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Abstract

Linear discriminant analysis (LDA) has been used for decades to extract features that pre-
serve class separability. It is classically defined as an optimization problem involving covari-
ance matrices that represent the scatter within and between clusters. The requirement that one
of these matrices be nonsingular restricts its application to data sets in which the dimension of
the data does not exceed the sample size. Recently, the applicability of LDA has been extended
by using the generalized singular value decomposition (GSVD) to circumvent the nonsingular-
ity requirement. Alternatively, many studies have taken a two-stage approach in which the first
stage reduces the dimension of the data enough so that it can be followed by classical LDA.
In this paper, we justify a two-stage approach that uses either principal component analysis
or latent semantic indexing before the LDA/GSVD method. We show that it is equivalent to
single-stage LDA/GSVD. We also present a computationally simpler choice for the first stage,
and conclude with a discussion of the relative merits of each approach.

1 Introduction

The goal of linear discriminant analysis (LDA) is to combine features of the original data in a
way that most effectively discriminates between classes. With an appropriate extension, it can
be applied to the goal of reducing the dimension of a data matrix in a way that most effectively
preserves its cluster structure. That is, we want to find a linear transformation GT that maps an
m-dimensional data vector a to a vector y in the l-dimensional space (l � m):

GT : a ∈ Rm×1 → y ∈ Rl×1.

Assuming that the given data are already clustered, we seek a transformation that optimally pre-
serves this cluster structure in the reduced dimensional space.
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For simplicity of discussion, we will assume that the m-dimensional data vectors a1, . . . , an

form columns of a matrix A ∈ Rm×n, and are grouped into k clusters as

A = [A1, A2, · · · , Ak] where Ai ∈ Rm×ni , and
k∑

i=1

ni = n. (1)

Let Ni denote the set of column indices that belong to cluster i. The centroid c(i) is computed by
taking the average of the columns in cluster i; i.e.,

c(i) =
1

ni

∑
j∈Ni

aj (2)

and the global centroid c is defined as

c =
1

n

n∑
j=1

aj. (3)

Then the within-cluster, between-cluster, and mixture scatter matrices are defined [Fuk90, TK99]
as

Sw =
k∑

i=1

∑
j∈Ni

(aj − c(i))(aj − c(i))T ,

Sb =
k∑

i=1

∑
j∈Ni

(c(i) − c)(c(i) − c)T

=
k∑

i=1

ni(c
(i) − c)(c(i) − c)T , and

Sm =
n∑

j=1

(aj − c)(aj − c)T ,

respectively. The scatter matrices have the relationship [JD88]

Sm = Sw + Sb. (4)

Applying GT to the matrix A transforms the scatter matrices Sw, Sb, and Sm to the l × l matrices

GT SwG, GT SbG, and GT SmG,

respectively.

There are several measures of cluster quality that involve the three scatter matrices [Fuk90,
TK99]. When cluster quality is high, each cluster is tightly grouped, but well separated from the
other clusters. Since

trace(Sw) =
k∑

i=1

∑
j∈Ni

(aj − c(i))T (aj − c(i))

=
k∑

i=1

∑
j∈Ni

‖aj − c(i)‖2
2
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measures the closeness of the columns within the clusters, and

trace(Sb) =
k∑

i=1

∑
j∈Ni

(c(i) − c)T (c(i) − c)

=
k∑

i=1

∑
j∈Ni

‖c(i) − c‖2
2

measures the separation between clusters, an optimal transformation that preserves the given clus-
ter structure would maximize trace(GT SbG) and minimize trace(GT SwG).

This simultaneous optimization can be approximated by finding a transformation G that maxi-
mizes

J1(G) = trace((GT SwG)−1GT SbG). (5)

However, this criterion cannot be applied when the matrix Sw is singular, a situation that occurs
frequently in many applications. For example, in handling document data in information retrieval,
it is often the case that the number of terms in the document collection is larger than the total
number of documents (i.e., m > n in the term-document matrix A), and therefore the matrix Sw is
singular. Furthermore, for applications where the data points are in a very high-dimensional space
rendering data collection expensive, Sw is singular because the value for n must be kept relatively
small. Such is the case for the image databases of face recognition, as well as for gene expression
data. This is referred to as the small sample size problem, or the problem of undersampled data.

Classical LDA expresses the solution in terms of an eigenvalue problem when Sw is nonsin-
gular. By reformulating the problem in terms of the generalized singular value decomposition
(GSVD) [VL76, PS81, GVL96], the LDA/GSVD algorithm [HJP03] extends the applicability to
the case when Sw is singular. Another way to apply LDA to the data matrix A ∈ Rm×n with
m > n (and hence Sw singular) is to perform dimension reduction in two stages. The LDA stage is
preceded by a stage in which the cluster structure is ignored. A common approach for the first part
of this process is rank reduction by the truncated singular value decomposition (SVD). This is the
main tool in principal component analysis (PCA) [DHS01], as well as in latent semantic indexing
(LSI) [DDF+90, BDO95] of documents. Swets and Weng [SW96] and Belhumeur et al. [BHK97]
utilized PCA plus LDA for facial feature extraction. Torkkola [Tor01] implemented LSI plus LDA
for document classification. A drawback of these two-stage approaches has been the experimenta-
tion needed to determine which intermediate reduced dimension produces optimal results after the
second stage.

Moreover, since either PCA or LSI ignores the cluster structure, theoretical justification for
such two-stage approaches has been lacking. Yang and Yang [YY03] justify PCA plus LDA,
providing proof in terms of a single discriminant vector. They do not address the optimal re-
duced dimension after the second stage. In this paper, we establish the equivalence of single-stage
LDA/GSVD to two-stage methods consisting of either PCA or LSI, followed by LDA/GSVD. In
the range of intermediate dimensions for which equivalence is achieved, Sw remains singular, and
hence classical LDA cannot be used for the second stage. An implication of this equivalence is
that the optimal set of discriminant vectors after the second stage should include the same number
of vectors as LDA when used alone. With the GSVD framework, we clearly show that at most
k − 1 generalized eigenvectors are needed even in the singular case. Thus, in addition to its role
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in the LDA/GSVD algorithm, the GSVD provides a mathematical framework for understanding
the singular case, and eliminates the need for experimentation to determine the optimal reduced
dimension.

We also present a computationally simpler choice for the first stage, which uses QR decom-
position (QRD) rather than the SVD. After confirming the equivalence of these approaches exper-
imentally, we discuss the relative merits of each. We conclude that QRD plus LDA, which uses
QRD as a pre-processing step for LDA/GSVD, provides an improved algorithm for LDA/GSVD.

2 LDA based on the GSVD

It is well-known that the J1 criterion (5) is maximized when the columns of G are the l eigenvectors
of S−1

w Sb corresponding to the l largest eigenvalues [Fuk90]. In other words, classical discriminant
analysis solves

S−1
w Sbxi = λixi (6)

for the xi’s corresponding to the largest λi’s. For these l eigenvectors, the maximum achieved is
J1(G) = λ1 + · · · + λl. Furthermore, rank(Sb) of the eigenvalues of S−1

w Sb are greater than zero,
and the rest are zero. Hence, for l ≥ rank(Sb), this optimal G preserves trace(S−1

w Sb) exactly
upon dimension reduction.

In terms of the data clusters and centroids given in (1), (2), and (3), [HJP03] defines the m× n
matrices

Hw = [A1 − c(1)e(1)T

, A2 − c(2)e(2)T

, . . . , Ak − c(k)e(k)T

] (7)

Hb = [(c(1) − c)e(1)T

, (c(2) − c)e(2)T

, . . . , (c(k) − c)e(k)T

]

Hm = [a1 − c, . . . , an − c] = A− ceT , (8)

where e(i) = (1, . . . , 1)T ∈ Rni×1 and e = (1, · · · , 1)T ∈ Rn×1. Then the scatter matrices can be
expressed as

Sw = HwHT
w , Sb = HbH

T
b , and Sm = HmHT

m. (9)

Another way to define Hb that satisfies (9) is

Hb = [
√

n1(c
(1) − c),

√
n2(c

(2) − c), . . . ,
√

nk(c
(k) − c)] (10)

and using this m× k form reduces the storage requirements and computational complexity of the
LDA/GSVD algorithm.

As the product of an m× n matrix and an n×m matrix, Sw is singular when m > n [Ort87].
This means that J1 cannot be applied when the number of available data points is smaller than the
dimension of the data. Expressing λi as α2

i /β
2
i , the eigenvalue problem (6) becomes

β2
i HbH

T
b xi = α2

i HwHT
wxi. (11)

This has the form of a problem that can be solved using the GSVD of the matrix pair (HT
b , HT

w ).
Paige and Saunders [PS81] defined the GSVD for any two matrices with the same number of
columns, which we restate as follows.
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Theorem 2.1 Suppose two matrices HT
b ∈ Rk×m and HT

w ∈ Rn×m are given. Then for

K =

(
HT

b

HT
w

)
and t = rank(K),

there exist orthogonal matrices U ∈ Rk×k, V ∈ Rn×n, W ∈ Rt×t, and Q ∈ Rm×m such that

UT HT
b Q = Σb(W

T R︸ ︷︷ ︸
t

, 0︸︷︷︸
m−t

)

and
V T HT

wQ = Σw(W T R︸ ︷︷ ︸
t

, 0︸︷︷︸
m−t

),

where

Σb
k×t

=

 Ib

Db

Ob

 , Σw
n×t

=

 Ow

Dw

Iw

 ,

and R ∈ Rt×t is nonsingular with its singular values equal to the nonzero singular values of K.
The matrices

Ib ∈ Rr×r and Iw ∈ R(t−r−s)×(t−r−s)

are identity matrices, where

r = t− rank(HT
w ) and s = rank(HT

b ) + rank(HT
w )− t,

Ob ∈ R(k−r−s)×(t−r−s) and Ow ∈ R(n−t+r)×r

are zero matrices with possibly no rows or no columns, and

Db = diag(αr+1, . . . , αr+s)

and
Dw = diag(βr+1, . . . , βr+s)

satisfy
1 > αr+1 ≥ · · · ≥ αr+s > 0, 0 < βr+1 ≤ · · · ≤ βr+s < 1,

and α2
i + β2

i = 1 for i = r + 1, . . . , r + s.

This form of GSVD is related to that of Van Loan [VL76] as

UT HT
b X = (Σb, 0) and V T HT

wX = (Σw, 0), (12)

where

X
m×m

= Q

(
R−1W 0
0 Im−t

)
.

This implies that

XT HbH
T
b X =

(
ΣT

b Σb 0
0 0

)
and XT HwHT

wX =

(
ΣT

wΣw 0
0 0

)
. (13)
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Letting xi represent the ith column of X , and defining

αi = 1, βi = 0 for i = 1, . . . , r

and
αi = 0, βi = 1 for i = r + s + 1, . . . , t,

we see from (13) that (11) is satisfied for 1 ≤ i ≤ t. Since

HbH
T
b xi = 0 and HwHT

wxi = 0

for the remaining m − t columns of X , (11) is satisfied for arbitrary values of αi and βi when
t + 1 ≤ i ≤ m. The columns of X are the generalized singular vectors for the matrix pair
(HT

b , HT
w ). They correspond to the generalized singular values, or the αi/βi quotients, as follows.

The first r columns correspond to infinite values, and the next s columns correspond to finite and
nonzero values. The following t − r − s columns correspond to zero values, and the last m − t
columns correspond to the arbitrary values. This correspondence between generalized singular
vectors and values is summarized in Table 1.

Table 1: Generalized singular vectors, {xi : 1 ≤ i ≤ m}, and their corresponding generalized
singular values, {αi/βi : 1 ≤ i ≤ m}

i αi/βi xi ∈ null(Sw)? xi ∈ null(Sb)?
1, . . . , r ∞ yes no

r + 1, . . . , r + s positive no no
r + s + 1, . . . , t 0 no yes
t + 1, . . . ,m arbitrary yes yes

A question that remains is which columns of X to include in the solution G. If Sw is nonsin-
gular, both r = 0 and m − t = 0, so s = rank(HT

b ) generalized singular values are finite and
nonzero, and the rest are zero. Hence we include in G the leftmost s columns of X . For the case
when Sw is singular, [HJP03] argues in terms of the simultaneous optimization

max
G

trace(GT SbG) and min
G

trace(GT SwG) (14)

that criterion J1 is approximating. Letting gj represent a column of G, we write

trace(GT SbG) =
∑

gT
j Sbgj

and
trace(GT SwG) =

∑
gT

j Swgj.

If xi is one of the leftmost r vectors, then xi ∈ null(Sw) − null(Sb). Because xT
i Sbxi > 0 and

xT
i Swxi = 0, including this vector in G increases the trace we want to maximize while leaving the

trace we want to minimize unchanged. On the other hand, for the rightmost m − t vectors, xi ∈
null(Sw) ∩ null(Sb). Adding the column xi to G has no effect on these traces, since xT

i Swxi = 0
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and xT
i Sbxi = 0, and therefore does not contribute to either maximization or minimization in (14).

We conclude that, whether Sw is singular or nonsingular, G should be comprised of the leftmost
r + s = rank(HT

b ) columns of X .

As a practical matter, LDA/GSVD includes the first k−1 columns of X in G. This is due to the
fact that rank(Hb) ≤ k − 1, which is clear from the definition of Hb given in (10). If rank(Hb) <
k − 1, including extra columns in G (some which correspond to the t − r − s zero generalized
singular values and, possibly, some which correspond to the arbitrary generalized singular values)
will have approximately no effect on cluster preservation. As summarized in Algorithm 1, we
first compute the matrices Hb and Hw from the data matrix A. We then solve for a very limited
portion of the GSVD of the matrix pair (HT

b , HT
w ). This solution is accomplished by following

the construction in the proof of Theorem 2.1 [PS81]. The major steps are limited to the complete
orthogonal decomposition [GVL96, LH95] of

K =

(
HT

b

HT
w

)
,

which produces orthogonal matrices P and Q and a nonsingular matrix R, followed by the singular
value decomposition of a leading principal submatrix of P , whose size is much smaller than that of
the data matrix. Finally, we assign the leftmost k−1 generalized singular vectors to G. As a result,
the linear transformation GT reduces an m-dimensional data vector a to a vector y of dimension
k − 1.

Another consequence of Theorem 2.1 is that the trace values after LDA/GSVD are on the order
of the reduced dimension k− 1. Due to the normalization α2

i + β2
i = 1 for 1 ≤ i ≤ m in the Paige

and Saunders formulation, we have

Corollary 2.2 The LDA/GSVD algorithm reduces trace(Sm) to the number of clusters minus 1.

Proof. From the expressions (13) for the matrix pair (HT
b , HT

w ), we have

Sb = X−T

(
ΣT

b Σb 0
0 0

)
X−1 and Sw = X−T

(
ΣT

wΣw 0
0 0

)
X−1.

Since G = X

(
Ik−1

0

)
,

trace(GT SbG) = trace

(
(Ik−1, 0)

(
ΣT

b Σb 0
0 0

) (
Ik−1

0

))
= α2

1 + · · ·+ α2
k−1.

Likewise, trace(GT SwG) = β2
1 + · · ·+ β2

k−1. Using the scatter matrix relationship (4), we have

trace(GT SmG) = trace(GT SbG) + trace(GT SwG)

= (α2
1 + β2

1) + · · ·+ (α2
k−1 + β2

k−1)

= k − 1.
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3 Rank reduction based on the truncated SVD

As mentioned in the introduction, two-stage approaches to dimension reduction typically use the
truncated SVD in the first stage. Either PCA or LSI may be used; they differ only in that PCA
centers the data by subtracting the global centroid from each column of A. In this section, we
express both methods in terms of the maximization of J2(G) = trace(GT SmG).

If we let G ∈ Rm×l be any matrix with full column rank, then essentially J2(G) has no upper
bound and maximization is meaningless. Now, let us restrict the solution to the case when G
has orthonormal columns. Then there exists G′ ∈ Rm×(m−l) such that

(
G, G′) is an orthogonal

matrix. In addition, since Sm is positive semidefinite, we have

trace(GT SmG) ≤ trace(GT SmG) + trace((G′)T SmG′) = trace(Sm).

Reserving the following notation for the SVD of A:

A = UΣV T , (15)

let the SVD of Hm be given by

Hm = A− ceT = ŨΣ̃Ṽ T . (16)

where Ũ ∈ Rm×m and Ṽ ∈ Rn×n are orthogonal, Σ̃ = diag(σ̃1 · · · σ̃n) ∈ Rm×n (provided m ≥ n),
and the singular values are ordered as σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃n ≥ 0 [GVL96, Bjö96]. Then

Sm = HmHT
m = ŨΣ̃Σ̃T ŨT .

Hence the columns of Ũ form an orthonormal set of eigenvectors of Sm corresponding to the
nonincreasing eigenvalues on the diagonal of Λ = Σ̃Σ̃T = diag(σ̃2

1, . . . , σ̃
2
n, 0, . . . 0).

Proposition 3.1 PCA to a dimension of at least rank(Hm) preserves trace(Sm).

Proof. For
p = rank(Hm),

if we denote the first p columns of Ũ by Ũp, and let Λp = diag(σ̃2
1, . . . , σ̃

2
p), we have

J2(Ũp) = trace(ŨT
p SmŨp)

= trace(ŨT
p ŨpΛp)

= σ̃2
1 + · · ·+ σ̃2

p

= trace(Sm). (17)

This means that we preserve trace(Sm) if we take Ũp as G. Clearly, the same is true for Ũl with
l ≥ p.

Proposition 3.2 LSI to any dimension greater than or equal to rank(A) also preserves trace(Sm).
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Proof. Suppose x is an eigenvector of Sm corresponding to the eigenvalue λ 6= 0. Then

Smx =
n∑

j=1

(aj − c)(aj − c)T x = λx.

This means x ∈ span{aj − c|1 ≤ j ≤ n}, and hence x ∈ span{aj|1 ≤ j ≤ n}. Accordingly,

range(Ũp) ⊆ range(A).

From (15), we write
A = UqΣqV

T
q for q = rank(A), (18)

where Uq and Vq denote the first q columns of U and V , respectively, and Σq = Σ(1 : q, 1 : q).
Then range(A) = range(Uq), which implies that

range(Ũp) ⊆ range(Uq).

Hence
Ũp = UqW

for some matrix W ∈ Rq×p with orthonormal columns. This yields

J2(Ũp) = J2(UqW )

= trace(W T UT
q SmUqW )

≤ trace(UT
q SmUq)

= J2(Uq),

where the inequality is due to the fact that UT
q SmUq is positive semidefinite. Since J2(Ũp) =

trace(Sm) from (17), we have J2(Uq) = trace(Sm) as well. The same argument holds for Ul with
l ≥ q.

Corollary 3.3 In the range of reduced dimensions for which PCA and LSI preserve trace(Sm),
they preserve trace(Sw) and trace(Sb) as well.

Proof. This follows from the scatter matrix relationship (4) and the inequalities

trace(GT SwG) ≤ trace(Sw)

trace(GT SbG) ≤ trace(Sb),

which are satisfied for any G with orthonormal columns, since Sw and Sb are positive semidefinite.

In summary, the individual traces of Sm, Sw, and Sb are preserved by using PCA to reduce to a
dimension of at least rank(Hm), or by using LSI to reduce to a dimension of at least rank(A).
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4 LSI Plus LDA

In this section, we establish the equivalence of the LDA/GSVD method to a two-stage approach
composed of LSI followed by LDA, and denoted by LSI + LDA. Using the notation (18), the
q-dimensional representation of A after the LSI stage is

B = UT
q A,

and the second stage applies LDA to B. Letting the superscript B denote matrices after the LSI
stage, we have

HB
b = UT

q Hb and HB
w = UT

q Hw.

Hence
SB

b = UT
q HbH

T
b Uq and SB

w = UT
q HwHT

wUq.

Suppose
SB

b x = λSB
w x;

i.e. x and λ are an eigenvector-eigenvalue pair of the generalized eigenvalue problem that LDA
solves in the second stage. Then, for λ = α2/β2,

β2UT
q HbH

T
b Uqx = α2UT

q HwHT
wUqx.

Suppose the matrix
(
Uq, U ′

q

)
is orthogonal. Then (U ′

q)
T A = (U ′

q)
T UqΣqV

T
q = 0, and ac-

cordingly, (U ′
q)

T Hb = 0 and (U ′
q)

T Hw = 0, since the columns of both Hb and Hw are linear
combinations of the columns of A. Hence

β2

(
UT

q

(U ′
q)

T

)
HbH

T
b Uqx =

(
β2UT

q HbH
T
b Uqx

0

)
=

(
α2UT

q HwHT
wUqx

0

)
= α2

(
UT

q

(U ′
q)

T

)
HwHT

wUqx,

which implies
β2HbH

T
b (Uqx) = α2HwHT

w (Uqx).

That is, Uqx and α/β are a generalized singular vector and value of the generalized singular value
problem that LDA solves when applied to A. To show that these Uqx vectors include all the LDA
solution vectors for A, we show that rank(SB

m) = rank(Sm). From the definition (8), we have

Hm = A− ceT = A(I − 1

n
eeT ) = UqΣqV

T
q (I − 1

n
eeT )

and by definition
HB

m = UT
q Hm,

and hence
Hm = UqH

B
m.
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Since Hm and HB
m have the same null space, their ranks are the same. This means that the number

of non-arbitrary generalized singular value pairs is the same for LDA/GSVD applied to B, which
produces t = rank(SB

m) pairs, and LDA/GSVD applied to A, which produces t = rank(Sm) pairs.

We have shown the following.

Theorem 4.1 If G is an optimal LDA transformation for B, which is the q-dimensional represen-
tation of the matrix A via LSI, then UqG is an optimal LDA transformation for A.

In other words, LDA applied to A produces

Y = (UqG)T A = GT UT
q A = GT B,

which is the same result as applying LSI to reduce the dimension to q, followed by LDA. Finally,
we note that if the dimension after the LSI stage is at least rank(A), that is B = UT

l A for l ≥ q,
the equivalency argument remains unchanged.

5 PCA Plus LDA

As we did in the previous section for LSI, we now show that a two-stage approach in which PCA
is followed by LDA is equivalent to LDA applied directly to A. From (16), we write

Hm = ŨpΣ̃pṼ
T
p for p = rank(Hm), (19)

where Ũp and Ṽp denote the first p columns of Ũ and Ṽ , respectively, and Σ̃p = Σ̃(1 : p, 1 : p).
Then the p-dimensional representation of A after the PCA stage is

B = ŨT
p A,

and the second stage applies LDA/GSVD to B. Letting the superscript B denote matrices after the
PCA stage, we have

HB
b = ŨT

p Hb and HB
w = ŨT

p Hw.

Hence
SB

b = ŨT
p HbH

T
b Ũp and SB

w = ŨT
p HwHT

w Ũp.

Suppose
SB

b x = λSB
w x;

i.e. x and λ are an eigenvector-eigenvalue pair of the generalized eigenvalue problem that LDA
solves in the second stage. Then, for λ = α2/β2,

β2ŨT
p HbH

T
b Ũpx = α2ŨT

p HwHT
w Ũpx.

Suppose the matrix
(
Ũp, Ũ ′

p

)
is orthogonal. Then

(Ũ ′
p)

T Hm = 0 ⇒ (Ũ ′
p)

T SmŨ ′
p = 0

⇒ (Ũ ′
p)

T SwŨ ′
p + (Ũ ′

p)
T SbŨ

′
p = 0

⇒ (Ũ ′
p)

T SwŨ ′
p = 0 and (Ũ ′

p)
T SbŨ

′
p = 0

⇒ (Ũ ′
p)

T Hw = 0 and (Ũ ′
p)

T Hb = 0.
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Here we use (9), the scatter matrix relationship (4), and the fact that Sw and Sb are positive semidef-
inite. Hence

β2

(
ŨT

p

(Ũ ′
p)

T

)
HbH

T
b Ũpx =

(
β2ŨT

p HbH
T
b Ũpx

0

)
=

(
α2ŨT

p HwHT
w Ũpx

0

)
= α2

(
ŨT

p

(Ũ ′
p)

T

)
HwHT

w Ũpx,

which implies
β2HbH

T
b (Ũpx) = α2HwHT

w (Ũpx).

That is, Ũpx and α/β are a generalized singular vector and value of the generalized singular value
problem that LDA solves when applied to A. As in the previous section, we need to show that we
obtain all the LDA solution vectors for A in this way. From

SB
m = ŨT

p SmŨp = Σ̃2
p, (20)

we have that LDA/GSVD applied to B produces rank(SB
m) = p non-arbitrary generalized singular

value pairs. That is the same number of non-arbitrary pairs as LDA/GSVD applied to A.

We have shown the following.

Theorem 5.1 If G is an optimal LDA transformation for B, which is the p-dimensional represen-
tation of the matrix A via PCA, then ŨpG is an optimal LDA transformation for A.

In other words, LDA applied to A produces

Y = (ŨpG)T A = GT ŨT
p A = GT B,

which is the same result as applying PCA to reduce the dimension to p, followed by LDA. Note
that if the dimension after the PCA stage is at least rank(Hm), that is B = ŨT

l A for l ≥ p, the
equivalency argument remains unchanged.

An additional consequence of (20) is that

null(SB
m) = {0}.

Due to the relationship (4) and the fact that Sw and Sb are positive semidefinite,

null(SB
m) = null(SB

w ) ∩ null(SB
b ).

Thus the PCA stage eliminates only the joint null space, which is why we don’t lose any discrimi-
natory information before applying LDA.
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6 QRD Plus LDA

To simplify the computation in the first stage, we note that the same argument holds if we use the
reduced QR decomposition [GVL96]

A = QR,

where Q ∈ Rm×n and R ∈ Rn×n, and let Q play the role that Uq or Ũp played before. That is, we
use the reduced QR decomposition instead of the SVD.

The n-dimensional representation of A after the QRD stage is

B = QT A,

and the second stage applies LDA to B. Once again letting the superscript B denote matrices after
the first stage, we have

HB
b = QT Hb and HB

w = QT Hw.

Hence
SB

b = QT HbH
T
b Q and SB

w = QT HwHT
wQ.

Suppose
SB

b x = λSB
w x;

i.e. x and λ are an eigenvector-eigenvalue pair of the generalized eigenvalue problem that LDA
solves in the second stage. Then, for λ = α2/β2,

β2QT HbH
T
b Qx = α2QT HwHT

wQx.

Suppose the matrix
(
Q, Q′) is orthogonal. Then (Q′)T A = (Q′)T QR = 0, and accordingly,

(Q′)T Hb = 0 and (Q′)T Hw = 0, since the columns of both Hb and Hw are linear combinations of
the columns of A. Hence

β2

(
QT

(Q′)T

)
HbH

T
b Qx =

(
β2QT HbH

T
b Qx

0

)
=

(
α2QT HwHT

wQx
0

)
= α2

(
QT

(Q′)T

)
HwHT

wQx,

which implies
β2HbH

T
b (Qx) = α2HwHT

w (Qx).

That is, Qx and α/β are a generalized singular vector and value of the generalized singular value
problem that LDA solves when applied to A. As in the argument for LSI, we show that we obtain
all the LDA solution vectors for A in this way, by showing that rank(SB

m) = rank(Sm). From the
definition (8), we have

Hm = A− ceT = A(I − 1

n
eeT ) = QR(I − 1

n
eeT )

13



and by definition
HB

m = QT Hm,

and hence
Hm = QHB

m.

Theorem 6.1 If G is an optimal LDA transformation for B, which is the n-dimensional represen-
tation of the matrix A after QRD, then QG is an optimal LDA transformation for A.

In other words, LDA applied to A produces

Y = (QG)T A = GT QT A = GT B,

which is the same result as applying QRD to reduce the dimension to n, followed by LDA.

7 Experimental Results

7.1 Face databases

In a face database, images of the same person form a cluster, and a new image is recognized
by assigning it to the correct cluster. For our experiments, we use facial images from AT&T
Laboratories Cambridge and from the Yale face database. The AT&T database1, formerly the ORL
database of faces, consists of ten different images of 40 distinct subjects, for a total of 400 images.
This database is widely used by researchers working in the area of face recognition (e.g., [ZCP99],
[YY03], and [DY03]). One sample subject or cluster is given in Figure 1(a). Each subject is
upright in front of a dark homogeneous background. The size of each image is 92× 112 pixels, for
a total dimension of 10304. We scaled the images to 46× 56 = 2576 pixels, by averaging the gray
levels for 2 × 2 pixel groups. If we let A(i, j) represent the 8-bit gray level of pixel i in image j,
then the data matrix A has 2576 rows and 400 columns.

The Yale face database2 contains 165 grayscale images of 15 individuals. This database
was constructed at the Yale Center for Computational Vision and Control by Belhumeur et al.
[BHK97]. There are 11 images per subject, one for each of the following facial expressions or con-
figurations: center-light, with glasses, happy, left-light, without glasses, normal, right-light, sad,
sleepy, surprised, and winking. The cluster of images of one individual are shown in Figure 1(b).
Compared to the AT&T database, the Yale images have larger variations in facial expression as
well as in illumination. Each image is of size 320× 243 pixels, for a total dimension of 77760. We
scaled these images to 60 × 45 pixels. If we let A(i, j) represent the 8-bit gray level of pixel i in
image j, then the data matrix A has 2700 rows and 165 columns.

7.2 Classification Experiments

We have conducted experiments that compare single-stage to two-stage dimension reduction. In
order to cross validate on each database, we leave out one image of each person for testing, and

1http://www.uk.research.att.com/facedatabase.html
2http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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(a) from the AT&T face database (b) from the Yale face database

Figure 1: A sample cluster

compute trace values, dimension reduction times, and recognition rates as the choice of test image
varies.

Tables 2 and 3 confirm our theoretical results regarding traces from Section 3. In the first
column of each table, we report traces of the individual scatter matrices in the full space. The next
three columns show that these values are preserved by LSI, PCA, and QRD to rank(A), rank(Hm),
and n, respectively. The last three columns show traces after composing these with LDA/GSVD.
In each case, the traces sum to the number of clusters minus one, or k − 1, matching those shown
for single-stage LDA/GSVD and confirming Corollary 2.2.

Figures 2 and 3 illustrate the results of several experiments on the AT&T database. In each
graph, we compare classification accuracies in the full space with those after dimension reduction.
We also superimpose the pre-processing cost to compute each dimension-reducing transformation
in CPU seconds.

The bars report accuracy as a percentage of test images recognized. For classification algo-
rithms [Bis96], we use a centroid-based classification method [PJR03] and K Nearest Neighbor
(KNN) classification [TK99]. We measure similarity with the L2 norm or Euclidean distance. The
reduced dimensions after LSI, PCA, and QRD are displayed below the bars on the left, while the
final reduced dimension after LDA/GSVD is displayed on the right.

For AT&T, recognition rates are not significantly higher or lower after dimension reduction
than in the full space. We observe that LDA/GSVD improves accuracy slightly for test images
1, 3, and 5, lowers it slightly for test images 8 and 9, and leaves it about the same for the rest.
In each case, however, recognition rates are more consistent across classifiers with LDA/GSVD.
As expected, accuracy is the same when LDA/GSVD is preceded by a first stage of LSI, PCA, or
QRD to the appropriate intermediate dimension. The cost of dimension reduction, measured by
CPU seconds to compute the transformation for the given training set, is approximately the same
for QRD + LDA as for LSI or PCA alone. The advantage of QRD + LDA is that classification of a
new image measures similarity of vectors with 39 components instead of about 360 components.

Figures 4 and 5 illustrate the results of our experiments on the Yale database. The graphs
clearly show how difficult it is to classify image 4 or image 7 when it’s not included in the training
set. Each of these images is lit from one side, causing a dark shadow on the opposite side. Despite
these variations in illumination, recognition rates are consistently higher after LDA/GSVD than
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they were in the full space. In fact, accuracy improves after LDA/GSVD for test images 1, 2, 4, 6,
7, 9, 10, and 11. It degrades for images 5 and 8, and remains consistently perfect for image 3. For
each training set, the cost in CPU seconds to compute the dimension reducing transformation is
approximately the same for QRD + LDA as for LSI or PCA alone. As for AT&T, QRD + LDA is
preferable due to the lower cost of classifying a new image, which involves measuring its similarity
to training images in dimension 14 rather than in dimension 140.

8 Conclusion

To address the problem of dimension reduction of very high-dimensional or undersampled data, we
have compared four seemingly different methods. Our results are summarized in Table 4, where
q = rank(A), p = rank(Hm), and the complete orthogonal decomposition is referred to as URV.
After showing that both LSI and PCA maximize J2(G) = trace(GT SmG) over all G with GT G =
I , we confirmed the preservation of trace(Sw) and trace(Sb) with either method, or with the com-
putationally simpler QRD. The most significant results show the equivalence of the single-stage
LDA/GSVD, which extends the applicability of the criterion J1(G) = trace((GT SwG)−1GT SbG)
to singular Sw, to any of the two-stage methods. This provides theoretical justification for the
increasingly common approach of either LSI + LDA or PCA + LDA, although most studies have
reduced the intermediate dimension below that required for equivalence.

Regardless of which of the three approaches is taken in the first stage, LDA/GSVD provides
both a method for circumventing the singularity that occurs in the second stage, and a mathematical
framework for understanding the singular case. When applied to the reduced representation in the
second stage, the solution vectors correspond one-to-one with those obtained using the single-stage
LDA/GSVD. Hence the second stage is a straightforward application of LDA/GSVD to a smaller
representation of the original data matrix. Given the relative expense of LDA/GSVD and the two-
stage methods, we observe that, in general, QRD is a significantly cheaper pre-processing step for
LDA/GSVD than either LSI or PCA. However, if rank(A) � n, LSI may be cheaper than the
reduced QR decomposition, and will avoid the centering of the data required in PCA. In any case,
the appropriate two-stage method provides a faster algorithm for LDA/GSVD, without sacrificing
its accuracy.

Table 4: Comparison of Two-stage Methods for LDA

LDA/ LSI→ q PCA→ p QRD→ n
Method GSVD + + +

LDA/GSVD LDA/GSVD LDA/GSVD
Stage 1 max max max

trace(Sm) trace(Sm) trace(Sm)
Stage 2 max max max max

tr(S−1
w Sb) tr(S−1

w Sb) tr(S−1
w Sb) tr(S−1

w Sb)
cost URV of thin SVD thin SVD reduced

(Hb,Hw)T of A of A− ceT QRD of A
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Table 2: Leave-one-out of AT&T database: trace(Sw) (top) and trace(Sb) (bottom)
LSI + PCA + QRD +

test LDA/ LDA/ LDA/ LDA/
image full LSI PCA QRD GSVD GSVD GSVD GSVD

1 1.32× 104 1.32× 104 1.32× 104 1.32× 104 10−27 10−27 10−28 10−28

1.94× 104 1.94× 104 1.94× 104 1.94× 104 39 39 39 39
2 1.32× 104 1.32× 104 1.32× 104 1.32× 104 10−27 10−28 10−28 10−28

1.92× 104 1.92× 104 1.92× 104 1.92× 104 39 39 39 39
3 1.32× 104 1.32× 104 1.32× 104 1.32× 104 10−27 10−28 10−28 10−28

1.92× 104 1.92× 104 1.92× 104 1.92× 104 39 39 39 39
4 1.31× 104 1.31× 104 1.31× 104 1.31× 104 10−27 10−28 10−28 10−28

1.92× 104 1.92× 104 1.92× 104 1.92× 104 39 39 39 39
5 1.31× 104 1.31× 104 1.31× 104 1.31× 104 10−27 10−28 10−28 10−28

1.92× 104 1.92× 104 1.92× 104 1.92× 104 39 39 39 39
6 1.31× 104 1.31× 104 1.31× 104 1.31× 104 10−27 10−28 10−28 10−28

1.94× 104 1.94× 104 1.94× 104 1.94× 104 39 39 39 39
7 1.31× 104 1.31× 104 1.31× 104 1.31× 104 10−27 10−28 10−28 10−28

1.94× 104 1.94× 104 1.94× 104 1.94× 104 39 39 39 39
8 1.31× 104 1.31× 104 1.31× 104 1.31× 104 10−27 10−28 10−28 10−28

1.93× 104 1.93× 104 1.93× 104 1.93× 104 39 39 39 39
9 1.30× 104 1.30× 104 1.30× 104 1.30× 104 10−27 10−28 10−28 10−28

1.94× 104 1.94× 104 1.94× 104 1.94× 104 39 39 39 39
10 1.31× 104 1.31× 104 1.31× 104 1.31× 104 10−27 10−28 10−28 10−28

1.94× 104 1.94× 104 1.94× 104 1.94× 104 39 39 39 39

Table 3: Leave-one-out of Yale database: trace(Sw) (top) and trace(Sb) (bottom)
LSI + PCA + QRD +

test LDA/ LDA/ LDA/ LDA/
image full LSI PCA QRD GSVD GSVD GSVD GSVD

1 1.37× 104 1.37× 104 1.37× 104 1.37× 104 10−28 10−28 10−28 10−28

1.44× 104 1.44× 104 1.44× 104 1.44× 104 14 14 14 14
2 1.38× 104 1.38× 104 1.38× 104 1.38× 104 10−28 10−28 10−28 10−28

1.40× 104 1.40× 104 1.40× 104 1.40× 104 14 14 14 14
3 1.42× 104 1.42× 104 1.42× 104 1.42× 104 10−28 10−28 10−28 10−28

1.38× 104 1.38× 104 1.38× 104 1.38× 104 14 14 14 14
4 9.68× 103 9.68× 103 9.68× 103 9.68× 103 10−28 10−28 10−28 10−28

1.54× 104 1.54× 104 1.54× 104 1.54× 104 14 14 14 14
5 1.41× 104 1.41× 104 1.41× 104 1.41× 104 10−28 10−28 10−28 10−28

1.38× 104 1.38× 104 1.38× 104 1.38× 104 14 14 14 14
6 1.41× 104 1.41× 104 1.41× 104 1.41× 104 10−28 10−28 10−28 10−28

1.37× 104 1.37× 104 1.37× 104 1.37× 104 14 14 14 14
7 1.03× 104 1.03× 104 1.03× 104 1.03× 104 10−28 10−28 10−28 10−28

1.50× 104 1.50× 104 1.50× 104 1.50× 104 14 14 14 14
8 1.41× 104 1.41× 104 1.41× 104 1.41× 104 10−28 10−28 10−28 10−28

1.39× 104 1.39× 104 1.39× 104 1.39× 104 14 14 14 14
9 1.41× 104 1.41× 104 1.41× 104 1.41× 104 10−28 10−28 10−28 10−28

1.38× 104 1.38× 104 1.38× 104 1.38× 104 14 14 14 14
10 1.38× 104 1.38× 104 1.38× 104 1.38× 104 10−28 10−28 10−28 10−28

1.39× 104 1.39× 104 1.39× 104 1.39× 104 14 14 14 14
11 1.41× 104 1.41× 104 1.41× 104 1.41× 104 10−28 10−28 10−28 10−28

1.39× 104 1.39× 104 1.39× 104 1.39× 104 14 14 14 14
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Figure 2: Cross Validation on AT&T database: dimension reduction times and recognition rates
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Figure 3: Cross Validation on AT&T database: dimension reduction times and recognition rates

Figure 4: Cross Validation on Yale database: dimension reduction times and recognition rates
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Figure 5: Cross Validation on Yale database: dimension reduction times and recognition rates
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Algorithm 1 LDA/GSVD
Given a data matrix A ∈ Rm×n with k clusters and an input vector a ∈ Rm×1, compute the matrix
G ∈ Rm×(k−1) which preserves the cluster structure in the reduced dimensional space, using

J1(G) = trace((GT SwG)−1GT SbG).

Also compute the k − 1 dimensional representation y of a.

1. Compute Hb and Hw from A according to (10) and (7), respectively.

2. Compute the complete orthogonal decomposition

P T KQ =

(
R 0
0 0

)
,

where

K =

(
HT

b

HT
w

)
∈ R(k+n)×m

3. Let t = rank(K).

4. Compute W from the SVD of P (1 : k, 1 : t), which is UT P (1 : k, 1 : t)W = Σb.

5. Compute the first k − 1 columns of

X = Q

(
R−1W 0
0 I

)
, and assign them to G.

6. y = GT a
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