes 5 7 4 4 5 6 40 15

Table 5
Prediction accuracies (%)

Data RLDA LDA/GSVD To-N(Sw) To-R(Sb) To-NR(Sw)

Text classification
Re1 95.8 95.1 94.5 94.2 94.7
Tr12 95.7 98.3 98.1 96.7 97.6
Tr23 87.9 90.3 91.5 88.2 91.8
Tr31 98.6 98.4 98.6 97.7 98.7
Tr41 98.0 97.3 97.0 96.3 97.1
Tr45 93.6 93.3 94.2 94.1 94.4

Face recognition
AT&T 98.0 93.5 98.0 99.0 98.8
Yale 97.6 98.8 97.6 89.7 98.2

For RLDA, the best accuracy among � = 0.5, 1, 1.5 is reported. For each data set, the best prediction accuracy is shown in boldface.

of 15 subjects. The 11 images per subject were taken under1
various facial expressions or configurations: center-light, with
glasses, happy, left-light, without glasses, normal, right-light,3
sad, sleepy, surprised, and wink [19]. In our experiment, each
image has been downsampled from 320 × 243 to 106 × 81 by5
averaging the grey values on 3 × 3 blocks. Detailed descrip-
tion of face data sets is also given in Table 4. Since the number7
of images for each subject is small, leave-one-out method was
performed where it takes one image for test set and the remain-9
ing images are used as a training set. Each image serves as a
test datum by turns and the ratio of the number of correctly11
classified cases and the total number of data is considered as a
prediction accuracy.13

Table 5 summarizes the prediction accuracies from both
experiments. For the regularized LDA, we report the best15
among the accuracies obtained with the regularization param-
eter � = 0.5, 1, 1.5. The method based on the transformation17
to range(Sb), To-R(Sb), gives relatively low prediction accu-
racies compared with the methods utilizing the null space of19
the within-class scatter matrix Sw. While no single methods
works the best in all situations, computational complexities21
can be dramatically different among the compared methods as
we will discuss in the next section.23

When PCA is performed as a preprocessing step for LDA, it
is not easy to determine the dimension obtained by PCA. In the25
next experiment we compare PCA plus LDA with the general-
ized LDA methods discussed. Varying the dimensions reduced27
by PCA, LDA was applied to reduce the data dimension fur-
ther to r − 1 where r is the number of classes. Three figures29
in Fig. 2 show prediction accuracies for three data sets Tr12,
Tr31 and Yale face data, respectively. The values on the hor-31
izontal axis denote the intermediate data dimensions obtained
by PCA. They demonstrate the difficulty in choosing the op-33

timal dimension in applying PCA as a preprocessing step for
LDA, although the best prediction accuracies indicated by the 35
peak points on the graphs are comparable with those in Table 5.

2.8. Analysis of computational complexities 37

In this section we analyze computational complexities for
the discussed methods. The computational complexity for the 39
SVD decomposition depends on what parts need to be explicitly
computed. We use flop counts for the analysis of computational 41
complexities where one flop (floating point operation) repre-
sents roughly what is required to do one addition/subtraction 43
or one multiplication/division [12]. For the SVD of a matrix
H ∈ Rp×q when p?q, 45

H = U�V T = [ U1︸︷︷︸
q

U2︸︷︷︸
p−q

]�V T,

where U ∈ Rp×p, � ∈ Rp×q and V ∈ Rq×q , the complexities 47
(flops) can be roughly estimated as follows [12, p. 254].

Need to be computed explicitly Complexities

U1, � 6pq2 + 11q3

U, � 4p2q + 13q3

U, �, V 4p2q + 22q3

49
For the multiplication of the p1 ×p2 matrix and the p2 ×p3

matrix, 2p1p2p3 flops can be counted. 51
For simplicity, cost for constructing Hb ∈ Rm×r , Hw ∈

Rm×n and Ht ∈ Rm×n in Eqs. (8)–(10) was not included for 53
the comparison, since the construction of scatter matrices is
required in all the methods. For H ∈ Rp×q and p?q, when 55
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Fig. 2. The effects of the dimensions reduced by PCA on the prediction accuracies. The values on the horizontal axis denote data dimensions reduced by PCA
before LDA is applied.
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Fig. 3. Comparison of computational complexities of the generalized LDA methods using the sizes of training data used in experiments. From the left on
x-axis, the data sets, Tr12, Re1, Tr23, Tr31, Tr41, Tr45, AT&T and Yale, are corresponded.

only eigenvectors corresponding to the nonzero eigenvalues of1
HHT ∈ Rp×p are needed, the approach of computing the
EVD of HTH instead of HHT as explained in Section 2.2 was3
utilized.

Fig. 3 compares computational complexities of the discussed5
methods by using specific sizes of training data sets used in the
experiments. As shown in Fig. 3, regularized LDA, LDA/GSVD7
[4] and the method To-N(Sw) [5] have high computational com-
plexities overall. The method To-R(Sb) [6] obtained the low-9
est computational costs compared with other methods while
its performance cannot be ranked highly. The proposed algo-11
rithm for LDA/GSVD reduced the complexity of the original
algorithm dramatically while it achieves competitive prediction13
accuracies as shown in Section 2.7. This new algorithm can
save computational complexities even more when the number15
of terms is much greater than the number of documents.

3. Nonlinear discriminant analysis based on kernel17
methods

Linear dimension reduction is conceptually simple and has19
been used in many application areas. However, it has a limita-

tion for the data which is not linearly separable since it is diffi- 21
cult to capture a nonlinear relationship with a linear mapping.
In order to overcome such a limitation, nonlinear extensions 23
of linear dimension reduction methods using kernel methods
have been proposed [20–25]. The main idea of kernel methods 25
is that without knowing the nonlinear feature mapping or the
mapped feature space explicitly, we can work on the nonlin- 27
early transformed feature space through kernel functions. It is
based on the fact that for any kernel function � satisfying Mer- 29
cer’s condition, there exists a reproducing kernel Hilbert space
H and a feature map � such that 31

�(x, y) = 〈�(x), �(y)〉, (44)

where 〈, 〉 is an inner product in H [9,26,27]. 33
Suppose that given a kernel function � original data space

is mapped to a feature space (possibly an infinite dimensional 35
space) through a nonlinear feature mapping � : A ⊂ Rm →
F ⊂ RN satisfying Eq. (44). As long as the problem formula- 37
tion depends only on the inner products between data points in
F and not on the data points themselves, without explicit rep- 39
resentation of the feature mapping � or the feature space F,
we can work on the feature space F through relation (44). As 41
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positive definite kernel functions satisfying Mercer’s condition,1
polynomial kernel and Gaussian kernel

�(x, y) = (�1(x · y) + �2)
d , d > 0 and �1, �2 ∈ R,3

�(x, y) = exp(−‖x − y‖2/2�2), � ∈ R

are in wide use.5
In this section, we present the formulation of a generalized

eigenvalue problem in the kernel-based feature space and apply7
the generalized LDA algorithms, obtaining nonlinear discrimi-
nant analysis. Given a kernel function �, let Sb and Sw be the9
between-class and within-class scatter matrices in the feature
space F ⊂ RN which has been transformed by a mapping �11
satisfying Eq. (44). Then the LDA in F finds a linear trans-
formation G = [�1, . . . ,�l] ∈ RN×l , where the columns of G13
are the generalized eigenvectors corresponding to the l largest
eigenvalues of15

Sb� = �Sw�. (45)

As in Eq. (7), Sb and Sw can be expressed as17

Sb = HbH
T
b and Sw = HwH

T
w,

where19

Hb = [√n1(c̃1 − c̃), . . . ,
√

nr(c̃r − c̃)] ∈ RN×r , (46)

Hw = [�(A1) − c̃1e1, . . . ,�(Ar) − c̃r er ] ∈ RN×n,21

c̃i = 1

ni

∑
j∈Ni

�(aj ), c̃ = 1

n

n∑
i=1

�(ai) and

ei = [1, . . . , 1] ∈ R1×ni . (47)23

The notation �(Ai) is used to denote �(Ai)=�([aj , . . . , ak])=
[�(aj ), . . . ,�(ak)].25

Let � be represented as a linear combination of �(ai)’s such
as � =∑n

i=1ui�(ai), and define27

u = [u1, . . . , un]T,

Kb = [bij ](1� i �n,1� j � r),29

bij = √
nj

⎛
⎝ 1

nj

∑
p∈Nj

�(ai, ap) − 1

n

n∑
p=1

�(ai, ap)

⎞
⎠ . (48)

Then we have31

HT
b� = KT

b u, (49)

since 33

HT
b� =

⎡
⎢⎢⎣

√
n1(c̃1 − c̃)T

...

√
nr(c̃r − c̃)T

⎤
⎥⎥⎦
(

n∑
i=1

ui�(ai)

)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
n1

(
1
n1

∑
p∈N1

�(ap) − 1
n

n∑
p=1

�(ap)

)T

...

√
nr

(
1
nr

∑
p∈Nr

�(ap) − 1
n

n∑
p=1

�(ap)

)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[�(a1), · · · , �(an) ]

⎡
⎢⎢⎣

�1

...

�n

⎤
⎥⎥⎦

=KT
b u. 35

Similarly, we can obtain

HT
w� = KT

wu, (50) 37

where

Kw = [wij ](1� i �n,1� j �n), 39

wij = �(ai, aj ) − 1

n�

∑
p∈N�

�(ai, ap) (51)

when aj belongs to the class �. 41
From Eqs. (49) and (50), for any � = ∑n

i=1ui�(ai) and
� =∑n

i=1vi�(ai) we have 43

Sb� = �Sw�

⇔ �THbH
T
b� = ��THwH

T
w�

⇔ vTKbK
T
b u = �vTKwK

T
wu

for u = [u1, . . . , un]T, v = [v1, . . . , vn]T

⇔KbK
T
b u = �KwK

T
wu. (52)

Therefore, the generalized eigenvalue problem Sb� = �Sw� 45
becomes

KbK
T
b u = �KwK

T
wu. (53) 47

Algorithm 2. Nonlinear discriminant analysis.
Given a data matrix A=[a1, . . . , an] ∈ Rm×n with r classes and
a kernel function �, it computes the l dimensional representation
of any input vector z ∈ Rm×1 by applying the generalized LDA
algorithm in the kernel-based feature space composed of the
columns of K = [�(ai, aj ) ](1� i �n,1� j �n).
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Table 6
Prediction accuracies (%) by the classical LDA in the original space and the generalized LDA algorithms in the nonlinearly transformed feature space

Data Dim. No. data Classes Linear Nonlinear methods

LDA RLDA LDA/GSVD To-N(Sw) To-R(Sb) To-NR(Sw)

Musk 166 6599 2 91.2 97.6 99.4 99.4 89.2 99.3
Isolet 617 7797 26 93.9 95.8 96.8 97.0 89.7 97.1
Car 6 1728 4 88.2 94.7 94.1 94.9 84.5 95.2
Mfeature 649 2000 10 – 94.4 98.1 98.3 94.0 98.3
Bcancer 9 699 2 95.3 95.2 96.4 93.5 92.8 94.3
Bscale 4 625 3 87.0 94.1 86.5 86.5 86.5 86.1

In the Mfeature data set, the classical LDA was not applicable in the original space due to the singularity of the within-class scatter matrix.

(1) Compute Kb ∈ Rn×r , Kw ∈ Rn×n and Kt ∈ Rn×n ac-
cording to (48), (51) and (55).

(2) Compute transformation matrix G by applying the general-
ized LDA algorithms discussed in Section 2.

(3) For any input vector z ∈ Rm×1, a dimension reduced repre-
sentation is computed by Eq. (57).

1
Note that KbK

T
b and KwK

T
w can be viewed as the

between-class scatter matrix and within-class scatter matrix of3
the kernel matrix

K = [�(ai, aj )](1� i �n,1� j �n), (54)5

when each column [�(a1, aj ), . . . , �(an, aj )]T in K is consid-
ered as a data point in the n-dimensional space. It can be ob-7
served by comparing the structures of Kb and Kw with those
of Hb and Hw in Eqs. (46)–(47). As in Kb and Kw of Eqs.9
(48) and (51), Kt can be computed as

Kt = [tij ](1� i �n,1� j �n),

tij = �(ai, aj ) − 1

n

n∑
p=1

�(ai, ap). (55)
11

Since KbK
T
b and KwK

T
w are both singular in the feature

space, the classical LDA cannot be applied for the generalized13
eigenvalue problem (53). Now we apply the generalized LDA
algorithms discussed in Section 2 to solve Eq. (53), obtaining15
nonlinear discriminant analysis. Let

G = [u(1), . . . , u(l)] ∈ Rn×l (56)17

be the transformation matrix obtained by applying any gener-
alized LDA algorithm in the feature space. Then the dimension19
reduced representation of any data item z ∈ Rm×1 is given by

GT

⎡
⎢⎢⎣

�(a1, z)

...

�(an, z)

⎤
⎥⎥⎦ ∈ Rl×1. (57)

21

Algorithm 2 summarizes nonlinear extension of generalized
LDA algorithms by kernel methods. 23

3.1. Experimental comparisons of nonlinear discriminant
analysis algorithms 25

For this experiment, six data sets from UCI machine learn-
ing repository were used. By randomly splitting the data to the 27
training and test set of equal size and repeating it 10 times, 10
pairs of training and test sets were constructed for each data. For 29
the Bcancer and Bscale data sets, the ratio of training and test set
was set as 4:1. Using the training set of the first pair among ten 31
pairs and the nearest-neighbor classifier, five cross-validation
was used in order to determine the optimal value for � in the 33
Gaussian kernel function �(x, y)=exp(−(‖x −y‖2)/2�2). Af-
ter finding the optimal � values, mean prediction accuracies 35
from ten pairs of training and test sets were calculated and they
are reported in Table 6. In the regularization method, while 37
the regularization parameter was set as 1, the optimal � value
was searched by the cross-validation. Table 6 also reports the 39
prediction accuracies by the classical LDA in the original data
space and it demonstrates that nonlinear discriminant analysis 41
can improve prediction accuracies compared with LDA.

Fig. 4 illustrates the computational complexities using the 43
specific sizes of the training data used in Table 6. As in the
comparison of the generalized LDA algorithms, the method To- 45
R(Sb) [5] gives the lowest computational complexities among
the compared methods. However, combining To-R(Sb) with 47
kernel methods does not make effective nonlinear dimension
reduction method as shown in Table 6. In the generalized eigen- 49
value problem,

KbK
T
b u = �KwK

T
wu, 51

where KbK
T
b ,KwK

T
w ∈ Rn×n.

The data dimension is equal to the number of data and the 53
rank of KwK

T
w is not severely smaller than the data dimen-

sion. However, poor performances by To-R(Sb) demonstrate 55
that the null space of KwK

T
w contains discriminative infor-

mation. Figs. 3 and 4 show that the proposed LDA/GSVD 57
method can reduce greatly the computational cost of the orig-
inal LDA/GSVD in both the original space and the feature 59
space.
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Fig. 4. The figures compare complexities required for the generalized LDA algorithms in the feature space for specific problem sizes of training data used in
Table 6. From the left on x-axis, the data sets, Musk, Isolet, Car, Mfeature, Bcancer and Bscale are corresponded.

4. Conclusions/Discussions1

We presented the relationships among several generalized
LDA algorithms developed for handling undersampled prob-3
lems and compared their computational complexities and per-
formances. As discussed in the theoretical comparison, many5
algorithms are closely related, and experimental results indicate
that computational complexities are important issues in addition7
to classification performances. The LDA/GSVD showed com-
petitive performances throughout the experiments, but the com-9
putational complexities can be expensive especially for high
dimensional data. An efficient algorithm has been proposed,11
which produces the same solution as LDA/GSVD. The compu-
tational savings are remarkable especially for high dimensional13
data.

Nonlinear extensions of the generalized LDA algorithms15
by the formulation of generalized eigenvalue problem in the
kernel-based feature space were presented. Experimental re-17
sults using data sets from UCI database demonstrate that non-
linear discriminant analysis can improve prediction accuracies19
compared with LDA.
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