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Abstract—Matrix lower rank approximations such as non-
negative matrix factorization (NMF) have been successfully
used to solve many data mining tasks. In this paper, we propose
a new matrix lower rank approximation called Bounded Matrix
Low Rank Approximation (BMA) which imposes a lower and
an upper bound on every element of a lower rank matrix
that best approximates a given matrix with missing elements.
This new approximation models many real world problems,
such as recommender systems, and performs better than other
methods, such as singular value decompositions (SVD) or NMF.
We present an efficient algorithm to solve BMA based on
coordinate descent method. BMA is different from NMF as
it imposes bounds on the approximation itself rather than on
each of the low rank factors. We show that our algorithm is
scalable for large matrices with missing elements on multi core
systems with low memory. We present substantial experimental
results illustrating that the proposed method outperforms the
state of the art algorithms for recommender systems such as
Stochastic Gradient Descent, Alternating Least Squares with
regularization, SVD++, Bias-SVD on real world data sets such
as Jester, Movielens, Book crossing, Online dating and Netflix.

Keywords-low rank approximation, recommender systems,
bound constraints, matrix factorization, block coordinate de-
scent method, scalable algorithm, block

I. MOTIVATION

In a matrix low rank approximation, given a matrix
R ∈ Rn×m, and a lower rank k < rank(R), we find two
matrices P ∈ Rn×k and Q ∈ Rk×m such that R is well
approximated by PQ, i.e., R ≈ PQ. Low rank approxi-
mations vary depending on the constraints imposed on the
factors as well as the measure for the difference between
R and PQ. Low rank approximation draws huge interest in
the data mining and machine learning community, for it’s
ability to address many foundational challenges in this area.
A few prominent techniques of machine learning that use
low rank approximation are principal component analysis,
factor analysis, latent semantic analysis, non-negative matrix
factorization, etc.

One of the most important low rank approximation is
based on singular value decompositions (SVD) [9]. Low
rank approximation using SVD has many applications. For
example, an image can be compressed by taking the low
row rank approximation of its matrix representation using
SVD. Similarly, in text mining – latent semantic indexing,
is for document retrieval/dimensionality reduction of a term-
document matrix using SVD [6]. The other applications

include event detection in streaming data, visualization of
document corpus etc.

Over the last decade, NMF has emerged as another impor-
tant low rank approximation technique, where the low-rank
factor matrices are constrained to have only non-negative
elements. It has received enormous attention and has been
successfully applied to a broad range of important problems
in areas including text mining, computer vision, community
detection in social networks, visualization, bioinformatics
etc [18][11].

In this paper, we propose a new type of low rank ap-
proximation where the elements of the low rank matrix are
bounded – that is, its elements are within a given range
which we call as Bounded Matrix Low Rank Approxima-
tion(BMA). BMA is different from NMF in that it imposes
both upper and lower bounds on its product PQ rather than
each of the low rank factors P and Q. The goal is to obtain
a lower rank approximation PQ of a given input matrix
R, where the elements of PQ and R are bounded. There
are various real world applications that benefit from this
approximation – a well known application being the Recom-
mender System. Currently, the factorization techniques for
recommender system, do not use the information that ratings
always belong to a range, during the factorization process.
Instead, the range is only used to truncate the values of
the approximated low rank matrix. In case of recommender
system, the input matrix apart from being range bound, also
has many missing elements. In general, approximately only
1 or 2% of all matrix elements are known.

We are designing a Bounded Matrix Low Rank Ap-
proximation (BMA) that imposes bounds on a low rank
matrix that is the best approximate for an input matrix
with missing elements.1 The design considerations are –
(1) Simple implementation (2) Scalable to work with any
large matrices and (3) Easy parameter tuning with no hyper
parameters.

Formally, the BMA problem for an input matrix R is
defined as2

1Throughout this paper, we might use rows and users, columns and items,
reduced rank and hidden latent features, values and ratings interchangeably
and appropriately chosen for better understanding of the idea.

2Here afterwards, if the inequality is between a vector/matrix and scalar,
every element in the vector/matrix should satisfy the inequality against the
scalar.



min
P,Q

‖M · ∗(R−PQ)‖2F

subject to
rmin ≤ PQ ≤ rmax.

(1)

In the case of input matrix with missing elements, the
low rank matrix is approximated only against the known
elements of the input matrix. Hence, during error computa-
tion the filter matrix M, includes only the corresponding
elements of the low rank PQ for which the values are
known. Thus, M has ‘1’ everywhere for input matrix R with
all known elements. However, in the case of recommender
system, the matrix M has zero for each of the missing
elements of R.

Traditionally, regularization is used to control the low rank
factors P and Q from taking larger values. However, this
does not guarantee the value of the product PQ to be in
the given range. We also experimentally show introducing
the bounds on the product of PQ outperforms the low rank
approximation algorithms with regularization.

We use Block Coordinate Descent (BCD) framework [2]
to solve the Problem (1) as it satisfies the design considera-
tions discussed above. Also, the BCD method provides fine
grained control of choosing every element in the low rank
factors.

II. NOTATIONS

In this paper, we choose notations consistent with those
in the machine learning literature. A lowercase/uppercase
such as x or X , is used to denote a scalar; a boldface
lowercase letter, such as x, is used to denote a vector; a
boldface uppercase letter, such as X, is used to denote a
matrix. Indices typically start from 1. When a matrix X
is given, xi denotes its ith column, yᵀ

j denotes its jth

row and xij or X(i, j) denote its (i, j)th element. For a
vector i, x(i) means vector i indexes into the elements of
vector x. That is, for x = [1, 4, 7, 8, 10] and i = [1, 3, 5],
x(i) = [1, 7, 10]. We have also borrowed certain notations
from matrix manipulation scripts such as Matlab/Octave. For
example, the max(x) returns the maximal element x ∈ x
and max(X) returns a vector of maximal elements from
each column x ∈ X.

For reader’s convenience, the Table I is the summary of
the notations used in the paper.

III. RELATED WORK

In the literature, two important low rank approximations
are NMF and SVD. In this paper, we introduce BMA and its
application in recommender systems. Initially, for the input
matrix R ∈ R+, we explored the possibility of modelling
this problem as a non-negative matrix factorization using
BCD. Block coordinate descent has been a commonly used
to solve NMF. We briefly survey and explain NMF using
BCD framework in Section IV-A.

R ∈ Rn×m Ratings matrix with missing ratings
as 0 and ratings bounded within [rmin, rmax]

M ∈ {0, 1}n×m Indicator matrix with missing ratings as 0
n Number of users
m Number of items
k Reduced rank
P ∈ Rn×k User feature matrix
Q ∈ Rk×m Item feature matrix
px ∈ Rn×1 x-th column vector of P = (p1, · · · ,pk)
qᵀ
x ∈ R1×m x-th row vector of Q = (q1, · · · ,qk)

ᵀ

rmax > 1 Maximal rating/upper bound
rmin Minimal rating/lower bound
u A user
i An item
·∗ Element wise matrix multiplication
·/ Element wise matrix division
A(:, i) ith column of the matrix A
A(i, :) ith row of the matrix A
β Data structure in memory factor
memsize(v) Returns the approximate memory of a variable v

=number of elements in v*size of each element*β
µ Mean of all known ratings in R
g ∈ Rn Bias of all users u
h ∈ Rm Bias of all items i

Table I: Notations

In this section, we explain the important milestones in
matrix factorization for recommender systems. Most of these
milestones are achieved because of the Netflix competi-
tion (http://www.netflixprize.com/) where the winners were
awarded 1 million US Dollars as grand prize.

Funk [7] first proposed matrix factorization for recom-
mender system based on SVD and is commonly called as the
Stochastic Gradient Descent (SGD). Paterek [23] improved
SGD as a combination of the baseline estimate and matrix
factorization. Koren, the member of winning team of Netflix
prize improved the results with his remarkable contributions
in this area. Koren [15] proposed a baseline estimate based
on mean rating, user–movie bias, combined with matrix
factorization and called it Bias-SVD. In SVD++ [15], he
extends this Bias-SVD with implicit ratings and considered
only the relevant neighbourhood items during matrix fac-
torization. The Netflix dataset also provided the time of
rating. However most of the techniques did not include time
in their model. Koren [16] proposes time-svd++, where he
extended his previous SVD++ model to include the time. So
far, all the techniques discussed here, in matrix factorization
for recommender systems are based on SVD and used
gradient descent to solve the problem. Alternatively, Zhou
et.al., [26] used alternating least squares with regularization
(ALSWR). Apart from these directions, there had been
other approaches such as Bayesian tensor factorization [25],
Bayesian probabilistic modelling [24], graphical modelling
of the recommender system problem [21] and weighted
low-rank approximation with zero weights for the missing
values [22]. A detailed survey and overview of matrix
factorization for recommender systems is discussed in [17].



A. Our Contributions

Given the above background, we highlight the contribu-
tions of this paper. In this paper, we propose a novel matrix
lower rank approximation called Bounded Matrix Low Rank
Approximation (BMA) which imposes a lower and an upper
bound on every element of a lower rank matrix that best
approximates a given matrix with missing elements. We
solve the BMA using block coordinate descent method.3 We
also ensure it works seamlessly for recommender system.
From this perspective, this is the first work that uses the
block coordinate descent method and experiment BMA
for recommender systems. We present the details of the
algorithm with supporting technical details and a scalable
version of the naive algorithm. Also, we test our algorithm
on recommender system datasets and compare against state
of the art algorithms SGD, SVD++, ALSWR, Bias-SVD.

IV. FOUNDATIONS

In the case of low rank approximation using NMF, the
low rank factor matrices are constrained to have only non-
negative elements. However, in the case of BMA, we con-
strain the elements of their product with an upper and lower
bound rather than each of the two low rank factor matrices.
In this section, we explain the BCD framework for NMF
and subsequently explain using BCD to solve BMA.

A. NMF and Block Coordinate Descent

In this section, we will see relevant foundation for using
BCD framework to solve NMF.

Consider a constrained non-linear optimization problem
as follows:

min f(x) subject to x ∈ X , (2)

where X is a closed convex subset of Rn. An important
assumption to be exploited in the BCD method is that set
X is represented by a Cartesian product:

X = X1 × · · · × Xm, (3)

where Xj , j = 1, · · · ,m, is a closed convex subset of
RNj satisfying n =

∑m
j=1Nj . Accordingly, vector x is

partitioned as x = (x1, · · · ,xm) so that xj ∈ Xj for
j = 1, · · · ,m. The BCD method solves for xj fixing
all other subvectors of x in a cyclic manner. That is,
if x(i) = (x

(i)
1 , · · · ,x(i)

m ) is given as the current iterate
at the ith step, the algorithm generates the next iterate
x(i+1) = (x

(i+1)
1 , · · · ,x(i+1)

m ) block by block, according to
the solution of the following subproblem:

x
(i+1)
j ← argmin

ξ∈Xj

f(x
(i+1)
1 , · · · ,x(i+1)

j−1 , ξ,x
(i)
j+1, · · · ,x

(i)
m ).

(4)
Also known as a non-linear Gauss-Seidel method [2], this
algorithm updates one block each time, always using the

3There could be other ways to solve this problem.

most recently updated values of other blocks xj̃ , j̃ 6= j.
This is important since it ensures that after each update the
objective function value does not increase. For a sequence{
x(i)
}

where each x(i) is generated by the BCD method,
the following property holds.

Theorem 1: Suppose f is continuously differentiable in
X = X1 × · · · × Xm, where Xj , j = 1, · · · ,m, are closed
convex sets. Furthermore, suppose that for all j and i, the
minimum of

min
ξ∈Xj

f(x
(i+1)
1 , · · · ,x(i+1)

j−1 , ξ,x
(i)
j+1, · · · ,x

(i)
m )

is uniquely attained. Let
{
x(i)
}

be the sequence generated
by the block coordinate descent method as in Eq. (4).
Then, every limit point of

{
x(i)
}

is a stationary point. The
uniqueness of the minimum is not required when m is two.

The proof of this theorem for an arbitrary number of
blocks is shown in Bertsekas [2]. For a non-convex optimiza-
tion problem, most algorithms only guarantee the stationarity
of a limit point [19].

When applying the BCD method to a constrained non-
linear programming problem, it is critical to wisely choose
a partition of X , whose Cartesian product constitutes X . An
important criterion is whether the subproblems in Eq. (4)
are efficiently solvable: For example, if the solutions of
subproblems appear in a closed form, each update can be
computed fast. In addition, it is worth checking how the
solutions of subproblems depend on each other. The BCD
method requires that the most recent values need to be
used for each subproblem in Eq (4). When the solutions
of subproblems depend on each other, they have to be
computed sequentially to make use of the most recent values;
if solutions for some blocks are independent from each
other, however, simultaneous computation of them would
be possible. We discuss how different choices of partitions
lead to different NMF algorithms. Three cases of partitions
are discussed below.

1) BCD with Two Matrix Blocks - ANLS Method: For
convenience, we assume all the elements of the input matrix
are known and hence ignoring the M from the discussion.
The most natural partitioning of the variables is the two
biggest blocks P and Q representing the entire matrix. In
this case, following the BCD method in Eq. (4), we take
turns solving

P← argmin
P≥0

f(P,Q) and Q← argmin
Q≥0

f(P,Q). (5)

Since the subproblems are the nonnegativity constrained
least squares (NLS) problems, the two-block BCD method
has been called the alternating nonnegative least square
(ANLS) framework [19], [12], [14].



2) BCD with 2k Vector Blocks - HALS/RRI Method: Let
us now partition the unknowns into 2k blocks in which each
block is a column of P or a row of Q. In this case, it is
easier to consider the objective function in the following
form:

f(p1, · · · ,pk,qᵀ
1 , · · · ,q

ᵀ
k) = ‖R−

k∑
j=1

pjq
T
j ‖2F , (6)

where P = [p1, · · ·pk] ∈ Rn×k+ and Q = [q1, · · · ,qk]ᵀ ∈
Rk×m+ . The form in Eq. (6) represents that R is approxi-
mated by the sum of k rank-one matrices.

Following the BCD scheme, we can minimize f by
iteratively solving

pi ← argmin
pi≥0

f(p1, · · · ,pk,qᵀ
1 , · · · ,q

ᵀ
k)

for i = 1, · · · , k, and

qᵀ
i ← argmin

qᵀ
i≥0

f(p1, · · · ,pk,qᵀ
1 , · · · ,q

ᵀ
k)

for i = 1, · · · , k.
The 2K-block BCD algorithm has been studied as Hi-

erarchical Alternating Least Squares (HALS) proposed by
Cichocki et.al [5], [4] and independently by Ho [10] as rank-
one residue iteration (RRI).

3) BCD with k(n + m) Scalar Blocks: We can also
partition the variables with the smallest k(m + n) element
blocks of scalars, where every element of P and Q is
considered as a block in the context of Theorem 1. To this
end, it helps to write the objective function as a quadratic
function of scalar pij or qij assuming all other elements in
P and Q are fixed:

f(pij) = ‖(rᵀi −
∑
k̃ 6=j

pik̃q
ᵀ
k̃
)− pijqᵀ

j ‖
2
2 + const, (7a)

f(qij) = ‖(rj −
∑
k̃ 6=i

pk̃qk̃j)− piqij‖22 + const, (7b)

where rᵀi and rj denote the ith row and the jth column of
R, respectively. Kim, He and Park, [13] discuss about NMF
using BCD method.

B. Bounded Matrix Low Rank Approximation

The building blocks of BMA are column vectors px and
row vectors qᵀ

x of the matrix P and Q respectively. In this
section, we discuss the idea behind finding these vectors
px and qᵀ

x such that all the elements in T + pxq
ᵀ
x ∈

[rmin, rmax] and the error ‖M · ∗(R−PQ)‖2F is reduced.

Here, T =
k∑

j=1,j 6=x
pjq

ᵀ
j .

The Problem (1) can be equivalently represented with a

set of rank-one matrices pxq
ᵀ
x as

min
px,qx

‖M · ∗(R−T− pxq
ᵀ
x)‖2F

∀x = [1, k]

subject to
T+ pxq

ᵀ
x ≤ rmax

T+ pxq
ᵀ
x ≥ rmin

(8)

Thus, we take turns in solving px and qᵀ
x. That is, assume

we know px and find qᵀ
x and vice versa. Here afterwards,

in the entire section we assume fixing column px and
finding row qᵀ

x. Without loss of generality, all the discussions
pertaining to finding qᵀ

x fixing px hold good for the other
scenario of finding px fixing qᵀ

x.
There are different orders of updates of vector blocks

when solving the Problem (8). For example,

p1 → qᵀ
1 → · · · → pk → qᵀ

k (9)

and
p1 → · · · → pk → qᵀ

1 → · · · → qᵀ
k. (10)

Kim, He and Park [13] prove that equation (6) satisfies the
formulation of BCD method. Equation (6) when extended
with the matrix M becomes equation (8). Here, the matrix
M is like a filter matrix that defines the elements of
(R−T− pxq

ᵀ
x) to be included for the norm computation.

Thus, the Problem (8) is similar to Problem (6) and we
can solve by applying 2k block BCD to update px and qᵀ

x

iteratively, although equation (8) appears not to satisfy the
BCD requirements directly. We focus on scalar block case,
since by imposing the lower and upper bounds to the lower
rank matrix, the problem can be more easily understood.

Also, according to BCD, if the solutions of the elements
in a block are independent, they can be computed simul-
taneously. Here, the elements qxi, qxj ∈ qᵀ

x, i 6= j, are
independent of each other. Hence, the problem of finding
row qᵀ

x fixing column px is equivalent to solving the
following problem

min
qxi

‖M(:, i) · ∗((R−T)(:, i)− pxqxi)‖2F

∀i = [1,m], ∀x = [1, k]

subject to
T(:, i) + pxqxi ≤ rmax
T(:, i) + pxqxi ≥ rmin

(11)

To construct the row vector qᵀ
x, we use k(n+m) scalar

blocks based on the problem formulation (11). Theorem 3
identifies these best elements that construct qᵀ

x. Given T, R
and assume we are fixing column px, we find the row vector
qᵀ
x = (qx1, qx2, · · · , qxm) for the Problem (11). For this, let

us understand the boundary values of qxi by defining two
bounding vectors one for each above and below.



Definition 1: The lower bound vector l ∈ Rn and an
upper bound vector u ∈ Rn for a given px and T that
bounds the qxi is defined as,

lj =


rmin −T(j, i)

pjx
pjx > 0,∀j ∈ [1, n]

rmax −T(j, i)

pjx
pjx < 0,∀j ∈ [1, n]

−∞ otherwise

and,

uj =


rmax −T(j, i)

pjx
, pjx > 0,∀j ∈ [1, n]

rmin −T(j, i)

pjx
pjx < 0,∀j ∈ [1, n]

∞ otherwise

It is important to observe that the defined l and u are for a
given px and T to bound qxi. Alternatively, if we are solving
px for a given T and qx, the above function correspondingly
represent the possible lower and upper bounds for pix, where
l,u ∈ Rm.

Theorem 2: Given R, T, px, the qxi is always bounded
as max(l) ≤ qxi ≤ min(u).

Proof: It is easy to see that if qxi < max(l) or qxi >
min(u), then T(:, i) + pxq

ᵀ
xi /∈ [rmin, rmax].

Here, it is imperative to note that if qxi, results in T(:
, i) + pxq

ᵀ
xi /∈ [rmin, rmax], this implies that qxi is either

less than the max(l) or greater than the min(u). It cannot
be any other inequality.

Given the boundary values of qxi, Theorem 3 defines the
solution to the Problem (11).

Theorem 3: Given T, R,px, l and u, the unique solution
qxi to least squares Problem (11) is given as

qxi =


max(l) : if qxi < max(l)

min(u) : if qxi > min(u)

([M(:, i) · ∗(R−T)(:, i)]ᵀpx)/(‖M(:, i) · ∗px‖2F )
: otherwise

Proof:
Out of Boundary : qxi < max(l) & qxi > min(u)
Under this circumstance, the best value for qxi is either
max(l) or min(u). We can prove this by contradiction.
Let us assume there exists a q̃xi = max(l) + δ; δ > 0
that is optimal to the Problem (11) for qxi < max(l).
However, for qxi = max(l) < q̃xi is still a feasible solution
for the Problem (11). Also there does not exist a feasible
solution that is less than max(l), because the Problem (11) is
quadratic in qxi. Hence for qxi < max(l), the optimal value
for the Problem (11) is max(l). In similar direction we can
show that optimal value of qxi is min(u) for qxi > min(u).

Within Boundary : max(l) ≤ qxi ≤ min(u)
The derivative of the objective function in the optimization
Problem (11) results as
2‖M(:, i). ∗ px‖2F qxi − 2[M(:, i). ∗ (R−T)(:, i)]ᵀpx.

V. IMPLEMENTATIONS

Now we have necessary tools to construct the algorithm.
The BMA has three major functions. (1) Initialization, (2)
Stopping Criteria and (3) Find the low rank factors P and
Q. The initialization and the stopping criteria are explained
in further detail in the later sections. For the time being,
let us understand that we need two initial matrices P and
Q, such that PQ ∈ [rmin, rmax]. And we need a stopping
criteria for terminating the algorithm, when the constructed
matrices P and Q provide a good representation of the given
matrix R.

In the case of BMA algorithm, since multiple elements
can be updated independently, we reorganize the scalar block
BCD into 2k vector blocks. The BMA algorithm is presented
to the readers as Algorithm 1.

Algorithm 1 works very well and yields low rank fac-
torized matrices P and Q for a given matrix R such that
PQ ∈ [rmin, rmax]. However, when applied for very large
scale matrices, such as recommender systems, it can only be
run on machines with a large amount of memory. We address
scaling the algorithm in multi core systems and machines
with low memory in the next section.

A. Scalable Bounded Matrix Low Rank Approximation

In this section, we address the issue of scaling the
algorithm for large matrices with missing elements. The two
important aspects of making the algorithm run for large
matrices are running time and memory. We discuss the
parallel implementation of the algorithm, which we refer to
as Parallel Bounded Matrix Low Rank Approximation. Sub-
sequently, we also discuss a method called Block Bounded
Matrix Low Rank Approximation, which will outline the
details of executing the algorithm for large matrices in low
memory systems. Let us start this section by discussing
Parallel Bounded Matrix Low Rank Approximation.

1) Parallel Bounded Matrix Low Rank Approximation:
In the case of BCD method, the solutions of sub-problems
that depend on each other have to be computed sequen-
tially to make use of the most recent values. However, if
solutions for some blocks are independent from each other,
simultaneous computation of them would be possible. We
can observe that, according to Theorem 3, every element
qxi, qxj ∈ qᵀ

x, i 6= j is independent of each other. We are
leveraging this characteristic to parallelize the for loop in
the Algorithm 1. Now-a-days all the commercial processors
have multiple cores. Hence, we can parallelize find qxi
across multiple cores. We are not presenting the algorithm,
as it is trivial to change the for in step 12 and step 20 of
Algorithm 1 to parallel for.



input : Matrix R ∈ Rn×m, rmin, rmax > 1, reduced
rank k

output: Matrix P ∈ Rn×k and Q ∈ Rk×m

// Rand initialization of P, Q.
1 Initialize P, Q as a nonnegative random matrix ;
// modify random PQ such that
// PQ ∈ [rmin, rmax]
// maxelement of PQ without first
// column of P and first row of Q

2 maxElement = max(P(:, 2 : end) ∗Q(2 : end, :));

3 α←
√

rmax − 1

maxElement
;

4 P← α ·P;
5 Q← α ·Q;
6 P(:, 1)← 1;
7 Q(1, :)← 1;
8 M← ComputeRatedBinaryMatrix(R);
9 while stopping criteria not met do

10 for x← 1 to k do

11 T←
k∑

j=1,j 6=x

pjq
ᵀ
j ;

12 for i← 1 to m do
// Find vector l,u ∈ Rn as in

Definition 1
13 l← LowerBounds(rmin, rmax,T, i,px);
14 u←

UpperBounds(rmin, rmax,T, i,px);
// Find vector qᵀ

x fixing px as
on Theorem 3

15 qxi ← FindElement(px,M,R,T, i, x);
16 if qxi < max(l) then
17 qxi ← max(l);

18 else if qxi > min(u) then
19 qxi ← min(u);

20 for i← 1 to n do
// Find vector l,u ∈ Rm as in

Definition 1
21 l← LowerBounds(rmin, rmax,T, i,q

ᵀ
x);

22 u←
UpperBounds(rmin, rmax,T, i,q

ᵀ
x);

// Find vector px fixing qᵀ
x as

on Theorem 3
23 pix ←

FindElement(qᵀ
x,M

ᵀ,Rᵀ,Tᵀ, i, x);
24 if pix < max(l) then
25 pix ← max(l);

26 else if pix > min(u) then
27 pix ← min(u);

Algorithm 1: Bounded Matrix Low Rank Approxi-
mation (BMA)

It is obvious to see that the T at Step 11 on Algorithm
1 requires the largest amount of memory. Also the function
FindElement in step 15 takes a sizeable amount of mem-
ory. Hence it is not possible to run the algorithm for large
matrices – with rows and columns in the scale of 100,000’s,
in machines with low memory. Hence we propose the next
algorithm Block BMA.

2) Block Bounded Matrix Low Rank Approximation: To
help better understanding of this section, let us define β
– a data structure in memory factor. That is, maintaining
a floating scalar as single, double, sparse matrix with one
element or full matrix with one element takes different
amount of memory. This is because of the datastructure that
is used to represent the number in the memory. Typically, in
Matlab, the data structure in memory factor β for full matrix
is around 10. Similarly, in Java, the β factor for maintaining
a number in an ArrayList is around 8. Let, memsize(v) be
the function that returns the approximate memory size of a
variable v. Generally, memsize(v) = number of elements
in v * size of each element * β. Consider an example of
maintaining 1000 floating point numbers on an ArrayList
of a Java program. The approximate memory would be
1000*4*8 = 32000 bytes ≈ 32MB against 4MB in actual
because of the factor β=8.

As discussed earlier, for most of the real world large
datasets such as Netflix, Yahoo music, online dating, book
crossing, etc., it is impossible to keep the entire matrix T
in memory. Also notice that, according to Theorem 3 and
Definition 1, we need only the i-th column of T to compute
qxi. The block size of qxi to find in one core of the machine
is dependent on the size of T and FindElements that fits
in the memory.

On the one hand, partition qx to fit the maximum possible
T and FindElements in the entire memory of the system.
On the other hand, create very small partitions such that,
we can give every core some amount of work so that we
don’t under utilize the processing capacity of the system.
The disadvantage of the former, is that only one core is
used. However, in the latter case, there is a significant
communication overhead. Figure 1 gives the pictorial view
of the Block Bounded Matrix Low Rank Approximation.

We determined the number of blocks =
memsize(full(R)+other variables of FindElement)/(system
memory * number of d cores). The full(R) is non-sparse
representation and d ≤ number of cores available in the
system. Typically for most of the datasets, we achieved
minimum running time when we used 4 cores and number
of blocks to be 16. That is, we find 1/16-th of qᵀ

x

concurrently on 4 cores.
For the convenience of the readers, we have presented the

Block BMA as Algorithm 2. We describe the algorithm only
to find the partial vector of qᵀ

x given px. To find more than
one element, Algorithm 1 is modified such that the vectors
l,u,px are matrices L,U,Pblk respectively, in Algorithm



2. The described Algorithm 2 replaces the steps 11 – 19
in Algorithm 1. The initialization and the stopping criteria
for Algorithm 2 is similar to those of Algorithm 1. We also
include the necessary steps to handle numerical errors as
part of Algorithm 2.

input : Matrix R ∈ Rn×m, set of indices i, current px,
x, current q′x, rmin, rmax

output: Partial vector qx of requested indices i

// ratings of input indices i
1 Rblk ← R(:, i) ;
2 Mblk ← ComputeRatedBinaryMatrix(Rblk);
3 Pblk ← Replicate(px, size(i));
// save qx of input indices i for

numerical errors
4 q′blk ← qx(i) ;
// Tblk ∈ n× size(i) of input indices i

5 Tblk ←
k∑

j=1,j 6=x

pjq
ᵀ
blk;

// Find matrix L,U ∈ Rn×size(i) as in
Definition 1

6 L← LowerBounds(rmin, rmax,T, i,px);
7 U← UpperBounds(rmin, rmax,T, i,px);
// Find vector qblk fixing px as in

Theorem 3
8 qblk = ([Mblk ·∗(Rblk−Tblk)]

ᵀPblk)/(‖Mblk ·∗Pblk‖2F )
;
// indices of qblk that are not within

bounds
9 idxlb← find(qblk < max(L)) ;

10 idxub← find(qblk > min(U)) ;
// case 1 & 2 numerical errors

11 idxcase1← find([q′blk ≈ max(L)]or[q′blk ≈ min(U])
;

12 idxcase2← find([max(L) ≈ min(U)]or[max(L) >
min(U)]) ;

13 idxdontchange← idxcase1 ∪ idxcase2;
// set appropriate values of

qblk /∈ [max(L),min(U)]
14 qblk(idxlb \ idxdontchange)←
max(L)(idxlb \ idxdontchange) ;

15 qblk(idxub \ idxdontchange)←
min(U)(idxub \ idxdontchange) ;

16 qblk(idxdontchange)← q′blk(idxdontchange) ;
Algorithm 2: Block BMA

In the next section, we discuss tuning various parameters
in the algorithm for improving the accuracy for prediction
tasks.

B. Parameter Tuning

The BMA has many types of applications. One important
application of the BMA is prediction of the missing elements
in the matrix. For example, in the case of recommender
systems the missing ratings are provided as ground truth
in the form of a test data. The dot product of P(u, :) and
Q(:, i) gives the missing rating of a (u, i) pair. In such cases,
the accuracy of the algorithm is determined by the Root
Mean Square Error (RMSE) of the predicted ratings against

Figure 1: Block Bounded Matrix Low Rank Approximation

the ground truth. It is unimportant how good the algorithm
converges for a given rank k.

This section discusses ways to improve the RMSE of
the predictions against the missing ratings by tuning the
parameters of the BMA algorithm.

1) Initialization: The BMA algorithm can converge to
different points depending on the initialization. In Algorithm
1, we explained about random initialization such that PQ ∈
[rmin, rmax]. In general, it should give good results.

However, in the case of recommender system, we tuned
this initialization for better results. According to Koren [15],
one good baseline estimate for a missing rating (u, i) is
µ + gu + hi, where µ is the average of the known ratings,
and gu and hi are the bias of user u and item i, respectively.
We initialized P and Q such that PQ(u, i) = µ+ gu + hi
as mentioned below

P =


µ

k − 2

µ

k − 2
· · · g1 1

...
...

. . .
...

...
µ

k − 2

µ

k − 2
· · · gn 1


and

Q =


1 1 · · · 1
...

...
. . .

...
1 1 · · · 1
h1 h2 · · · hm


That is, let the first k − 2 columns of P be

µ

k − 2
, P(:

, k−1) = g and P(:, k) = 1. Let all the k−1 rows of Q be
1’s and Q(k, :) = hᵀ. We call this as baseline initialization



and expected to work better than random initializations for
certain type of and vice versa.

2) Reduced Rank k: In the case of regular low rank
approximation with all known elements, the higher the k; the
closer the low rank approximation to the input matrix [13].
However, in the case of predicting with the low rank factors,
a good k depends on the nature of the dataset. Even though,
for a higher k, the low rank approximation is closer to the
known rating of the input R, the RMSE on the test data may
be poor. In the Table III, we can observe the behaviour of
RMSE on the test data against k. Most of the time, a good k
is determined by trial and error for the prediction problem.

3) Stopping Criteria C: The stopping criteria defines the
goodness of the low rank approximation for the given matrix
and the task for which the low rank factors are used. The
two common stopping criteria are – (1) For a given rank k,
the product of the low rank factors should be closer to the
known ratings of the matrix and (2) The low rank factors
should perform the prediction task on a smaller validation set
which has the same distribution of the test set. The former
is common when all the elements of R are known and the
latter for recommender system.

Let us formally define the stopping criteria C1 for the

former case as

√
‖M · ∗(R−PQ)‖2F
numRatings in R

did not change in

the successive iterations at a given floating point precision
like 1e-5. Since the function is monotonically decreasing, for
every iteration, we find P and Q that improve the solution
to the Problem (1). Otherwise, we terminate.

The stopping criteria C2 for the latter case is the increase

of

√
‖M · ∗(V −PQ)‖2F
numRatings in V

, for some validation matrix V

which has the same distribution of the test matrix, between
successive iterations. Here, M is for the validation matrix
V. This stopping criteria has diminishing effect as the
number of iterations increase. Hence, we also check whether√
‖M · ∗(V −PQ)‖2F
numRatings in V

did not change in the successive

iterations at a given floating point precision like 1e-5.
We can show that, for the above stopping criterion C1 and

C2, the Algorithm 1 terminates for any input matrix R.

Theorem 4: Algorithm 1 terminates for both the stopping
criterion C1 and C2.

Proof: Case 1 : Termination with C1: It is trivial that
the ‖R−T‖F is monotonically decreasing for every px and
qᵀ
x. Hence at the end of completely finding all the vectors of

P and Q, ‖M.∗(R−PQ)‖F would have decreased. In other
words, we find only those px and qᵀ

x that reduce the RMSE
between the known ratings in the rating matrix and the corre-
sponding factors of P and Q. Alternatively, if the algorithm
could not find P and Q due to convergence, the ‖M.∗(R−
PQ)‖F does not change. Hence, the algorithm terminates.

Dataset Rows Columns Ratings Density Ratings
(millions) Range

Jester 73421 100 4.1 0.5584 [-10,10]
Movielens 71567 10681 10 0.0131 [1,5]
Dating 135359 168791 17.3 0.0007 [1,10]
Book 278858 271379 1.1 0.00001 [1,10]
crossing

Table II: Datasets for experimentation

Case 2 : Termination with C2: It is trivial because at the end
of the iteration, we terminate if the RMSE on the validation
set has either increased or decreased marginally.

VI. EXPERIMENTATION

In the experimentation, we take an important application
of the BMA – recommender system. The entire experimen-
tation was conducted with Algorithm 2 in various systems
with memory as lows as 16GB.

One of the major challenges during experimentation is
numerical errors. The numerical errors might result in T+
pxq

ᵀ
x /∈ [rmin, rmax]. The two fundamental questions to

solve the numerical errors are – (1) How to identify the
occurrence of a numerical error? and (2) What is the best
possible value to choose in the case of a numerical error?

Let us start with addressing the former question of poten-
tial numerical errors that arise in the BMA Algorithm 1. It is
important to understand that if we are well within bounds,
i.e., if max(l) < qxi < min(u), we are not essentially
impacted by the numerical errors. It is critical only when qxi
is out of boundary, that is, qxi < max(l) or qxi > min(u)
and approximately closer to the boundary discussed as in
(Case A and Case B). For discussion let us assume we are
improving the old value of q′xi to qxi such that we minimize
the error ‖M · ∗(R−T− pxq

ᵀ
x)‖2F .

Case A: q′xi ≈ max(l) or q′xi ≈ min(u) :
This is equivalent to saying q′xi is already optimal for
the given px and T and there is no further improvement
possible. Under this scenario, if q′xi ≈ qxi and it is better to
retain q′xi irrespective of the new qxi found.

Case B: max(l) ≈ min(u) or max(l) > min(u) :
According to Theorem 2, we know that max(l) < min(u).
Hence if max(l) > min(u), it is only because of the
numerical errors.

In all the above cases during numerical errors, we are
better off retaining the old value q′xi against the new value
qxi. We have explained the Algorithm 2 – Block BMA
considering the numerical errors.

We experimented this Algorithm 2 among varied bounds
in very large matrix sizes taken from the real world datasets.
The datasets used for our experiments include the movielens
10 million [1], jester [8], book crossing [27] and online
dating dataset [3]. The characteristics of the dataset are
presented in Table II.



We have chosen Root Mean Square Error (RMSE) –
a defacto metric for recommender systems. We compare
the RMSE of BMA with baseline initialization (BMA–
Baseline) and BMA with random initialization (BMA–
Random) against the other algorithms on all the datasets.
The algorithms used for comparison are ALSWR (alter-
nating least squares with regularization) [26], SGD [7],
SVD++ [15] and Bias-SVD [15] and its implementation
in Graphlab(http://graphlab.org/) [20] software package. We
implemented our algorithm in Matlab and used parallel
computing toolbox for parallelizing across multiple cores.

For parameter tuning, we varied the number of reduced
rank k and tried different initial matrices for our algorithm to
compare against all the algorithms. Many algorithms do not
support the stopping criteria C1 and hence, to be consistent,
we used the stopping criteria C2.

For every k, every dataset was randomly partitioned into
85% training, 5% validation and 10% test data. We run all
the algorithms on these partitions and computed their RMSE
scores. We repeated each experiment 5 times and reported
their RMSE scores in the Table III, where each resulting
value is the average of the RMSE scores on randomly chosen
test set on 5 runs. The Table III summarizes the RMSE
comparison of all the algorithms.

The Algorithm 1 consistently outperformed existing state
of the art algorithms. One of the main reason for the
consistent performance is the absence of hyper parameters.
In the case of machine learning algorithms, there are many
parameters that need to be tuned for performance. Even
though the algorithms perform the best when provided
with the right parameters, identifying these parameters are
formidable challenge – usually by trial and error methods.
For example, in Table III, we can observe that the Bias-
SVD an algorithm without hyper parameters performed
better than its extension SVD++ with default parameters in
many cases. The BMA algorithm without hyper parameters
performed well in real world datasets, albeit a BMA with
hyper parameters and right parametric values would have
performed better.

Recently, there has been a surge in interest to understand
the temporal impact on the ratings. Time-svd++ [16] is one
such algorithm that leverages the time of rating to improve
prediction accuracy. Also, the most celebrated dataset in the
recommender system community is Netflix dataset, because
of the prize money and first massive dataset for recom-
mender system that was publicly made available. In Netflix
dataset there were 17770 users who rated 480189 movies
in a scale of [1,5]. There were totally 100,480,507 ratings
in training set and 1,408,342 ratings in validation set. All
the algorithms listed above were invented to address Netflix
challenge. Even though the book crossing dataset [27] is
bigger than the Netflix, we felt the paper is not complete
without experimenting on Netflix and comparing against
time-SVD++. However, the major challenge is that Netflix

Algorithm k = 10 k = 20 k = 50 k = 100
BMA Baseline 0.9521 0.9533 0.9405 0.9287
BMA Random 0.9883 0.9569 0.9405 0.8777
ALSWR 1.5663 1.5663 1.5664 1.5663
SVD++ 1.6319 1.5453 1.5235 1.5135
SGD 1.2997 1.2997 1.2997 1.2997
Bias-SVD 1.3920 1.3882 1.3662 1.3354
time-svd++ 1.1800 1.1829 1.1884 1.1868
SVD++-Test 0.9131 0.9032 0.8952 0.8924
time-SVD++-Test 0.8971 0.8891 0.8824 0.8805

Table IV: RMSE Comparison of BMA with other algorithms on Netflix

dataset has been withdrawn from the internet and its test data
is no more available. Hence, we extracted a small sample
of 5% from the training data as validation set and tested
the algorithm against the validation set that was supplied as
part of the training package. We performed this experiment
and results are presented in Table IV. For better comparison
we also present the original Netflix test scores for SVD++
and time-SVD++ algorithms from [16]. These are labeled as
SVD++-Test and time-SVD++-Test respectively. Our BMA
algorithm out performed all the algorithm in Netflix dataset
when tested on the validation set supplied as part of the
Netflix training package.

VII. CONCLUSION

In this paper, we presented a new low rank approximation
called Bounded Matrix Low Rank Approximation (BMA)
which imposed a lower and upper bound on every element
of a lower rank matrix that best approximates a given
matrix with missing elements. We also presented substantial
experimental results on real world datasets illustrating that
our proposed method outperformed the state of the art al-
gorithms in recommender systems. We would like to extend
BMA to tensors, such that it can use time information of
the ratings during factorization. During our experimentation,
we observed linear scale up for Algorithm 2 in Matlab.
However, the other algorithms from Graphlab are imple-
mented in C/C++ and take lesser clock time. A C/C++
implementation of Algorithm 2 would be a good starting
point to compare the running time performance against the
other state of the art algorithms. Also, we want to experiment
BMA in datasets of different nature other than those from
recommender systems.
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Dataset k BMA BMA ALSWR SVD++ SGD Bias-SVD
Baseline Random

Jester 10 4.3320 4.6289 5.6423 5.5371 5.7170 5.8261
Jester 20 4.3664 4.7339 5.6579 5.5466 5.6752 5.7862
Jester 50 4.5046 4.7180 5.6713 5.5437 5.6689 5.7956

Movielens10M 10 0.8531 0.8974 1.5166 1.4248 1.2386 1.2329
Movielens10M 20 0.8526 0.8931 1.5158 1.4196 1.2371 1.2317
Movielens10M 50 0.8553 0.8932 1.5162 1.4204 1.2381 1.2324

Dating 10 1.9309 2.1625 3.8581 4.1902 3.9082 3.9052
Dating 20 1.9337 2.1617 3.8643 4.1868 3.9144 3.9115
Dating 50 1.9434 2.1642 3.8606 4.1764 3.9123 3.9096

Book Crossing 10 1.9355 2.8137 4.7131 4.7315 5.1772 3.9466
Book Crossing 20 1.9315 2.4652 4.7212 4.6762 5.1719 3.9645
Book Crossing 50 1.9405 2.1269 4.7168 4.6918 5.1785 3.9492

Table III: RMSE Comparison of Algorithms on Real World Datasets
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