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1 MPI-FAUN: An MPI-Based Framework
2 for Alternating-Updating Nonnegative
3 Matrix Factorization
4 Ramakrishnan Kannan, Grey Ballard, and Haesun Park, Fellow, IEEE

5 Abstract—Non-negative matrix factorization (NMF) is the problem of determining two non-negative low rank factorsW andH, for the

6 given input matrix A, such thatA �WH. NMF is a useful tool for many applications in different domains such as topic modeling in text

7 mining, background separation in video analysis, and community detection in social networks. Despite its popularity in the data mining

8 community, there is a lack of efficient parallel algorithms to solve the problem for big data sets. The main contribution of this work is a

9 new, high-performance parallel computational framework for a broad class of NMF algorithms that iteratively solves alternating

10 non-negative least squares (NLS) subproblems forW andH. It maintains the data and factor matrices in memory (distributed across

11 processors), uses MPI for interprocessor communication, and, in the dense case, provably minimizes communication costs (under mild

12 assumptions). The framework is flexible and able to leverage a variety of NMF and NLS algorithms, including Multiplicative Update,

13 Hierarchical Alternating Least Squares, and Block Principal Pivoting. Our implementation allows us to benchmark and compare

14 different algorithms on massive dense and sparse data matrices of size that spans from few hundreds of millions to billions. We

15 demonstrate the scalability of our algorithm and compare it with baseline implementations, showing significant performance

16 improvements. The code and the datasets used for conducting the experiments are available online.

17 Index Terms—HPC, NMF, MPI, 2D

Ç

18 1 INTRODUCTION

19 NON-NEGATIVE Matrix Factorization (NMF) is the prob-
20 lem of finding two low rank factors W 2 Rm�k

þ and
21 H 2 Rk�n

þ for a given input matrix A 2 Rm�n
þ , such that

22 A �WH. Here, Rm�n
þ denotes the set of m� n matrices

23 with non-negative real values. Formally, the NMF problem
24 [1] can be defined as

min
W50;H50

kA�WHkF ; (1)

2626

27 where kXkF ¼ ð
P

ij x
2
ijÞ1=2 is the Frobenius norm.

28 NMF is widely used in data mining and machine learn-
29 ing as a dimension reduction and factor analysis method. It
30 is a natural fit for many real world problems as the non-neg-
31 ativity is inherent in many representations of real-world
32 data and the resulting low rank factors are expected to have
33 a natural interpretation. The applications of NMF range
34 from text mining [2], computer vision [3], [4], [5], and bioin-
35 formatics [6] to blind source separation [7], unsupervised
36 clustering [8], [9] and many other areas. In the typical case,

37k� minðm;nÞ; for problems today, m and n can be on the
38order of millions or more, and k is on the order of few tens
39to thousands.
40There is a vast literature on algorithms for NMF and their
41convergence properties [10]. The commonly adopted NMF
42algorithms are—(i) Multiplicative Update (MU) [1] (ii) Hier-
43archical Alternating Least Squares (HALS) [7], [11] (iii)
44NMF based on Alternating Nonnegative Least Squares and
45Block Principal Pivoting (ABPP) [12], and (iv) Stochastic
46Gradient Descent (SGD) Updates [13]. Most of the algo-
47rithms in NMF literature are based on alternately optimiz-
48ing each of the low rank factors W and H while keeping the
49other fixed, in which case each subproblem is a constrained
50convex optimization problem. Subproblems can then be
51solved using standard optimization techniques such as pro-
52jected gradient or interior point method; a detailed survey
53for solving such problems can be found in [10], [14]. In this
54paper, our implementation uses either ABPP, MU, or
55HALS. But our parallel framework is extensible to other
56algorithms (e.g., [15], [16]) as-is or with a few modifications,
57as long as they fit an alternating-updating framework
58(defined in Section 4).
59With the advent of large scale internet data and interest
60in Big Data, researchers have started studying scalability of
61many foundational machine learning algorithms. To illus-
62trate the dimension of matrices commonly used in the
63machine learning community, we present a few examples.
64Nowadays the adjacency matrix of a billion-node social net-
65work is common. In the matrix representation of a video
66data, every frame contains three matrices for each RGB
67color, which is reshaped into a column. Thus in the case of a
684 K video, every frame will take approximately 27 million
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of69 rows (4,096 row pixels � 2,196 column pixels � 3 colors).

70 Similarly, the popular representation of documents in text
71 mining is a bag-of-words matrix, where the rows are the
72 dictionary and the columns are the documents (e.g., web-
73 pages). Each entry Aij in the bag-of-words matrix is gener-
74 ally the frequency count of the word i in the document j.
75 Typically with the explosion of the new terms in social
76 media, the number of words spans to millions. To handle
77 such high-dimensional matrices, it is important to study
78 low-rank approximation methods in a data-distributed and
79 parallel computing environment.
80 In this work, we present an efficient algorithm and imple-
81 mentation using tools from the field of High-Performance
82 Computing (HPC). We maintain data in memory (distrib-
83 uted across processors), take advantage of optimized librar-
84 ies like BLAS and LAPACK for local computational routines,
85 and use the Message Passing Interface (MPI) standard to
86 organize interprocessor communication. Furthermore, the
87 current hardware trend is that available parallelism (and
88 therefore aggregate computational rate) is increasing much
89 more quickly than improvements in network bandwidth
90 and latency, which implies that the relative cost of communi-
91 cation (compared to computation) is increasing. To address
92 this challenge, we analyze algorithms in terms of both their
93 computation and communication costs. In particular, we
94 prove in Section 5.2 that in the case of dense input and under
95 a mild assumption, our proposed algorithm minimizes the
96 amount of data communicated between processors to within
97 a constant factor of the lower bound.
98 We call our implementation MPI-FAUN, an MPI-based
99 Framework for Alternating-Updating Nonnegative matrix

100 factorization algorithms. A key attribute of our framework is
101 that the efficiency does not require a loss of generality of
102 NMF algorithms. Our central observation is that most NMF
103 algorithms, in particular those that alternate between updat-
104 ing each factormatrix, consist of twomain tasks: (a) perform-
105 ing matrix multiplications and (b) solving Non-negative
106 Least Squares (NLS) subproblems, either approximately or
107 exactly. More importantly, NMF algorithms tend to perform
108 the same matrix multiplications, differing only in how they
109 solveNLS subproblems, and thematrixmultiplications often
110 dominate the running time of the algorithms. Our frame-
111 work is designed to perform the matrix multiplications effi-
112 ciently and organize the data so that the NLS subproblems
113 can be solved independently in parallel, leveraging any of a
114 number of possible methods. We explore the overall effi-
115 ciency of the framework and compare three different NMF
116 methods in Section 6, performing convergence, scalability,
117 and parameter-tuning experiments on over 1,500 processors.
118 With our framework, we are able to explore several
119 large-scale synthetic and real-world data sets, some dense
120 and some sparse. In Table 1, we present the NMF computa-
121 tion wall clock time on some very large real world datasets.

122We describe the results of the computation in Section 6,
123showing the range of application of NMF and the ability of
124our framework to scale to large data sets.
125A preliminary version of this work has already appeared
126as a conference paper [17]. While the focus of the previous
127work was parallel performance of Alternating Nonnegative
128Least Squares and Block Principal Pivoting (ABPP), the goal
129of this paper is to explore more data analytic questions. In
130particular, the new contributions of this paper include (1)
131implementing a software framework to compare ABPP
132with Multiplicative Update (MU) and Hierarchical Alter-
133nating Least Squares (HALS) for large scale data sets, (2)
134benchmarking on a data analysis cluster and scaling up to
135over 1,500 processors, and (3) providing an interpretation of
136results for real-world data sets. We provide a detailed com-
137parison with other related work, including MapReduce
138implementations of NMF, in Section 3.
139Our main contribution is a new, high-performance paral-
140lel computational framework for a broad class of NMF algo-
141rithms. The framework is efficient, scalable, flexible, and
142demonstrated to be effective for large-scale dense and
143sparse matrices. Based on our survey and knowledge, we
144are the fastest NMF implementation available in the litera-
145ture. The code and the datasets used for conducting the
146experiments can be downloaded from https://github.com/
147ramkikannan/nmflibrary.

1482 PRELIMINARIES

1492.1 Notation

150Table 2 summarizes the notation we use throughout this
151paper. We use upper case letters for matrices and lower case let-
152ters for vectors. We use both subscripts and superscripts for
153sub-blocks of matrices. For example,Ai is the ith row block of
154matrix A, and Ai is the ith column block. Likewise, ai is the
155ith row of A, and ai is the ith column. We use m and n to
156denote the numbers of rows and columns of A, respectively,
157andwe assumewithout loss of generalitym 5 n throughout.

1582.2 Communication Model

159To analyze our algorithms, we use the a-b-g model of dis-
160tributed-memory parallel computation. In this model, inter-
161processor communication occurs in the form of messages
162sent between two processors across a bidirectional link
163(we assume a fully connected network). We model the cost
164of a message of size n words as aþ nb, where a is the per-
165message latency cost and b is the per-word bandwidth cost.

TABLE 1
MPI-FAUN on Large Real-World Datasets

Dataset Type Matrix size NMF Time

Video Dense 1 Million � 13,824 5.73 seconds
Stack Exchange Sparse 627,047 � 12 Million 67 seconds
Webbase-2001 Sparse 118 Million � 118 Million 25 minutes

Reported time is for 30 iterations on 1,536 processors with a low rank of 50.

TABLE 2
Notation

A Input matrix
W Left low rank factor
H Right low rank factor
m Number of rows of input matrix
n Number of columns of input matrix
k Low rank
Mi ith row block of matrixM
Mi ith column block of matrixM
Mij ði; jÞth subblock ofM
p Number of parallel processes
pr Number of rows in processor grid
pc Number of columns in processor grid
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166 Each processor can compute floating point operations
167 (flops) on data that resides in its local memory; g is the per-
168 flop computation cost. With this communication model, we
169 can predict the performance of an algorithm in terms of the
170 number of flops it performs as well as the number of words
171 and messages it communicates. For simplicity, we will
172 ignore the possibilities of overlapping computation with
173 communication in our analysis. For more details on the
174 a-b-g model, see [18], [19].

175 2.3 MPI Collectives

176 Point-to-point messages can be organized into collective com-
177 munication operations that involvemore than two processors.
178 MPI provides an interface to the most commonly used collec-
179 tives like broadcast, reduce, and gather, as the algorithms for
180 these collectives can be optimized for particular network
181 topologies and processor characteristics. For a concise
182 description of themost common collectives, see [19, Figure 1].
183 The algorithms we consider use the all-gather, reduce-scatter,
184 and all-reduce collectives, so we review them here, along
185 with their costs. Our analysis assumes optimal collective algo-
186 rithms are used (see [18], [19]), though our implementation
187 relies on the underlyingMPI implementation.
188 At the start of an all-gather collective, each of p process-
189 ors owns data of size n=p. After the all-gather, each proces-
190 sor owns a copy of the entire data of size n. The cost of an
191 all-gather is a � log pþ b � p�1p n. At the start of a reduce-scat-
192 ter collective, each processor owns data of size n. After the
193 reduce-scatter, each processor owns a subset of the sum
194 over all data, which is of size n=p. This single collective is a
195 more efficient way of implementing a reduce followed by a
196 scatter. (Note that the reduction can be computed with other
197 associative operators besides addition.) The cost of an
198 reduce-scatter is a � log pþ ðbþ gÞ � p�1p n. At the start of an
199 all-reduce collective, each processor owns data of size n.
200 After the all-reduce, each processor owns a copy of the sum
201 over all data, which is also of size n. The cost of an all-
202 reduce is 2a � log pþ ð2bþ gÞ � p�1p n. Note that the costs of
203 each of the collectives are zero when p ¼ 1.

204 3 RELATED WORK

205 In the datamining andmachine learning literature there is an
206 overlap between low rank approximations and matrix facto-
207 rizations due to the nature of applications. Despite its
208 name, non-negative matrix “factorization” is really a low
209 rank approximation. Recently there is a growing interest
210 in collaborative filtering based recommender systems.
211 One of the popular techniques for collaborative filtering
212 is matrix factorization, often with nonnegativity con-
213 straints, and its implementation is widely available in
214 many off-the-shelf distributed machine learning libraries
215 such as GraphLab [20], MLLib [21], and many others [22],
216 [23] as well. However, we would like to clarify that col-
217 laborative filtering using matrix factorization is a different
218 problem than NMF: in the case of collaborative filtering,
219 non-nonzeros in the matrix are considered to be missing
220 entries, while in the case of NMF, non-nonzeros in the
221 matrix correspond to true zero values.
222 Thereare several recent distributedNMF algorithms in the
223 literature [24], [25], [26], [27]. Liu et al. propose running Mul-
224 tiplicative Update (MU) for KL divergence, squared loss, and
225 “exponential” loss functions [27]. Matrix multiplication,

226element-wise multiplication, and element-wise division are
227the building blocks of theMU algorithm. The authors discuss
228performing thesematrix operations effectively in Hadoop for
229sparse matrices. Using similar approaches, Liao et al. imple-
230ment an open source Hadoop-based MU algorithm and
231study its scalability on large-scale biological data sets [24].
232Also, Yin, Gao, and Zhang present a scalable NMF that can
233perform frequent updates,which aim to use themost recently
234updated data [26]. Similarly Faloutsos et al. propose a distrib-
235uted, scalable method for decomposing matrices, tensors,
236and coupled data sets through stochastic gradient descent on
237a variety of objective functions [25]. The authors also provide
238an implementation that can enforce non-negative constraints
239on the factor matrices. All of these works use Hadoop to
240implement their algorithms.
241We emphasize that our MPI-based approach has several
242advantages over Hadoop-based approaches:

243� efficiency—our approach maintains data in mem-
244ory, never communicating the data matrix, while
245Hadoop-based approaches must read/write data
246to/from disk and involves global shuffles of data
247matrix entries;
248� generality—our approach is well-designed for both
249dense and sparse data matrices, whereas Hadoop-
250based approaches generally require sparse inputs;
251� privacy—our approach allows processors to collabo-
252rate on computing an approximation without ever
253sharing their local input data (important for applica-
254tions involving sensitive data, such as electronic
255health records), while Hadoop requires the user to
256relinquish control of data placement.
257We note that Spark [28] is a popular big-data processing
258infrastructure that is generally more efficient for iterative
259algorithms such as NMF than Hadoop, as it maintains data
260in memory and avoids file system I/O. Even with a Spark
261implementation of previously proposed Hadoop-based
262NMF algorithm, we expect performance to suffer from
263expensive communication of input matrix entries, and
264Spark will not overcome the shortcomings of generality and
265privacy of the previous algorithms. Although Spark has col-
266laborative filtering libraries such as MLlib [21], which use
267matrix factorization and can impose non-negativity con-
268straints, none of them implement pure NMF, and so we do
269not have a direct comparison against NMF running on
270Spark. As mentioned above, the problem of collaborative fil-
271tering is different from NMF, and therefore different com-
272putations are performed at each iteration.
273Fairbanks et al. [29] present a parallel NMF algorithm
274designed for multicore machines. To demonstrate the
275importance of minimizing communication, we consider this
276approach to parallelizing an alternating-updating NMF algo-
277rithm in distributed memory (see Section 5.1). While this
278naive algorithm exploits the natural parallelism available
279within the alternating iterations (the fact that rows of W and
280columns of H can be computed independently), it performs
281more communication than necessary to set up the indepen-
282dent problems. We compare the performance of this algo-
283rithm with our proposed approach to demonstrate the
284importance of designing algorithms tominimize communica-
285tion; that is, simply parallelizing the computation is not suffi-
286cient for satisfactory performance and parallel scalability.
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287 Apart from distributed NMF algorithms using Hadoop
288 and multicores, there are also implementations of the MU
289 algorithm in a distributed memory setting using X10 [30]
290 and on a GPU [31].

291 4 ALTERNATING-UPDATING NMF ALGORITHMS

292 We define Alternating-Updating NMF algorithms as those
293 that (1) alternate between updating W for a given H and
294 updatingH for a givenW and (2) use the Gram matrix asso-
295 ciated with the fixed factor matrix and the product of the
296 input data matrix A with the fixed factor matrix. We show
297 the structure of the framework in Algorithm 1.

298 Algorithm 1. ½W;H� ¼ AU-NMFðA; kÞ
299 Require: A is anm� nmatrix, k is the approximation rank
300 1: InitializeHwith a non-negative matrix in Rn�k

þ .
301 2: while stopping criteria not satisfied do
302 3: UpdateW usingHHT and AHT

303 4: UpdateH usingWTW andWTA
304 5: end while

305 The specifics of lines 3 and 4 depend on the NMF
306 algorithm, and we refer to the computation associated with
307 these lines as the Local Update Computations (LUC), as they
308 will not affect the parallelization schemes we define in
309 Section 5.2. Because these computations are performed
310 locally, we use a function F ðm;n; kÞ to denote the number of
311 flops required for each algorithm’s LUC (and we do not con-
312 sider communication costs). Note that F ðm;n; kÞ does not
313 include the cost of computingHHT ,WTW,WTA, orAHT .
314 We note that AU-NMF is very similar to a two-block, block
315 coordinate descent (BCD) framework, but it has a key differ-
316 ence. In the BCD framework where the two blocks are the
317 unknown factors W and H, we solve the following subpro-
318 blems, which have a unique solution for a full rankH andW

W argmin
~W50

A� ~WH
�� ��

F
;

H argmin
~H50

A�W ~H
�� ��

F
:

(2)

320320

321 Since each subproblem involves nonnegative least squares,
322 this two-block BCD method is also called the Alternating
323 Non-negative Least Squares (ANLS) method [10]. For exam-
324 ple, Block Principal Pivoting (ABPP), discussed more in
325 detail at Section 4.3, is one algorithm that solves these NLS
326 subproblems. In the context of the AU-NMF algorithm, an
327 ANLS method maximally reduces the overall NMF objective
328 function value by finding the optimal solution for given H
329 andW in lines 3 and 4 respectively.
330 There are other popular NMF algorithms that update the
331 factor matrices alternatively without maximally reducing
332 the objective function value each time, in the same sense as
333 in ANLS. These updates do not necessarily solve each of the
334 subproblems (2) to optimality but simply improve the over-
335 all objective function (1). Such methods include Multiplica-
336 tive Update (MU) [1] and Hierarchical Alternating Least
337 Squares (HALS) [7], which was also proposed as Rank-one
338 Residual Iteration (RRI) [11]. To show how these methods
339 can fit into the AU-NMF framework, we discuss them in
340 more detail in Sections 4.1 and 4.2.
341 The convergence properties of these different algorithms
342 are discussed in detail by Kim, He and Park [10]. We

343emphasize here that both MU and HALS require comput-
344ing Gram matrices and matrix products of the input matrix
345and each factor matrix. Therefore, if the update ordering fol-
346lows the convention of updating all of W followed by all of
347H, both methods fit into the AU-NMF framework. We note
348that both MU and HALS are defined for more general
349update orders, but for our purposes we constrain them to
350be AU-NMF algorithms.
351While we focus on three NMF algorithms in this paper, we
352highlight that our framework is extensible to other NMF algo-
353rithms, including those based onAlternatingDirectionMethod
354of Multipliers (ADMM) [32], Nesterov-based methods [33], or
355any othermethod that fits the framework ofAlgorithm 1.

3564.1 Multiplicative Update (MU)

357In the case of MU [1], individual entries of W and H are
358updated with all other entries fixed. In this case, the update
359rules are

wij  wij

ðAHT Þij
ðWHHT Þij

; and

hij  hij

ðWTAÞij
ðWTWHÞij

:

(3)

361361

362Instead of performing these ðmþ nÞk in an arbitrary order,
363if all of W is updated before H (or vice-versa), this method
364also follows the AU-NMF framework. After computing the

365Gram matrices HHT and WTW and the products AHT and

366WTA, the extra cost of computing WðHHT Þ and ðWTWÞH is

F ðm;n; kÞ ¼ 2ðmþ nÞk2 flops to perform updates for all

entries of W and H, as the other elementwise operations

affect only lower-order terms. Thus, whenMU is used, lines

3 and 4 in Algorithm 1—and functions UpdateW and Upda-

teH in Algorithms 2 and 3—implement the expressions in

(3), given the previously computed matrices.

3674.2 Hierarchical Alternating Least Squares (HALS)

368In the case of HALS [7], [34], updates are performed on
369individual columns of W and rows of H with all other
370entries in the factor matrices fixed. This approach is a BCD
371method with 2 k blocks, set to minimize the function

fðw1; . . . ;wk;h1; . . . ;hkÞ ¼ A�
Xk
i¼1

wihi

�����

�����
F

; (4)

373373

374wherewi is the ith columnofW andhi is the ith row ofH. The
375update rules [34, Algorithm 2] can bewritten in closed form

wi  wi þ ðAHT Þi �WðHHT Þi
h i

þ

wi  wi

kwik ; and

hi  hi þ ðWTAÞi � ðWTWÞiH
� �

þ:

(5)

377377

378

379Note that the columns ofW and rows ofH are updated in
380order, so that the most up-to-date values are always used,
381and these 2 k updates can be done in an arbitrary order.
382However, if all the W updates are done before H (or vice-
383versa), the method falls into the AU-NMF framework. After
384computing the matrices HHT , AHT , WTW, and WTA, the

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. X, XXXXX 2017



IEE
E P

ro
of

385 extra computation is F ðm;n; kÞ ¼ 2ðmþ nÞk2 flops for
386 updating bothW andH.
387 Thus, whenHALS is used, lines 3 and 4 in Algorithm 1—
388 and functions UpdateW and UpdateH in Algorithms 2 and
389 3—implement the expressions in (5), given the previously
390 computed matrices.

391 4.3 Alternating Nonnegative Least Squares with
392 Block Principal Pivoting

393 Block Principal Pivoting (BPP) is an active-set-like method
394 for solving the NLS subproblems in Eq. (2). The main sub-
395 routine of BPP is the single right-hand side NLS problem

min
x50
kCx� bk2: (6)397397

398

399 The Karush-Kuhn-Tucker (KKT) optimality conditions
400 for Eq. (6) are as follows:

y ¼ CTCx� CTb (7a)

402402

403

x; y 5 0 (7b)

405405

406

xiyi ¼ 0 8i: (7c)408408

409

410 The KKT conditions (7) states that at optimality, the sup-
411 port sets (i.e., the non-zero elements) of x and y are comple-
412 mentary to each other. Therefore, Eq. (7) is an instance of
413 the Linear Complementarity Problem (LCP) which arises fre-
414 quently in quadratic programming. When k� minðm;nÞ,
415 active-set and active-set-like methods are very suitable
416 because most computations involve matrices of sizes
417 m� k; n� k, and k� kwhich are small and easy to handle.
418 If we knew which indices correspond to nonzero values
419 in the optimal solution, then computing the solution is an
420 unconstrained least squares problem on these indices. In
421 the optimal solution, call the set of indices i such that xi ¼ 0
422 the active set, and let the remaining indices be the passive
423 set. The BPP algorithm works to find this final active set and
424 passive set. It greedily swaps indices between the interme-
425 diate active and passive sets until finding a partition that
426 satisfies the KKT condition. In the partition of the optimal
427 solution, the values of the indices that belong to the active
428 set will take zero. The values of the indices that belong to
429 the passive set are determined by solving the unconstrained
430 least squares problem restricted to the passive set. Kim, He
431 and Park [12], discuss the BPP algorithm in further detail.
432 We use the notation

X SolveBPPðCTC;CTBÞ;
434434

435 to define the (local) function for using BPP to solve Eq. (6)
436 for every column of X. We define CBPPðk; cÞ as the cost of
437 SolveBPP, given the k� k matrix CTC and k� c matrix
438 CTB. SolveBPP mainly involves solving least squares prob-
439 lems over the intermediate passive sets. Our implementa-
440 tion uses the normal equations to solve the unconstrained
441 least squares problems because the normal equations matri-
442 ces have been pre-computed in order to check the KKT con-
443 dition. However, more numerically stable methods such as
444 QR decomposition can also be used.
445 Thus, when ABPP is used, lines 3 and 4 in Algorithm 1—
446 and functions UpdateW and UpdateH in Algorithms 2 and
447 3—correspond to calls to SolveBPP. The number of flops
448 involved in SolveBPP is not a closed form expression; in
449 this case F ðm;n; kÞ ¼ CBPPðk;mÞ þ CBPPðk; nÞ.

4505 PARALLEL ALGORITHMS

4515.1 Naive Parallel NMF Algorithm

452In this section we present a naive parallelization of NMF
453algorithms, which has previously appeared in the context of
454a shared-memory parallel platform [29]. Each NLS problem
455with multiple right-hand sides can be parallelized based on
456the observation that each right-hand side is independent
457from the others. For example, we can solve several instances
458of Eq. (6) independently for different b where C is fixed,
459which implies that we can optimize row blocks of W and
460column blocks ofH in parallel.

461Algorithm 2. ½W;H� ¼ Naive-Parallel-AUNMFðA; kÞ
462Require: A is an m� n matrix distributed both row-wise and
463column-wise across p processors, k is the approximation
464rank
465Require: Local matrices: Ai is m=p� n, Ai is m� n=p, Wi is
466m=p� k,Hi is k� n=p
4671: pi initializesH

i

4682: while stopping criteria not satisfied do
469/* Compute W given H */
4703: collectH on each processor using all-gather

4714: pi computesWi  updateWðHHT ;AiH
T Þ

472/* Compute H given W */
4735: collectW on each processor using all-gather

4746: pi computes ðHiÞT  updateHðWTW; ðWTAiÞT Þ
4757: end while
476Ensure: W;H � argmin

~W50; ~H50

kA� ~W ~Hk
477Ensure: W is an m� k matrix distributed row-wise across pro-
478cessors, H is a k� n matrix distributed column-wise across
479processors

480Algorithm 2 and Fig. 1 present a straightforward app-
481roach to parallelizing the independent subproblems. Let us
482divide W into row blocks W1; . . . ;Wp and H into column
483blocks H1; . . . ;Hp. We then double-partition the data matrix
484A accordingly into row blocks A1; . . . ;Ap and column
485blocks A1; . . . ;Ap so that processor i owns both Ai and Ai

486(see Fig. 1). With these partitions of the data and the varia-
487bles, one can implement any AU-NMF algorithm in parallel,
488with only one communication step for each solve.
489We summarize the algorithmic costs of Algorithm 2
490(derived in the following sections) in Table 3. This naive algo-
491rithm [29] has three main drawbacks: (1) it requires storing
492two copies of the datamatrix (one in rowdistribution and one
493in column distribution) and both full factor matrices locally,
494(2) it does not parallelize the computation ofHHT and WTW
495(each processor computes it redundantly), and (3) as we will
496see in Section 5.2, it communicatesmore data than necessary.

4975.1.1 Computation Cost

498The computation cost of Algorithm 2 depends on the partic-
499ular NMF algorithm used. Thus, the computation at line 4
500consists of computingAiH

T ,HHT , and performing the algo-
501rithm-specific Local Update Computations for m=p rows of
502W. Likewise, the computation at line 6 consists of comput-
503ingWTAi,WTW, and performing the Local Update Compu-
504tations for n=p columns of H. In the dense case, this
505amounts to 4mnk=pþ ðmþ nÞk2 þ F ðm=p; n=p; kÞ flops.
506Note that the first term has a constant 4 to account for both
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507 WTA and AHT and that the second term has a constant fac-
508 tor of 1 instead of 2 because the Gram computations (HHT

509 and WTW) exploit symmetry of the output matrix. In the
510 sparse case, processor i performs 2ðnnzðAiÞ þ nnzðAiÞÞk
511 flops to compute AiHT andWTAi instead of 4mnk=p.

512 5.1.2 Communication Cost

513 The size of W is mk words, and the size of H is nk words.
514 Thus, the communication cost of the all-gathers at lines 3
515 and 5, based on the expression given in Section 2.3 is
516 a � 2log pþ b � ðmþ nÞk.

517 5.1.3 Memory Requirements

518 The local memory requirement includes storing each pro-
519 cessor’s part of matricesA,W, andH. In the case of denseA,
520 this is 2mn=pþ ðmþ nÞk=p words, as A is stored twice; in
521 the sparse case, processor i requires nnzðAiÞ þ nnzðAiÞ
522 words for the inputmatrix and ðmþ nÞk=pwords for the out-
523 put factormatrices. Localmemory is also required for storing
524 temporarymatricesW andH of size ðmþ nÞkwords.

525 5.2 MPI-FAUN

526 We present our proposed algorithm, MPI-FAUN, as
527 Algorithm 3 and Fig. 3. The main ideas of the algorithm are

528to (1) exploit the independence of Local Update Computations
529for rows of W and columns of H and (2) use communication-
530optimal matrix multiplication algorithms to set up the Local
531Update Computations. The naive approach (Algorithm 2)
532shares the first property, by parallelizing over rows ofW and
533columns of H, but it uses parallel matrix multiplication algo-
534rithms that communicate more data than necessary. The cen-
535tral intuition for communication-efficient parallel algorithms
536for computing HHT , AHT , WTW, and WTA comes from a
537classification proposed by Demmel et al. [35]. They consider
538three cases, depending on the relative sizes of the dimensions
539of the matrices and the number of processors; the four multi-
540plies for NMF fall into either the “one large dimension” or
541“two large dimensions” cases. MPI-FAUN uses a careful data
542distribution in order to use a communication-optimal algo-
543rithm for each of the matrix multiplications, while at the same
544time exploiting the parallelism in the LUC.
545The algorithm uses a 2D distribution of the data matrix A
546across a pr � pc grid of processors (with p ¼ prpc), as shown
547in Fig. 2. As we derive in the subsequent sections, Algo-
548rithm 3 performs an alternating method in parallel with a

549per-iteration bandwidth cost of Oðminf ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnk2=p

p
; nkgÞ

550words, latency cost of Oðlog pÞmessages, and load-balanced

551computation (up to the sparsity pattern of A and conver-

552gence rates of local BPP computations). Fig. 3 illustrates

553determiningH givenWwith pr ¼ 3 and pc ¼ 2.
554The main improvement of MPI-FAUN over Naive
555involves the computation of AHT and WTA. By using a 2D
556distribution of the data matrix, no processor needs access to
557all of one factor matrix, as in the case of Naive, where each
558processor must access either all m rows of W or all n col-
559umns of H. Instead, with MPI-FAUN, each processor must
560access only m=pr of the rows of W and n=pc of the columns
561of H, so the number of rows decreases as p increases. This
562implies the communication cost is reduced, as verified
563empirically in Fig. 7 (the extreme cases correspond to 1D
564distributions).
565To minimize the communication cost and local memory
566requirements, in the typical case pr and pc are chosen so that

567m=pr � n=pc �
ffiffiffiffiffiffiffiffiffiffiffiffi
mn=p

p
, in which case the bandwidth cost is

568O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnk2=p

p� �
. If the matrix is very tall and skinny, i.e.,

569m=p > n, then we choose pr ¼ p and pc ¼ 1. In this case, the

TABLE 3
Leading Order Algorithmic Costs for Naive-Parallel-AUNMF and MPI-FAUN (per Iteration)

Algorithm Flops Words Messages Memory

Naive-Parallel-AUNMF
4mnk

p þ ðmþnÞk2 þ F m
p ;

n
p ; k

� �
Oððmþ nÞkÞ Oðlog pÞ	 O mn

p þ ðmþnÞk
� �

MPI-FAUN (m=p 5 n)
4mnk

p þ ðmþnÞk
2

p þ F m
p ;

n
p ; k

� �
OðnkÞ Oðlog pÞ	 O mn

p þ mk
p þ nk

� �

MPI-FAUN (m=p < n)
4mnk

p þ ðmþnÞk
2

p þ F m
p ;

n
p ; k

� �
O

ffiffiffiffiffiffiffiffiffi
mnk2

p

q� �
Oðlog pÞ	 O mn

p þ
ffiffiffiffiffiffiffiffiffi
mnk2

p

q� �

Lower Bound � V min
ffiffiffiffiffiffiffiffiffi
mnk2

p

q
; nk

n o� �
Vðlog pÞ mn

p þ ðmþnÞkp

Note that the computation and memory costs assume the data matrix A is dense, but the communication costs (words and messages) apply to both dense and
sparse cases. The function F ð�Þ denotes the number of flops required for the particular NMF algorithm’s Local Update Computation, aside from the matrix multi-
plications common across AU-NMF algorithms. Note that F ðm;n; kÞ is proportional to mþ n and not mn, so the term in the table scales linearly with p (and
not p2) for all LUC.
	The stated latency cost assumes no communication is required in LUC; HALS requires klog p messages for normalization steps.

Fig. 1. Naive-Parallel-AUNMF. Both rows and columns of A are 1D dis-
tributed. The algorithm works by (all-)gathering the entire fixed factor
matrix to each processor and then performing the Local Update Compu-
tations to update the variable factor matrix.

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. X, XXXXX 2017



IEE
E P

ro
of

570 distribution of the data matrix is 1D, and the bandwidth
571 cost is OðnkÞwords.
572 Thematrix distributions for Algorithm 3 are given in Fig. 2;
573 we use a 2D distribution of A and 1D distributions of W and
574 H. Recall fromTable 2 thatMi andMi denote row and column
575 blocks ofM, respectively. Thus, the notation ðWiÞj denotes the
576 jth row block within the ith row block of W. Lines 3–8 com-
577 puteW for a fixedH, and lines 9–14 computeH for a fixedW;
578 note that the computations and communication patterns for
579 the two alternating iterations are analogous.
580 In the rest of this section, we derive the per-iteration
581 computation and communication costs, as well as the local
582 memory requirements. We also argue the communication-
583 optimality of the algorithm in the dense case. Table 3 sum-
584 marizes the results of this section and compares them to
585 Naive-Parallel-AUNMF.

586 5.2.1 Computation Cost

587 Local matrix computations occur at lines 3, 6, 9, and 12. In
588 the case that A is dense, each processor performs

n

p
k2 þ 2

m

pr

n

pc
kþm

p
k2 þ 2

m

pr

n

pc
k ¼ 4

mnk

p
þ ðmþ nÞk2

p
;

590590

591 flops. Recall that the second term on the right hand side has
592 a constant factor of 1 instead of 2 because the local Gram
593 computations (lines 3 and 9) exploit symmetry. In the case
594 that A is sparse, processor ði; jÞ performs ðmþ nÞk2=p flops
595 in computing Uij and Xij, and 4nnzðAijÞk flops in comput-
596 ing Vij and Yij. Local update computations occur at lines 8
597 and 14. In each case, the symmetric positive semi-definite
598 matrix is k� k and the number of columns/rows of length k
599 to be computed are m=p and n=p, respectively. These costs
600 together are given by F ðm=p; n=p; kÞ. There are computation

601costs associated with the all-reduce and reduce-scatter col-
602lectives (see Section 2.3), both those contribute only to lower
603order terms: Oðk2 þmk=pr þ nk=pcÞ.
604Algorithm 3. ½W;H� ¼ MPI-FAUNðA; kÞ
605Require: A is an m� n matrix distributed across a pr � pc grid
606of processors, k is rank of approximation
607Require: Local matrices: Aij is m=pr � n=pc, Wi is m=pr � k,
608ðWiÞj ism=p� k,Hj is k� n=pc, and ðHjÞi is k� n=p
6091: pij initializes ðHjÞi
6102: while stopping criteria not satisfied do
611/* Compute W given H */
6123: pij computes Uij ¼ ðHjÞiðHjÞiT
6134: computeHHT¼P

i;j Uij using all-reduce across all procs
614" HHT is k� k and symmetric
6155: pij collectsHj using all-gather across proc columns

6166: pij computes Vij ¼ AijH
T
j " Vij ism=pr � k

6177: compute ðAHT Þi¼
P

j Vij using reduce-scatter across
618proc row to achieve row-wise distribution of ðAHT Þi
619" pij ownsm=p� k submatrix ððAHT ÞiÞj
6208: pij computes ðWiÞj  UpdateW ðHHT ; ððAHT ÞiÞjÞ
621/* Compute H given W */
6229: pij computes Xij ¼ ðWiÞjT ðWiÞj
62310: computeWTW¼P

i;j Xij using all-reduce across all procs
624" WTW is k� k and symmetric
62511: pij collectsWi using all-gather across proc rows
62612: pij computes Yij ¼Wi

TAij " Yij is k� n=pc
62713: compute ðWTAÞj ¼P

i Yij using reduce-scatter across
628proc columns to achieve column-wise distribution of
629ðWTAÞj " pij owns k� n=p submatrix ððWTAÞjÞi
63014: pij computes ððHjÞiÞT  UpdateH ðWTW; ðððWTAÞjÞiÞT Þ
63115: end while
632Ensure: W;H � argmin

~W50; ~H50

kA� ~W ~Hk
633Ensure: W is an m� k matrix distributed row-wise across pro-
634cessors, H is a k� n matrix distributed column-wise across
635processors

6365.2.2 Communication Cost

637Communication occurs during six collective operations
638(lines 4, 5, 7, 10, 11, and 13). We use the cost expressions pre-
639sented in Section 2.3 for these collectives. The communica-
640tion cost of the all-reduces (lines 4 and 10) is a � 4 log p þ
641b � 2k2; the cost of the two all-gathers (lines 5 and 11) is
642a � log pþ b � ðpr�1Þnk=pþ ðpc�1Þmk=pð Þ; and the cost of the
643two reduce-scatters (lines 7 and 13) is a � log pþ b � ðpc�1Þð
644mk=pþ ðpr�1Þnk=pÞ.
645We note that LUC may introduce significant communica-
646tion cost, depending on the NMF algorithm used. The nor-
647malization of columns of W within HALS, for example,
648introduces an extra k log p latency cost. We will ignore
649such costs in our general analysis.
650In the case that m=p < n, we choose pr ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
mp=n

p
> 1

651and pc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
np=m

p
> 1, and these communication costs

652simplify to a �Oðlog pÞ þ b �Oðmk=pr þ nk=pc þ k2Þ ¼ aðlog pÞþ
653b �Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mnk2=p
p þ k2Þ. In the case that m=p 5 n, we choose

654pc ¼ 1, and the costs simplify to a �Oðlog pÞ þ b �OðnkÞ.

6555.2.3 Memory Requirements

656The local memory requirement includes storing each pro-
657cessor’s part of matrices A, W, and H. In the case of dense
658A, this is mn=pþ ðmþ nÞk=p words; in the sparse case,

Fig. 2. Data distributions for MPI-FAUN. 1D Distribution on left with
p ¼ pr ¼ 4 and pc ¼ 1. 2D Distribution on right with pr ¼ 3 and pc ¼ 2
Note that for the 2D distribution, Aij is m=pr �m=pc, Wi is m=pr � k,
ðWiÞj ism=p� k,Hj is k� n=pc, and ðHjÞi is k� n=p.

KANNAN ET AL.: MPI-FAUN: AN MPI-BASED FRAMEWORK FOR ALTERNATING-UPDATING NONNEGATIVE MATRIX FACTORIZATION 7
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659 processor ði; jÞ requires nnzðAijÞ words for the input matrix
660 and ðmþ nÞk=p words for the output factor matrices. Local
661 memory is also required for storing temporary matrices Wj,
662 Hi, Vij, and Yij, of size 2mk=pr þ 2nk=pc words.
663 In the dense case, assuming k < n=pc and k < m=pr, the
664 local memory requirement is no more than a constant times
665 the size of the original data. For the optimal choices of pr
666 and pc, this assumption simplifies to k < maxf ffiffiffiffiffiffiffiffiffiffiffiffi

mn=p
p

;

667 m=pg. Note that the second argument of the max applies
668 when the optimal distribution is 1D (pr ¼ p).
669 We note that if the temporary memory requirements
670 become prohibitive, the computation of ððAHT ÞiÞj and
671 ððWTAÞjÞi via all-gathers and reduce-scatters can be
672 blocked, decreasing the local memory requirements at the
673 expense of greater latency costs. When A is sparse and k is
674 large enough, the memory footprint of the factor matrices
675 can be larger than the input matrix. In this case, the extra
676 temporary memory requirements can become prohibitive;
677 we observed this for a sparse data set with very large
678 dimensions (see Section 6.3.5). We leave the implementation
679 of the blocked algorithm to future work.

680 5.2.4 Communication Optimality

681 In the case that A is dense, Algorithm 3 provably minimizes
682 communication costs. Theorem 5.1 establishes the band-
683 width cost lower bound for any algorithm that computes
684 WTA or AHT each iteration. A latency lower bound of
685 Vðlog pÞ exists in our communication model for any algo-
686 rithm that aggregates global information [19]. For NMF, this
687 global aggregation is necessary in each iteration, for exam-
688 ple, in order to compute residual error in the case that A is
689 distributed across all p processors, because all processors
690 have data that must be accumulated into the global error.
691 Based on the costs derived above, MPI-FAUN is communi-
692 cation optimal under the assumption k <

ffiffiffiffiffiffiffiffiffiffiffiffi
mn=p

p
, match-

693 ing these lower bounds to within constant factors.

694 Theorem 5.1 ([35]). Let A 2 Rm�n, W 2 Rm�k, and H 2 Rk�n

695 be dense matrices, with k < n4m. If k <
ffiffiffiffiffiffiffiffiffiffiffiffi
mn=p

p
, then any

696 distributed-memory parallel algorithm on p processors that
697 load balances the matrix distributions and computesWTA and/
698 or AHT must communicate at least Vðminf ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mnk2=p
p

; nkgÞ
699 words along its critical path.

700 Proof. The proof follows directly from [35, Section 2.2]. Each
701 matrix multiplication WTA and AHT has dimensions
702 k < n 4 m, so the assumption k <

ffiffiffiffiffiffiffiffiffiffiffiffi
mn=p

p
ensures that

703 neither multiplication has “3 large dimensions.” Thus, the
704 communication lower bound is either Vð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mnk2=p
p Þ in the

705 case of p > m=n (or “2 large dimensions”), or VðnkÞ, in
706 the case of p < m=n (or “1 large dimension”). If p < m=n,

707 then nk <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnk2=p

p
, so the lower bound can be written

708 asVðmin f ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnk2=p

p
; nkgÞ. tu

709 We note that the communication costs of Algorithm 3 are
710 the same for dense and sparse data matrices (the data
711 matrix itself is never communicated). In the case that A is
712 sparse, this communication lower bound does not necessar-
713 ily apply, as the required data movement depends on the
714 sparsity pattern of A. Thus, we cannot make claims of opti-
715 mality in the sparse case (for general A). The communica-
716 tion lower bounds for WTA and/or AHT (where A is
717 sparse) can be expressed in terms of hypergraphs that

718encode the sparsity structure of A [36]. Indeed, hypergraph
719partitioners have been used to reduce communication and
720achieve load balance for a similar problem: computing a
721low-rank representation of a sparse tensor (without non-
722negativity constraints on the factors) [37].

7236 EXPERIMENTS

724In this section, we describe our implementation of MPI-
725FAUN and evaluate its performance. We identify a few syn-
726thetic and real world data sets to experiment with MPI-
727FAUN with dimensions that span from hundreds to mil-
728lions. We compare the performance and exploring scaling
729behavior of different NMF algorithms—MU, HALS, and
730ANLS/BPP (ABPP), implemented using the parallel MPI-
731FAUN framework. The code and the datasets used for con-
732ducting the experiments can be downloaded from https://
733github.com/ramkikannan/nmflibrary.

7346.1 Experimental Setup

7356.1.1 Data Sets

736We used sparse and dense matrices that are either syntheti-
737cally generated or from real world applications. We explain
738the data sets in this section.

739� Dense Synthetic Matrix: We generate a low rank
740matrix as the product of two uniform random matri-
741ces of size 207,360 � 100 and 100 � 138,240. The
742dimensions of this matrix are chosen to be evenly
743divisible for a particular set of processor grids.
744� Sparse Synthetic Matrix: We generate a random
745sparse Erdo��s-R�enyi matrix of the size 207,360 �
746138,240 with density of 0.001. That is, every entry is
747nonzero with probability 0.001.
748� Dense Real World Matrix (Video): NMF is used on
749video data for background subtraction in order to
750detect moving objects. The low rank matrix Â ¼WH
751represents background and the error matrix A� Â
752represents moving objects. In the case of detecting
753moving objects in streaming videos, the last sev-
754eral minutes of video is taken from the live video
755camera to construct the non-negative matrix. An
756algorithm to incrementally adjust the NMF based
757on the streaming video is presented in [10]. To
758simulate this scenario, we collected a video in a
759busy intersection of the Georgia Tech campus at 20
760frames per second. From this video, we took video
761for approximately 12 minutes and then reshaped
762the matrix such that every RGB frame is a column
763of our matrix, so that the matrix is dense with size
7641,013,400 � 13,824.
765� Sparse Real World Matrix (Webbase): This data set is a
766directed sparse graphwhose nodes correspond toweb-
767pages (URLs) and edges correspond to hyperlinks
768from one webpage to another. The NMF output of this
769directed graph helps us understand clusters in graphs.
770We consider two versions of the data set: webbase-1M
771and webbase-2001. The dataset webbase-1M contains
772about 1 million nodes (1,000,005) and 3.1 million edges
773(3,105,536), and was first reported by Williams et al.
774[38]. The version webbase-2001 has about 118 million
775nodes (118,142,155) and over 1 billion edges
776(1,019,903,190); it was first reported by Boldi and Vigna
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777 [39]. Both data sets are available in the University of
778 Florida SparseMatrix Collection [40] and the latterweb-
779 base-2001 being the largest among the entire collection.
780 � Text data (Stack Exchange): Stack Exchange is a net-
781 work of question-and-answer websites on topics in
782 varied fields, each site covering a specific topic,
783 where questions, answers, and users are subject to a
784 reputation award process. There are many Stack
785 Exchange forums, such as ask ubuntu, mathematics,
786 latex. We downloaded the latest anonymized dump
787 of all user-contributed content on the Stack Exchange
788 network from [41]. We used only the questions from
789 the most popular site called Stackoverflow and did
790 not include the answers and comments. We removed
791 the standard 571 English stop words (such as are, am,
792 be, above, below) and then used snowball stemming
793 available through the Natural Language Toolkit
794 (NLTK) package [42]. After this initial pre-processing,
795 we deleted HTML tags (such as lt, gt, em) from the
796 posts. The resulting bag-of-wordsmatrix has a vocab-
797 ulary of size 627,047 over 11,708,841 documents with
798 365,168,945 non-zero entries. In this data, the vocabu-
799 lary is larger than the typical set of English words
800 because it includes variables, constants, and other
801 programming constructs of various programming
802 languages from the user questions.
803 The size of all the real world data sets were adjusted to
804 the nearest size for uniformly distributing the matrix.

805 6.1.2 Implementation Platform

806 We conducted our experiments on “Rhea” at the Oak Ridge
807 Leadership Computing Facility (OLCF). Rhea is a commod-
808 ity-type Linux cluster with a total of 512 nodes and a 4X

809FDR Infiniband interconnect. Each node contains dual-
810socket 8-core Intel Sandy Bridge-EP processors and 128 GB
811of memory. Each socket has a shared 20 MB L3 cache, and
812each core has a private 256 K L2 cache.
813Our objective of the implementation is using open source
814software as much as possible to promote reproducibility
815and reuse of our code. The entire C++ code is developed
816using the matrix library Armadillo [43]. In Armadillo, the
817elements of the dense matrix are stored in column major
818order and the sparse matrices in Compressed Sparse Col-
819umn (CSC) format. For dense BLAS and LAPACK opera-
820tions, we linked Armadillo with Intel MKL—the default
821LAPACK/BLAS library in RHEA. It is also easy to link
822Armadillo with OpenBLAS [44]. We use Armadillo’s own
823implementation of sparse matrix-dense matrix multiplica-
824tion, the default GNU C++ Compiler (g++ (GCC) 4.8.2) and
825MPI library (Open MPI 1.8.4) on RHEA. We chose the com-
826modity cluster with open source software so that the num-
827bers presented here are representative of common use.

8286.1.3 Algorithms

829In our experiments, we considered the following algorithms:

830� MU: MPI-FAUN (Algorithm 3) with MU (Eq. (3))
831� HALS: MPI-FAUN (Algorithm 3)withHALS (Eq. (5))
832� ABPP: MPI-FAUN (Algorithm 3) with BPP
833(Section 4.3)
834� Naive: Naive-Parallel-AUNMF (Algorithm 2,
835Section 5.1)
836Our implementation of Naive (Algorithm 2) uses BPP
837but can be easily to extended toMU,HALS, and other NMF
838algorithms.
839For the algorithms based on MPI-FAUN, we use the pro-
840cessor grid that is closest to the theoretical optimum (see

Fig. 3. Parallel matrix multiplications within MPI-FAUN for findingH givenW, with pr ¼ 3 and pc ¼ 2. The computation ofWTW appears on the far left;
the rest of the figure depicts computation ofWTA.
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IEE
E P

ro
of841 Section 5.2.2) in order to minimize communication costs. See

842 Section 6.3.4 for an empirical evaluation of varying proces-
843 sor grids for a particular algorithm and data set.
844 To ensure fair comparison among algorithms, the same ran-
845 dom seed is used across differentmethods appropriately. That
846 is, the initial randommatrixH is generated with the same ran-
847 dom seed when testing with different algorithms (note thatW
848 need not be initialized). In our experiments, we use number of
849 iterations as the stopping criteria for all the algorithms.
850 While we would like to compare against other high-per-
851 formance NMF algorithms in the literature, the only other
852 distributed-memory implementations of which we’re aware
853 are implemented using Hadoop and are designed only for
854 sparse matrices [24], [27], [13], [26] and [25]. We stress that
855 Hadoop is not designed for high performance computing of
856 iterative numerical algorithms, requiring disk I/O between
857 steps, so a run time comparison between a Hadoop imple-
858 mentation and a C++/MPI implementation is not a fair
859 comparison of parallel algorithms. A qualitative example of
860 differences in run time is that a Hadoop implementation of
861 the MU algorithm on a large sparse matrix of size 217 � 216

862 with 2� 108 nonzeros (with k ¼ 8) takes on the order of 50
863 minutes per iteration [27], while our MU implementation
864 takes 0.065 seconds per iteration for the synthetic data set
865 (which is an order of magnitude larger in terms of rows, col-
866 umns, and nonzeros) running on only 16 nodes.

867 6.2 Relative Error over Time
868 There are various metrics to compare the quality of the
869 NMF algorithms [10]. The most common among these
870 metrics are (a) relative error and (b) projected gradient.
871 The former represents the closeness of the low rank

872 approximation Â �WH, which is generally the optimiza-
873 tion objective. The latter represent the quality of the pro-
874 duced low rank factors and the stationarity of the final
875 solution. These metrics are also used as the stopping cri-
876 terion for terminating the iteration of the NMF algorithm
877 as in line 2 of Algorithm 1. Typically a combination of the
878 number of iterations along with improvement of these
879 metrics until a tolerance is met is used as stopping crite-
880 rion. In this paper, we use relative error for the compari-
881 son as it is monotonically decreasing, as opposed to
882 projected gradient of the low rank factors, which shows
883 oscillations over iterations. The relative error can be for-
884 mally defined as kA�WHkF=kAkF .
885 In Fig. 4, we measure the relative error at the end of every
886 iteration (i.e., after the updates of both W and H) for all

887three algorithms MU, HALS, and ABPP, and we plot the
888relative error over time (each mark represents an iteration).
889We consider three real world datasets, video, stack exchange
890and webbase-1M, and set k ¼ 50. We used only the number
891of iterations as stopping criterion and, just for this section,
892ran all the algorithms for 30 iterations. We note that the con-
893vergence behavior and computed factors can vary over dif-
894ferent initializations; we used the same initial values across
895all three algorithms in these experiments. Also, we observed
896that for these data sets, the convergence behavior was not
897sensitive to initialization (the final residual errors varied by
898less than 1 percent in our experiments). NMF solutions are
899guaranteed to be unique in certain cases, with mild assump-
900tions on the input data [45], [46], but we do not check those
901assumptions for these datasets.
902To begin with, we explain the observations on the dense
903video dataset presented in Fig. 4a. The relative error ofMU is
904highest at 0.1812 after 30 iterations and HALS’s is the least
905with 0.1273;ABPP’s relative error is 0.1716 after 30 iterations.
906We can observe that the relative error of stack exchange
907from Fig. 4b is better than webbase-1M from Fig. 4c over all
908three algorithms. In the case of the stack exchange dataset, the
909relative errors after 30 iterations follow the pattern MU >
910HALS > ABPP, with values 0.8509, 0.8395, and 0.8377
911respectively. However, the difference in relative error for the
912webbase-1M dataset is negligible, though the relative ordering
913of MU > HALS > ABPP is consistent, with values of
9140.99927 forMU 0.99920 forHALS and 0.99919 forABPP.
915In general, for these datasetsABPP identifies better approx-
916imations and converges faster thanMU andHALS despite the
917extra per-iteration time, which is consistent with the literature
918[10], [12]. However, for the sparse datasets, the differences in
919relative error are small across theNMF algorithms.

9206.3 Time per Iteration
921In this section we focus on per-iteration time of all the algo-
922rithms. We report four types of experiments, varying the
923number of processors (Section 6.3.2), the rank of the approx-
924imation (Section 6.3.3), the shape of the processor grid
925(Section 6.3.4), and scaling up the dataset size. For each
926experiment we report a time breakdown in terms of the
927overall computation and communication steps (described
928in Section 6.3.1) shared by all algorithms.

9296.3.1 Time Breakdown

930To differentiate the computation and communication costs
931among the algorithms, we present the time breakdown
932among the various tasks within the algorithms for all per-
933formance experiments. For Algorithm 3, there are three
934local computation tasks and three communication tasks to
935compute each of the factor matrices:

936� MM, computing a matrix multiplication with the
937local data matrix and one of the factor matrices;
938� LUC, local updates either usingABPP or applying the
939remaining work of theMU orHALS updates (i.e., the
940total time for bothUpdateW andUpdateH functions);
941� Gram, computing the local contribution to the Gram
942matrix;
943� All-Gather, to compute the global matrix
944multiplication;
945� Reduce-Scatter, to compute the global matrix
946multiplication;

Fig. 4. Relative error comparison ofMU, HALS, and ABPP on real world
datasets.
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947 � All-Reduce, to compute the global Gram matrix.
948 In our results, we do not distinguish the costs of these
949 tasks for W and H separately; we report their sum, though
950 we note that we do not always expect balance between the
951 two contributions for each task. Algorithm 2 performs all of
952 these tasks except Reduce-Scatter and All-Reduce; all of its
953 communication is in All-Gather.

954 6.3.2 Scaling p: Strong Scaling

955 Fig. 5 presents a strong scaling experiment with four data
956 sets: sparse synthetic, dense synthetic, webbase-1M, and video. In
957 this experiment, for each data set and algorithm, we use low

958rank k ¼ 50 and vary the number of processors (with fixed
959problem size). We use f1; 6; 24; 54; 96g nodes; since each
960node has 16 cores, this corresponds to f16; 96; 384; 864; 1536g
961cores.We report average per-iteration times.
962We highlight three main observations from these
963experiments:

9641) Naive is slower than all other algorithms for large p;
9652) MU, HALS, and ABPP (algorithms based on MPI-
966FAUN) scale up to over 1,000 processors;
9673) the relative per-iteration cost of LUC decreases as p
968increases (for all algorithms), and therefore the extra
969per-iteration cost of ABPP (compared with MU and
970HALS) becomes negligible.
971Observation 1. For the Sparse Synthetic data set, Naive is
9724:2� slower than the fastest algorithm (ABPP) on 1,536 pro-
973cessors; for the Dense Synthetic data set,Naive is 1:6� slower
974than the fastest algorithm (MU) at that scale. The slowdown
975increases to 7:7� and 3:6� for the sparse and dense real-world
976datasets, respectively. Nearly all of this slowdown is due to
977the communication costs of Naive. Theoretical and practical
978evidence supporting the first observation is also reported in
979our previous paper [17]. However, we also note that Naive is
980the fastest algorithm for the smallest p for each problem,which
981is largely due to reduced MM time. Each algorithm performs
982exactly the same number of flops per MM; the efficiency of
983Naive for small p is due to cache effects. For example, for the
984Dense Synthetic problem on 96 processors, the output matrix
985ofNaive’s MM fits in L2 cache, but the output matrix of MPI-
986FAUN’sMMdoes not; these effects disappear as p increases.
987Observation 2. Algorithms based on MPI-FAUN (MU,
988HALS, ABPP) scale well, up to over 1,000 processors. All
989algorithms’ run times decrease as p increases, with the
990exception of the Sparse Real World data set, in which case
991all algorithms slow down scaling from p ¼ 864 to p ¼ 1536
992(we attribute this lack of scaling to load imbalance). For
993sparse problems, comparing p ¼ 16 to p ¼ 1536 (a factor
994increase of 96), we observe speedups from ABPP of 59�
995(synthetic) and 22� (real world). For dense problems, com-
996paring p ¼ 96 to p ¼ 1536 (a factor increase of 16), ABPP’s
997speedup is 12� for both problems. MU and HALS demon-
998strate similar scaling results. For comparison, speedups for
999Naivewere 8� and 3� (sparse) and 6� and 4� (dense).
1000Observation 3. MU, HALS, and ABPP share all the same
1001subroutines except those that are characterized as LUC. Con-
1002sidering only LUC subroutines,MU andHALS require fewer
1003operations thanABPP. However,HALShas tomake one addi-
1004tional communication for normalization of W. For small p,
1005these cost differences are apparent in Fig. 5. For example, for
1006the sparse real world data set on 16 processors, ABPP’s LUC
1007time is 16� that ofMU, and the per iteration time differs by a
1008factor of 4.5. However, as p increases, the relative time spent in
1009LUC decreases, so the extra time taken byABPP has less of an
1010effect on the total per iteration time. By contrast, for the dense
1011real world data set on 1,536 processors, ABPP spends a factor
1012of 27 timesmore time in LUC thanMU but only 11 percent lon-
1013ger over the entire iteration. For the synthetic data sets, LUC
1014takes 24 percent (sparse) on 16 processors and 84 percent
1015(dense) on 96 processors, and that percentage drops to 11 per-
1016cent (sparse) and 15 percent (dense) on 1,536 processors.
1017These trends can also be seen theoretically (Table 3). We
1018expect local computations like MM, LUC, and Gram to
1019scale like 1=p, assuming load balance is preserved. If

Fig. 5. Per-iteration times with k ¼ 50, varying p (strong scaling).
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1020 communication costs are dominated by the number of words
1021 being communicated (i.e., the communication is bandwidth
1022 bound), thenwe expect time spent in communication to scale
1023 like 1=

ffiffiffi
p
p

, and at least for dense problems, this scaling is the
1024 best possible. Thus, communication costs will eventually
1025 dominate computation costs for all NMF problems, for suffi-
1026 ciently large p. (Note that if communication is latency bound
1027 and proportional to the number of messages, then time spent
1028 communicating actually increaseswith p.)
1029 The overall conclusion from this empirical and theoretical
1030 observation is that the extra per-iteration cost of ABPP over

1031alternatives like MU and HALS decreases as the number of
1032processors p increases. As shown in Section 6.2 the faster error
1033reduction of ABPP typically reduces the overall time to solu-
1034tion compared with the alternatives even it requires more
1035time for each iteration. Our conclusion is that as we scale up p,
1036this tradeoff is further relaxed so that ABPP becomes more
1037andmore advantageous for both quality and performance.

10386.3.3 Scaling k

1039Fig. 6 presents an experiment scaling up the low rank value
1040k from 10 to 50 with each of the four data sets. In this experi-
1041ment, for each data set and algorithm, the problem size is
1042fixed and the number of processors is fixed to p ¼ 864. As in
1043Section 6.3.2, we report the average per-iteration times.
1044We highlight two observations from these experiments:

10451) Naive is plagued by communication time that
1046increases linearly with k;
10472) ABPP’s time increases more quickly with k than
1048those ofMU orHALS;
1049Observation 1. We see from the synthetic data sets (Figs. 6a
1050and 6b) that the overall time ofNaive increases more rapidly
1051with k than any other algorithm and that the increase in time
1052is due mainly to communication (All-Gather). Table 3 pre-
1053dicts thatNaive communication volume scales linearly with
1054k, and we see that in practice the prediction is almost perfect
1055with the synthetic problems. This confirms that the commu-
1056nication is dominated by bandwidth costs and not latency
1057costs (which are constant with respect to k). We note that the
1058communication cost of MPI-FAUN scales like

ffiffiffi
k
p

, which is
1059why we don’t see as dramatic an increase in communication
1060time forMU,HALS, orABPP in Fig. 6.
1061Observation 2. Focusing attention on time spent in LUC
1062computations, we can compare how MU, HALS, and ABPP
1063scale differently with k. We see a more rapid increase of
1064LUC time for ABPP than MU or HALS; this is expected
1065because the LUC computations unique to ABPP require
1066between Oðk3Þ and Oðk4Þ operations (depending on the
1067data) while the unique LUC computations for MU and
1068HALS are Oðk2Þ, with all other parameters fixed. Thus, the
1069extra per-iteration cost of ABPP increases with k, so the
1070advantage of ABPP of better error reduction must also
1071increase with k for it to remain superior at large values of k.
1072We also note that although the number of operations within
1073MM grows linearly with k, we do not observe much
1074increase in time from k ¼ 10 to k ¼ 50; this is due to the
1075improved efficiency of local MM for larger values of k.

10766.3.4 Varying Processor Grid

1077In this section we demonstrate the effect of the dimensions
1078of the processor grid on per-iteration performance. For a
1079fixed total number of processors p, the communication cost
1080of Algorithm 3 varies with the choice of pr and pc. To mini-
1081mize the amount of data communicated, the theoretical
1082analysis suggests that the processor grid should be chosen
1083to make the sizes of the local data matrix as square as possi-
1084ble. This implies that if m=p > n, pr ¼ p and pc ¼ 1 is the
1085optimal choice (a 1D processor grid); likewise if n=p > m
1086then a 1D processor grid with pr ¼ 1 and pc ¼ p is the opti-
1087mal choice. Otherwise, a 2D processor grid minimizes com-

1088munication with pr �
ffiffiffiffiffiffiffiffiffiffiffiffi
mp=n

p
and pc �

ffiffiffiffiffiffiffiffiffiffiffiffi
np=m

p
(subject to

1089integrality and prpc ¼ p).

Fig. 6. Per-iteration times with p ¼ 864, varying low rank k.
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1090 Fig. 7 presents a benchmark of ABPP for the Sparse Syn-
1091 thetic data set for fixed values of p and k. We vary the pro-
1092 cessor grid dimensions from both 1D grids to the 2D grid
1093 that matches the theoretical optimum exactly. Because the
1094 sizes of the Sparse Synthetic matrix are 172;800� 115;200
1095 and the number of processors is 1,536, the theoretically
1096 optimal grid is pr ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
mp=n

p ¼ 48 and pc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
np=m

p ¼ 32.
1097 The experimental results confirm that this processor grid is
1098 optimal, and we see that the time spent communicating
1099 increases as the processor grid deviates from the optimum,
1100 with the 1D grids performing the worst.

1101 6.3.5 Scaling up to Very Large Sparse Datasets

1102 In this section, we test MPI-FAUN by scaling up the prob-
1103 lem size. While we’ve used webbase-1M in previous experi-
1104 ments, we consider webbase-2001 in this section as it is the
1105 largest sparse data in University of Florida Sparse Matrix
1106 Collection [40]. The former dataset has about 1 million
1107 nodes and 3 million edges, whereas the latter dataset has
1108 over 100 million nodes and 1 billion edges (see Section 6.1.1
1109 for more details). Not only is the size of the input matrix
1110 increased by two orders of magnitude (because of the
1111 increase in the number of edges), but also the size of the out-
1112 put matrices is increased by two orders of magnitude
1113 (because of the increase in the number of nodes).
1114 In fact, with a low rank of k ¼ 50, the size of the output
1115 matrices dominates that of the input matrix: W and H
1116 together require a total of 88 GB, while A (stored in com-
1117 pressed column format) is only 16 GB. At this scale, because
1118 each node (consisting of 16 cores) of Rhea has 128 GB of
1119 memory, multiple nodes are required to store the input and
1120 output matrices with room for other intermediate values.
1121 As mentioned in Section 5.2.3, MPI-FAUN requires consid-
1122 erably more temporary memory than necessary when the
1123 output matrices require more memory than the input
1124 matrix. While we were not limited by this property for the
1125 other sparse matrices, the webbase-2001 matrix dimensions
1126 are so large that we need the memories of tens of nodes to
1127 run the algorithm. Thus, we report results only for the
1128 largest number of processors in our experiments: 1,536 pro-
1129 cessors (96 nodes). The extra temporary memory used by
1130 MPI-FAUN is a latency-minimizing optimization; the algo-
1131 rithm can be updated to avoid this extra memory cost using
1132 a blocked matrix multiplication algorithm. The extra mem-
1133 ory can be reduced to a negligible amount at the expense of

1134more messages between processors and synchronizations
1135across the parallel machine.
1136We present results for webbase-2001 in Fig. 8. The average
1137per-iteration timing results are consistent with the observa-
1138tions from other synthetic and real world sparse datasets as
1139discussed in Section 6.3.2, though the raw times are about 2
1140orders of magnitude larger, as expected. In the case of the
1141error plot, as observed in other experiments, ABPP achieves
1142smaller error (by 1 percent) than other algorithms after con-
1143verging; howeverMU andHALS initially outperformABPP.
1144We also see that MU outperforms HALS in the first 30 itera-
1145tions. At the 30th iteration, the error forHALS is still improv-
1146ing at the third decimal, whereas MU’s is improving at the
1147fourth decimal.We suspect that over a greater number of iter-
1148ations the error of HALS could become smaller than that of
1149MU, whichwould bemore consistentwith other datasets.

11506.4 Interpretation of Results

1151We present results from two of the real world datasets in the
1152Supplemental Material, which can be found on the Computer
1153Society Digital Library at http://doi.ieeecomputersociety.
1154org/10.1109/TKDE.2017.2767592. The first example shows
1155background separation of the video data, and the second
1156example shows topic modeling output on the stack exchange
1157text dataset. The details of these datasets are presented in
1158Section 6.1.1.
1159While the literature covers more detail about fine tuning
1160NMF and different NMF variants for higher quality results
1161on these two tasks, ourmain focus is to show how quickly we
1162can produce baseline NMF solutions. In Figure 1 of the Sup-
1163plemental Material, available online, we can see the back-
1164ground is removed and the moving objects (e.g., cars) are
1165visible. Similarly, Table 1 of Supplemental Material, available
1166online, shows that the NMF solution discriminates among
1167topics and and finds coherent keywords for each topic.

11687 CONCLUSION

1169In this paper, we propose a high-performance distributed-
1170memory parallel framework for NMF algorithms that itera-
1171tively update the low rank factors in an alternating fashion.
1172Our parallelization scheme is designed to avoid communi-
1173cation overheads and scales well to over 1,500 cores. The
1174framework is flexible, being (a) expressive enough to lever-
1175age many different NMF algorithms and (b) efficient for
1176both sparse and dense matrices of sizes that span from a

Fig. 8. NMF comparison on webbase-2001 for k ¼ 50 on 1,536
processors.Fig. 7. Tuning processor grid for ABPP on Sparse Synthetic data set

with p ¼ 1536 and k ¼ 50.
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1177 few hundreds to hundreds of millions. Our open-source
1178 software implementation is available for download.
1179 For solving data mining problems at today’s scale,
1180 parallel computation and distributed-memory systems are
1181 becoming prerequisites.We argue in this paper that by using
1182 techniques fromhigh-performance computing, the computa-
1183 tions for NMF can be performed very efficiently. Our frame-
1184 work allows for the HPC techniques (efficient matrix
1185 multiplication) to be separated from the data mining techni-
1186 ques (choice of NMF algorithm), and we compare data min-
1187 ing techniques at large scale, in terms of data sizes and
1188 number of processors. One conclusion we draw from the
1189 empirical and theoretical observations is that the extra per-
1190 iteration cost of ABPP over alternatives like MU and HALS
1191 decreases as the number of processors p increases, making
1192 ABPP more advantageous in terms of both quality and per-
1193 formance at larger scales. By reporting time breakdowns that
1194 separate local computation from interprocessor communica-
1195 tion, we also see that our parallelization scheme prevents
1196 communication from bottlenecking the overall computation;
1197 our comparisonwith a naive approach shows that communi-
1198 cation can easily dominate the running time of each iteration.
1199 In future work, we would like to extend MPI-FAUN
1200 algorithm to dense and sparse tensors, computing the CAN-
1201 DECOMP/PARAFAC decomposition in parallel with non-
1202 negativity constraints on the factor matrices. We plan on
1203 extending our software to include more NMF algorithms
1204 that fit the AU-NMF framework; these can be used for both
1205 matrices and tensors. We would also like to explore more
1206 intelligent distributions of sparse matrices: while our 2D
1207 distribution is based on evenly dividing rows and columns,
1208 it does not necessarily load balance the nonzeros of the
1209 matrix, which can lead to load imbalance in matrix multipli-
1210 cations. We are interested in using graph and hypergraph
1211 partitioning techniques to load balance the memory and
1212 computation while at the same time reducing communica-
1213 tion costs as much as possible.
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