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ABSTRACT

We present an interactive visual analytics system for classification,
1VisClassifier, based on a supervised dimension reduction method,
linear discriminant analysis (LDA). Given high-dimensional data
and associated cluster labels, LDA gives their reduced dimensional
representation, which provides a good overview about the clus-
ter structure. Instead of a single two- or three-dimensional scat-
ter plot, iVisClassifier fully interacts with all the reduced dimen-
sions obtained by LDA through parallel coordinates and a scatter
plot. Furthermore, it significantly improves the interactivity and
interpretability of LDA. LDA enables users to understand each of
the reduced dimensions and how they influence the data by recon-
structing the basis vector into the original data domain. By using
heat maps, iVisClassifier gives an overview about the cluster rela-
tionship in terms of pairwise distances between cluster centroids
both in the original space and in the reduced dimensional space.
Equipped with these functionalities, iVisClassifier supports users’
classification tasks in an efficient way. Using several facial image
data, we show how the above analysis is performed.

Index Terms: H.5.2 [INFORMATION INTERFACES AND PRE-
SENTATION]: User Interfaces—Theory and methods

1 INTRODUCTION

Classification is a widely-used data analysis technique across many
areas such as computer vision, bioinformatics, text mining, etc.
Given a set of data with known cluster labels, i.e., under a super-
vised setting, it builds a classifier (a training phase) to predict the
label of new data (a test phase). Examples of classification tasks
include facial recognition, document categorization, spam filtering,
and disease detection.

Numerous classification algorithms such as an artificial neural
network, decision trees, and support vector machines have been de-
veloped so far, and each method has advantages and disadvantages
making it more suitable in certain domains. Even with its broad ap-
plicability, however, most of the classification algorithms are often
performed in a fully automated manner that prevents users from not
only understanding how the algorithm works on their data but also
reflecting their domain knowledge into the classification process.
Ironically, as classification algorithms become more sophisticated
and advanced, they tend to be less interpretable to users due to their
complicated internal procedure. These limitations may cause un-
satisfactory classification results in real-world applications such as
biometrics in which the reliability of the system is critical [27]. In
some cases, there may be no option other than the manual classifi-
cation process without being supported by automated techniques.
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Figure 1: 2D Scatter plots obtained by two dimension reduction meth-
ods, LDA and PCA, for artificial Gaussian mixture data with 7 clusters
and 1000 original dimensions. A different color corresponds to a dif-
ferent cluster.

This paper addresses how to visual analytics systems support au-
tomated classification for a real-world problem. As in other analyt-
ical tasks, the first step is to understand the data. From a classifica-
tion perspective, users need to gain insight in terms of clusters such
as how much the data within each cluster varies, which clusters are
close to or distinct from each other, and which data are the most
representative ones or outliers for each cluster. The next step is
to understand both the characteristics of the chosen classifier itself
and how they work on the data at hand. For instance, decision trees
give a set of rules for classification, which are simple to interpret,
and users can see which features in the data play an important role.
In addition, analysis of misclassified data provides a better under-
standing of which types of clusters and/or data are difficult to clas-
sify. Such insight can then be fed back to the classification process
in both the training and the test phases. In the training phase, users
can refine the training data or modify the automated classification
process for better performance in the long run. In the test phase,
users can actively participate in determining the label of a new data
by verifying each result that the automated process suggests and
by performing further classification based on the interaction with a
visual analytic system. The latter case ensures nearly perfect clas-
sification accuracy while maintaining much better efficiency than
purely manual classification.

Not all classification algorithms are suitable for interactive vi-
sualization of how they work. Moreover, when the data is high
dimensional such as image, text, and gene expression data, the
problem becomes more challenging. To resolve this issue, we
choose the classification method based on linear discriminant anal-
ysis (LDA) [9], one of the supervised dimension reduction methods.
Unlike other unsupervised methods such as multidimensional scal-
ing (MDS) and principal component analysis (PCA), which only



use data, supervised ones also involve additional information such
as cluster labels associated in the data. In case of LDA, it maxi-
mally discriminates different clusters while keeping the relationship
among data within each cluster tight in the reduced dimensional
space. This behavior of LDA has two advantages for interactive
classification systems. The first one is that LDA is able to visual-
ize the data so that their cluster structure can be well exposed. For
example, as seen in Figure 1, LDA reveal the cluster structure bet-
ter than PCA, and through LDA, users can easily find the cluster
relationship and explore the data based on it. The other advantage
is that the reduced dimensional representation of the data by LDA
does not require a sophisticated classification algorithm in general
since the data is already transformed to a well-clustered form, and
such a transformation would map an unseen data item to a nearby
area of its true cluster. Thus, after applying LDA, a simple classifi-
cation algorithm such as k-nearest neighbors [7] can be performed,
which has been successfully applied to many areas [4, 20]. Ow-
ing to this simplicity, users can get an idea about how the new data
would be classified by looking at a nearby region based on visual-
ization through LDA.

Inspired by the above ideas, we have developed a system called
iVisClassifier, in which users can visually explore and classify data
based on LDA. The first contribution of iVisClassifier lies in its
emphasis on interpretation of and interaction with LDA for data
understanding. Then, iVisClassifier features the ability to let users
cooperate with the LDA visualization for the classification process.
To show the usefulness of iVisClassifier, we present facial recogni-
tion examples, where LDA-based classification works well.

The rest of this paper is organized as follows. Section 2 discusses
previous work related to interactive data mining systems and di-
mension reduction methods. Section 3 briefly introduces LDA and
its use of the regularization in visualization, and Section 4 describes
the details of iVisClassifier. Section 5 shows case studies, and Sec-
tion 6 concludes our work.

2 RELATED WORK

Supporting data mining tasks with interactive systems is an active
area of study. As for clustering, an interactive system for hierar-
chical clustering was presented in [19], and a visualization-based
clustering framework was proposed in [5], where users can analyze
the clustering results and impose their domain knowledge into the
next-stage clustering. In addition, various research has been con-
ducted to make the dimension reduction process interactive. Yang
et al. [28, 29] proposed a visual hierarchical dimension reduction
method, which groups dimensions and visualizes data by using the
subset of dimensions obtained from each group. Novel user-defined
quality metrics was introduced for effective visualization of high-
dimensional data in [14]. A user-driven visualization approach us-
ing MDS was proposed in [26].

However, in spite of the increasing demand from real-world ap-
plications, supporting classification tasks with an interactive visual
system has not been studied extensively. Some studies [1, 2, 22]
have tried to make a decision tree more interactive through visual-
ization using circle segments [3] and star coordinates [15]. How-
ever, other classification methods have not been deeply integrated
into interactive systems.

With respect to dimension reduction methods, a myriad of meth-
ods are still being proposed, and some of them claim their advan-
tages on two or three-dimensional visualization. The recently pro-
posed nonlinear manifold learning methods have shown the inter-
esting ability to match the reduced dimensions to some semantic
meanings such as the rotation of objects in image data [18, 21].
Another nonlinear method called t-SNE [24] has successfully re-
vealed a hidden cluster structure in the reduced dimensional space
for handwritten digit image and facial image data through com-
putationally intensive iterations. While all the above-mentioned
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Figure 2: Conceptual description of LDA. A different color corre-
sponds to a different cluster, and ¢; and ¢, are the cluster centroids.

methods are unsupervised dimension reduction methods that do not
consider cluster label information, supervised dimension reduction
methods [9, 12], which explicitly utilize them in their computations,
typically attempt to preserve the cluster structures by grouping the
data with given labels.

Even with such technical advances, people still prefer traditional
methods such as PCA, MDS, and self-organizing maps (SOM) be-
cause the state-of-the-art methods tend not to work universally for
various types of data and they often lack interpretability. Motivated
by this, a recently proposed system called iPCA [13] enables users
to interact with PCA and its visualization results in the form of scat-
ter plots and parallel coordinates. Our system shares a lot in com-
mon with iPCA in that users can play with LDA via scatter plots
and parallel coordinates. Other than data understanding, however,
our system aims further to support classification tasks utilizing the
supervised dimension reduction.

3 LINEAR DISCRIMINANT ANALYSIS

In this section, we briefly introduce LDA and skip rigorous mathe-
matical derivations due to a page limit. For more technical details
about LDA and its use in visualization, refer to our previous work

[6].
3.1 Concepts

LDA is a linear dimension reduction method that represents each of
the reduced dimensions as a linear combination of the original di-
mensions. By projecting the data onto such a linear subspace, LDA
puts cluster centroids as remote to each other as possible (by max-
imizing the weighted sum, B, of squared distances between cluster
centroids, as shown in Figure 2(a)), while keeping each cluster as
compact as possible (by minimizing the squared sum, W, of the
disances between each data item in the cluster and its cluster cen-
troid, as shown in Figure 2(b)), in the reduced dimensional space.
Due to this characteristic, LDA can highlight the cluster relation-
ship as shown in Figure 1(a), as opposed to other dimension reduc-
tion methods such as PCA. In LDA, this simultaneous optimization
is formulated as a generalized eigenvalue problem that maximizes
B while keeping its minimum value of W. Theoretically, the objec-
tive function value of LDA cannot exceed that in the original space,
and such an upper bound is achieved as long as at least k — 1 di-
mensions are allowed in LDA, where k is the number of clusters.
Due to this characteristic, LDA usually reduces the data dimension
tok—1.

Although LDA can reduce the data dimension down to k — 1 di-
mensions without compromising its maximum objective function
value, it is often not enough to use for 2D or 3D visualization pur-
poses. In this case, users can either select a few of the most signifi-
cant dimensions or perform an additional dimension reduction step
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Figure 3: Effects of a regularization parameter y in S,, + /. It can
control how scattered each cluster is in the visualization. The data is
one of the facial image data called SCface, and we chose the first six
persons’ images.

to further reduce the dimension to two or three [6]. In iVisClassifier,
we adopt the former strategy so that we can easily interpret the di-
mension reduction step while interacting with all the LDA reduced
dimensions.

3.2 Regularization to Control the Cluster Radius

In regularized LDA, a scalar multiple of an identity matrix 71 is
added to the within-scatter matrix S,,, the trace of which represents
W.! It was applied to LDA [8] in order to circumvent a singularity
problem when the data matrix has more dimensions than the num-
ber of data items, i.e., an undersampled case. In addition, regular-
ization also has an advantage against overfitting in the classification
context.

On the other hand, a unified algorithmic framework of LDA
using the generalized singular value decomposition (LDA/GSVD)
was proposed [11], which broadens the applicability of LDA re-
gardless of the singularity. For undersampled data, e.g., text and
image data, LDA/GSVD can fully minimize the cluster radii, mak-
ing them all equal to zero. However, making the cluster radii zero
results in representing all the data points in each cluster as a sin-
gle point. Although it makes sense in terms of the LDA criteria,
it does not keep any information to visualize at an individual data
level. Thus, we utilize regularization to control the radius or scat-
teredness of clusters in the visualization to either focus on the data
relationship or the cluster relationship, as shown in Figure 3. In
an extreme case, when we sufficiently increase the regularization
parameter ¥, S, is almost ignored in the minimization term, i.e.,
Sw~+ ¥l >~ 71, so that LDA focuses only on maximizing B without
minimizing W. Mathematically, this case is equivalent to applying
PCA on the cluster centroids [6].

3.3 Algorithms

To ensure real-time interactions, it is important to design an effi-
cient algorithm for LDA. Therefore, we reduce the data matrix size
by applying either QR decomposition for undersampled cases or
Cholesky decomposition for the other cases before running LDA.
The main idea here is to transform a rectangular data matrix of size
m X n into a square matrix of size min(m, n) X min(m, n) without
losing any information. Then, the GSVD-based LDA algorithm is
performed on this reduced matrix much efficiently. For more de-
tails, refer to [16].

nstead of W, the LDA formulation uses Sy, which is then replaced with
Sy + ¥I by regularization. For more details, refer to [6].

4 SYSTEM DESCRIPTION
4.1 Data Encoding

Given a data set along with its labels, iVisClassifier first encodes the
data into high-dimensional vectors. In its current implementation,
it takes text documents, images, and generic numerical vectors with
comma-separated values. When dealing with image data, the pixel
values in each image are rasterized to form a single column vector,
and text data are encoded using the bag-of-words model. Such en-
coding schemes determine the dimensions of image and text data
as the total number of pixels in a single image and the total number
of different words, respectively, which can be up to the hundreds of
thousands.

Along with numerical encoding, 1VisClassifier has several op-
tional pre-processing steps such as data centering and normaliza-
tion that makes the norm of every vector equal. In addition, other
domain-specific pre-processing steps are also provided, such as
contrast limited adaptive histogram equalization [17] for image data
and stemming and stop-word removal for text data.

4.2 Visualization Modules

Once the data matrix whose columns represent data items is ob-
tained, LDA is performed on this matrix with its associated labels.
Users can recompute LDA with different regularization parameter
values 7y through a horizontal slide bar interface until the data within
each cluster are adequately scattered. As described in Section 3,
LDA reduces the data dimension to k — 1 where & is the number of
clusters. Just as the reduced dimensions in PCA are in an order to
preserve the most variance, those in LDA are also in an order for
preserving the most value of the LDA criterion. That is, the first
reduced dimension represents each cluster most compactly while
keeping different clusters most distinctly. With this in mind, we
visualize LDA results in four different ways: parallel coordinates
(Figure 4A), the basis view (Figure 4B), heat maps (Figure 4C),
and 2D scatter plots (Figure 4F).

Parallel coordinates

Parallel coordinates is a common way to visualize multi-
dimensional data. In parallel coordinates, the dimension axes are
placed side by side as a set of parallel lines, and the data item is
represented as a polyline whose vertices on these axes indicate the
values in the corresponding dimensions. The main problem of par-
allel coordinates is that it does not scale well in terms of both the
number of data items and dimensions. However, LDA can deal
with both problems effectively in the following ways. First, with
a manageable number of clusters, k, LDA reduces the number of
dimensions to k — 1, without losing any information on the clus-
ter structure based on the LDA criterion. In addition, in terms of
the number of data items, LDA plays the role of data reduction for
undersampled cases since it can represent all the data items within
each cluster as a single point by setting ¥ = 0, which in turn visual-
izes the entire data as k items. The dimension-reduced data by LDA
may suffer the same scalability problem when the number of clus-
ters and/or the regularization parameter 7y increases. Nonetheless,
in most cases, LDA significantly alleviates the clutter in parallel
coordinates in that dealing with a large number of clusters is not
practical and that users can always start their analysis with y = 0.
Our implementation of parallel coordinates has several interac-
tions including a basic zoom-in/out function. First, users can con-
trol the transparency of the polylines to see how densely the lines
go through a particular region. To this end, users can switch all the
colors indicating cluster labels to a single one, e.g. black. In addi-
tion, iVisClassifier has several shifting and scaling options. One is
to align the minimum value of each dimension at the bottom hori-
zontal line in the view, and the other is to align both the minimum
and the maximum values at the top and bottom line, respectively.
iVisClassifier is also able to filter the data by selecting particular
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Figure 4: The overview of the system. SCface data with randomly chosen 30 persons’ images were used, and different colors correspond to
different clusters, e.g., persons. The arrow indicates a clicking operation. (A) Parallel coordinates view. The LDA results in 29 dimensions are
represented. (B) Basis view. The LDA basis vectors are reconstructed in the original data domain, e.g., images in this case. (C) Heat map
view. The pairwise distances between cluster centroids are visualized. The leftmost one is computed from the original space, and the rest from
each of the LDA dimensions. Upon clicking, the full-size of a heat map is shown (D), and clicking each square shows the existing data in the
corresponding pair of clusters (E). (F) Scatter plot view. A 2D scatter plot is visualized using two user-selected dimensions. When clicking a
particular data point, its original data item is shown (G). (H) Control interfaces. Users can change the transparency and the colors in parallel
coordinates. Data can be filtered at the data level as well as at the cluster level. The interfaces for unseen data visualize them one by one,
interactively classify them, and finally updates the LDA model. A horizontal slide bar for the regularization parameter value in LDA controls how
scattered each cluster is visualized. (I) shows the legend about cluster labels in terms of their assigned colors and enumerations.

clusters and/or data points in a certain range specified by a mouse
pointer, and brushing and linking is implemented between parallel
coordinates and scatter plots.

Basis view

When data go through any kind of computational algorithms, it is
crucial to have a better understanding of what happens in the pro-
cess. For instance, even though the dimension reduction result is
given by LDA, users may need to know the meaning behind each di-
mension and the reasons why those dimensions maximize the LDA
criterion. Without such information, users cannot readily under-
stand why certain data points look like outliers or certain clusters
are prominent in the LDA result. Following this motivation, we
provide users with the meaning of each reduced dimension of LDA
in the following way.

First of all, LDA is a linear method where each reduced dimen-
sion is represented as a linear combination of those in the original
space. Thus, we have a linear combination coefficient for each re-
duced dimension, which we call a basis vector, and the dimension
of this basis vector is the same as the original dimension. For im-
age data in which the original dimension is the number of pixels in
the image, each coefficient value in this basis vector corresponds
to each of the pixels. Based on this idea, we reconstruct the LDA
basis in the original data domain, e.g., an image in our case. How-
ever, it is not always straightforward to convert the basis back to

the original data domain. For example, pixel values in an image
have a certain specifications that they have to be all integers be-
tween 0 and 255 while the LDA basis is real-valued with positive
and negative signs mixed. In the past, several heuristics to handle
this issue were used in the context of PCA by mapping basis vectors
to grayscale images [23, 25] by taking either its absolute value or
adding the minimum value. However, these heuristic methods lose
or distort the information contained in the basis vectors. Therefore,
we map positive and negative numbers in the basis vector into two
color channels, red and blue, respectively. In this way, we obtain
the reconstructed images of LDA basis vectors as shown in Figure
4B.

Heat maps

With heat maps, we visualize the pairwise distances between cluster
centroids, where each heat map has k x k elements. The leftmost
heat map in Figure 4C represents such information in the original
high-dimensional space, and the following ones on the right side
are computed within each reduced dimension of LDA. Through this
visualization, we can get the information about which particular
cluster is distinct from the other clusters and which cluster pairs
are close or remote in each dimension. Furthermore, comparisons
between heat maps of the original space and each of the reduced
dimension show which cluster distances are preserved or ignored.
By clicking the (i, j)-th square in the enlarged heat map (Figure
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Figure 5: A single person’s image samples in two data sets.

4D), users can compare the data items in the i-th and j-th clusters
as shown in Figure 4E. In addition, the slide bar at the bottom in
Figure 4E enables users to overlap the data image with its corre-
sponding basis image, which tells us how the pixels in these images
are weighted in its corresponding dimension and why the data of
the selected two clusters are closely or remotely related in this di-
mension, as shown in Figure 9.

Scatter plots

The scatter plot visualizes data points in the two user-selected re-
duced dimensions of LDA with a zoom-in/out functionality. In this
view, a data item is represented as a point with an initial letter and a
different color of its corresponding cluster label. Additionally, the
first and the second order statistics per cluster, which are the mean
and the covariance ellipse, give the effective information about clus-
ters.

Our scatter plot view given by LDA allows users to interactively
explore the data in view of the overall cluster structure in the fol-
lowing senses: 1. which data points are outliers or representative
points in their corresponding clusters, 2. which data points are out-
liers or representative points in their corresponding clusters, 3. how
widely the data points within a cluster are distributed and accord-
ingly, which clusters have potential subclusters, and 4. which data
points overlap between different clusters.

In addition, brushing and linking with parallel coordinates over-
come the limitation that the scatter plot can only show two or three
dimensions at a time. In this way, users can see how the selected
data or clusters in the scatter plot behave in the other dimensions.

4.3 Classification Modules

After obtaining insight from exploring the data with known clus-
ter labels, users can now interactively perform classification on the
new data whose labels are to be determined. This process works as
follows. First, a new data item is mapped onto the reduced dimen-
sional space formed by the previous data. It is then visualized in
parallel coordinates and in the scatter plot view. Such visualization
significantly increases the efficiency of users’ classification tasks
by visually reducing the search space. Within this reduced visual
search space, users can easily compare the new data item with the
existing data or clusters nearby. When the new data point falls into
a cluttered region where many different clusters overlap, users can
select or filter out some data or clusters and recompute LDA with
this subset of data including the new point, which we call a compu-
tational zoom-in process. In other words, LDA takes into account
the selected clusters and/or those corresponding to the selected data,
which requires a much smaller number of dimensions than k — 1 for
LDA to fully discriminate the selected clusters. Based on the new
visualization generated in this way, uses can better identify which
clusters the new point belongs to.

On completing the visually-supported classification process,
users can assign a label to the new data item and optionally in-

clude the newly labeled data in future LDA computations, which is
initiated only when users want to recompute them. The reason we
do not force users to include every new data in LDA computations
is that users’ confidence level of the assigned label may not be high
enough for some reason such as noise.

5 CASE STUDIES

In this section, we present an interactive analysis using two sets
of facial image data, Weizmann database?> and SCface database
[10], for facial recognition. Weizmann is composed of 28 persons’
frontal images in a constant background, in which each person has
52 images. The variations within each person’s images exist re-
garding viewing angles, illuminations, and facial expressions. We
resized the original 512 x 352 pixel images to 64 x 44 pixel im-
ages, resulting in 2816 dimensional vectors. SCface is an image
collection taken in an uncontrolled indoor environment using mul-
tiple video surveillance cameras with various image qualities. It is
composed of 4160 static images of 130 subjects, of which we ran-
domly selected 30 persons’ images for our study, where each person
has 32 images. Since the images in SCface generally contain parts
other than a face, such as the upper body of a person and a different
background, we have cropped a facial part using an affine transfor-
mation that aligns the images based on the eye coordinates. The
image samples of two data sets are shown in Figure 5.

In the following, we present an exploratory analysis towards bet-
ter understanding of both the data and the computational method
we have used, i.e., LDA. Next, we describe how users interactively
perform classification supported by iVisClassifier.

5.1 Exploratory Data Analysis

In general, understanding the data at the cluster level is essential to
deriving an initial idea about the overall structure in a large-scale
data set. In this sense, we can begin with the heat map view of the
pairwise distances in the original space to look at how the clusters
are related. From the heat maps shown in Figure 6(a) and 7(a), we
can see that pairwise cluster distances vary more in Weizmann than
in SCface. This view also reveals the clusters that look distinct from
the other clusters, e.g., person 14 in Weizmann and person 7 in SC-
face. Element-wise comparisons reveal that persons 11 and 14 look
quite distinct, which makes sense due to baldness and shirt colors,
but persons 2 and 10 look similar in Figure 6(a). Similarly, persons
1 and 7 look different while persons 2 and 26 are indistinguishable
in Figure 7(a).

Next, let us look at the heat maps of the LDA dimensions shown
in Figures 6-7. The first dimension turns out to reflect the most dis-
tinct clusters in the original space. In addition, the heat maps in the
LDA dimensions have mostly blue-colored elements, i.e., almost
zero, except for a few rows and columns, which indicates that each
of the LDA dimensions tends to discriminate only a few clusters.

Next, Figure 8 shows the image reconstruction of the first six
LDA bases for both data sets. It is interesting to see that in both
cases, the forehead part is heavily weighted in the first dimension,?
and then in the second dimension, the forehead part is differentiated
into upper and lower parts. This indicates that the forehead part is
the most prominent factor for facial recognition based on LDA in
our data.

Basis images can be overlapped with the original images to high-
light the region in the images that is heavily weighted in a specific
reduced dimension. The example shown in Figure 9 was obtained
by selecting one of the most remote cluster pairs (red-colored one
in Figure 6(b)) in the first dimension. In the region covered by a
blue color, we can see that the pixel values are quite different, i.e.,

Zhttp://www.wisdom.weizmann.ac.il/"vision/databases.html

3Negative weighting coefficients represented as blue colors are equiva-
lent to positive ones by negating the basis and the corresponding coordinate
values of the data.
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Figure 6: Heat map view of the pairwise cluster distances of the
Weizmann data set.

(a) The original space (b) The first dimension (c) The sixth dimension

Figure 7: Heat map view of the pairwise cluster distances of the SC-
face data set.

light in the first cluster and dark in the second cluster, which puts
them far apart in the corresponding reduced dimension.

5.2 Interactive Classification

As described in Section 4.3, the main benefit of iVisClassifier for
classification is that it visually guides users to the correct clusters
for unseen data while allowing users to have control over the classi-
fication process. In general, most of the new data would be closely
placed to their corresponding clusters in the scatter plot. If only
a few clusters are found nearby, e.g., when a point to classify is
placed near the cluster 7, which is almost isolated from the other
clusters at the leftmost part in Figure 10(a), then by checking some
of the nearby data in the cluster 7, users can quickly classify them
into their corresponding clusters. However, a problem arises when
the new point is visualized near a cluttered region as shown in Fig-
ure 10(a). With this visualization, we have a less clear idea as to
which clusters to look at because numerous clusters exist near the
point of interest. In this case, we can select a subset of data points
around it and then recompute the dimension reduction only with
this subset. Figure 10 shows that this process guides the new point

(a) Weizmann

(b) SCface

Figure 8: Reconstructed images of the first six LDA bases.
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Figure 9: The effect of overlapping a basis image over the original
data. Users can see which part of images are weighted by a basis
vector.

to its true cluster.

Another scenario for interactive classification in iVisClassifier
is cooperative filtering between parallel coordinates and the scatter
plot. Figure 11(a) shows a case where the new point is placed in
an ambiguous region to classify. As we find that the new point
(shown in a gray color in parallel coordinates) goes through the top
region in dimension 7, we can filter the data in this dimension, and
accordingly, the selected data are also highlighted in the scatter plot
with a black circle, as shown in Figure 11(b). Additional filtering
in the scatter plot by selecting either nearby clusters or data items
ends up with only one possible cluster, as shown in Figure 11(c).

Once some of the new data are assigned their labels, users can re-
compute LDA by taking into account the newly labeled data. Figure
12 shows the distributions of the new data whose label is ‘0’ before
and after LDA recomputation with a newly labeled data item. As
we can see, the rest of the unseen data in the cluster 0 becomes
closer to its centroid after LDA recomputation, which indicates that
the updated LDA dimensions potentially better discriminates the
unseen data.

6 CONCLUSIONS AND FUTURE WORK

In this study, we have presented iVisClassifier, a visual analyt-
ics system for clustered data and classification. Our system en-
ables users to explore high-dimensional data through LDA, which
is a supervised dimension reduction method. We interpret the ef-
fect of regularization in visualization and provide an effective user-
interface in which users can control the cluster radii depending on
whether they focus on the cluster- or the data-level relationships. In
addition, iVisClassifier facilitates the interpretability of the compu-
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(a) The initial filtering (b) The second filtering (c) The final visualization result

Figure 10: Interactive classification by computational zoom-in. Recursive visualization by recomputing LDA for interactively selected subsets of
data guides a new point into its corresponding cluster. The thick arrow indicates the new point position.

(a) The initial visualization (b) The filtering in parallel coordinates (c) The filtering in the scatter plot

Figure 11: Interactive classification by mutual filtering. Filtering both in parallel coordinates and the scatter plot leads to a single cluster. The
thick arrow indicates the new point position.

(a) Before labelling the test point (b) After labelling the new point

Figure 12: Effects of LDA recomputation with including a newly labeled point in the existing data. The arrow indicates the newly labeled point,
and the red circles represent the distribution of the remaining unseen data in the cluster 0.



tational model applied to their data. Various views such as paral-
lel coordinates, the scatter plot, and heat maps interactively show
rich aspects of the data. Finally, we showed that iVisClassifier can
efficiently support a user-driven classification process by reducing
humans’ search space, e.g., recomputing LDA with a user-selected
subset of data and mutual filtering in parallel coordinates and the
scatter plot.

As our future work, we plan to improve our system to better
handle other types of high-dimensional data and their classification
tasks. Although our system can currently load and visualize other
types of high-dimensional data such as text data, how we accom-
modate the basis view and blend the data item with the basis in
the original data domain, as shown in Figure 9, would be the main
issues.

In addition, although our tool works well when there is a reason-
able number of clusters, it may not scale well when we have many
clusters, e.g., hundreds of people in facial recognition. To handle
this problem, we are considering the hierarchical approaches that
group the clusters based on their relative similarities to keep the
number of clusters manageable in an initial analysis.

Finally, the computation of LDA can be burdensome for user in-
teractions when we have a large-scale data. Novel interactions with
LDA provided by iVisClassifier motivate the new types of dynamic
updating algorithms based on the previous LDA results in various
situations. For instance, updating the LDA results when chang-
ing the regularization parameter value has not been studied before.
Thus, we are currently exploring for various situations and their
corresponding updating algorithms when computational algorithms
are integrated into user-interactive systems.
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