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Abstract

Dimension reduction is a critical data preprocessing step for many database and data mining applications,

such as efficient storage and retrieval of high-dimensional data. In the literature, a well-known dimension

reduction algorithm is Linear Discriminant Analysis (LDA). The common aspect of previously proposed LDA-based

algorithms is the use of Singular Value Decomposition (SVD). Due to the difficulty of designing an incremental

solution for the eigenvalue problem on the product of scatter matrices in LDA, there has been little work on

designing incremental LDA algorithms that can efficiently incorporate new data items as they become available. In

this paper, we propose an LDA-based incremental dimension reduction algorithm, called IDR/QR, which applies

QR Decomposition rather than SVD. Unlike other LDA-based algorithms, this algorithm does not require the whole

data matrix in main memory. This is desirable for large data sets. More importantly, with the insertion of new data

items, the IDR/QR algorithm can constrain the computational cost by applying efficient QR-updating techniques.

Finally, we evaluate the effectiveness of the IDR/QR algorithm in terms of classification error rate on the reduced

dimensional space. Our experiments on several real-world data sets reveal that the classification error rate achieved

by the IDR/QR algorithm is very close to the best possible one achieved by other LDA-based algorithms. However,

the IDR/QR algorithm has much less computational cost, especially when new data items are inserted dynamically.
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I. INTRODUCTION

The problem of dimension reduction has recently received broad attention in areas such as databases,

data mining, machine learning, and information retrieval [3], [4], [10], [11], [21]. Efficient storage and

retrieval of high-dimensional data is one of the central issues in database and data mining research. In the

literature, many efforts have been made to design multi-dimensional index structures [8], such as � -trees,

��� -trees, � -trees, SR-tree, etc, for speeding up query processing. However, the effectiveness of queries

using any indexing schemes deteriorates rapidly as the dimension increases, which is the so-called curse of

dimensionality. A standard approach to overcome this problem is dimension reduction, which transforms

the original high-dimensional data into a lower-dimensional space with limited loss of information. Once

the high-dimensional data is mapped into a low dimensional space, indexing techniques can be effectively

applied to organize this low dimensional space and facilitate efficient retrieval of data [21]. A further

advantage of such dimension reduction is that it can improve data quality through the removal of noise

[1]. Thus, dimension reduction is an important data preparation step for many data mining and database

applications.

The goal of dimension reduction can be either feature transformation, which aims to find a linear

combination of the original features, or feature selection, which selects a subset of features from the

original features. The setting can be unsupervised or supervised, depending on the availability of the class

label. In this paper, we focus on supervised dimension reduction by applying feature transformation.

Linear Discriminant Analysis (LDA) is a well-known algorithm for supervised dimension reduction [12],

[15]. LDA computes a linear transformation by maximizing the ratio of between-class distance to within-

class distance, thereby achieving maximal discrimination. A key problem with LDA is that the scatter

matrices used for between-class and within-class distances can sometimes become singular. In the past,

many LDA extensions have been developed to deal with this singularity problem. There are three major

extensions: regularized LDA, PCA+LDA, and LDA/GSVD. The common aspect of these algorithms is the

use of the Singular Value Decomposition (SVD) or Generalized Singular Value Decomposition (GSVD).
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The difference among these LDA extensions is as follows: Regularized LDA [14] increases the magnitude

of the diagonal elements of the scatter matrix by adding a scaled identity matrix; PCA+LDA [2] first

applies Principal Component Analysis (PCA) on the raw data to get a more compact representation so

that the singularity of the scatter matrices is decreased; LDA/GSVD [18], [34] solves a trace optimization

problem using GSVD.

The above LDA extensions have certain limitations. First, SVD or GSVD requires that the whole data

matrix be stored in main memory. This requirement makes it difficult for these LDA extensions to scale to

large data sets. Also, the computational cost of SVD or GSVD on large data matrices is very high and can

significantly degrade the performance of these algorithms when dealing with large data sets. Finally, in

many practical applications, acquisition of a representative training data is expensive and time-consuming.

It is thus common to have a small chunk of data available over a period of time. In such settings, it is

necessary to develop an algorithm that can run in an incremental fashion to accommodate the new data.

However, since it is difficult to design an incremental solution of the eigenvalue problem on the product

of scatter matrices of large size, little effort has been made to design LDA-like algorithms that can be

updated incrementally to incorporate new data items as they become available.

The goal of this paper is to design an efficient and incremental dimension reduction algorithm while

preserving competitive classification performance. More precisely, when we perform classification on the

reduced dimensional data generated by the proposed algorithm, the achieved classification accuracy should

be comparable to the best possible classification accuracy achieved by other LDA-based algorithms.

In this paper, we design an LDA-based, incremental dimension reduction algorithm, called IDR/QR,

which applies QR Decomposition rather than SVD or GSVD. The algorithm has two stages. The first stage

maximizes the separability between different classes. This is accomplished by QR Decomposition. The

distinct property of this stage is its low time and space complexity. The second stage incorporates both

between-class and within-class information by applying LDA on the “reduced” scatter matrices resulting

from the first stage. Unlike other LDA-based algorithms, IDR/QR does not require that the whole data
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matrix be in main memory, which allows our algorithm to scale to very large data sets. Also, our theoretical

analysis indicates that the computational complexity of IDR/QR is linear in the number of the data items

in the training set as well as the number of dimensions. More importantly, the IDR/QR algorithm can

work incrementally. When new data items are inserted dynamically, the computational cost of the IDR/QR

algorithm can be kept low by applying efficient QR-updating techniques.

Finally, we have conducted extensive experiments on several well-known real-world datasets. The

experimental results show that the IDR/QR algorithm can be an order of magnitude faster than SVD-

or GSVD-based LDA algorithms, and that the classification error rate of IDR/QR is very close to the

best possible one achieved by other LDA-based algorithms. Also, in the presence of dynamic updating,

IDR/QR can be an order of magnitude faster than SVD- or GSVD-based LDA algorithms, while still

achieving comparable accuracy.

Overview: The rest of the paper is organized as follows. Section II introduces related work. In

Section III, we review LDA. A batch implementation of the IDR/QR algorithm is presented in Section IV.

Section V describes the incremental implementation of the IDR/QR algorithm. A comprehensive empirical

study of the performance of the proposed algorithms is presented in Section VI. We conclude in Section VII

with a discussion of future work.

II. RELATED WORK

Principal Component Analysis (PCA), is one of the standard and well-known methods for dimension

reduction [20]. PCA transforms a number of (possibly) correlated variables into a (smaller) number of

uncorrelated variables called principal components. The basic idea in PCA is that the first few principal

components account for most variances. Because of its simplicity and ability to extract highly global

structure of the whole data set, PCA is widely used in computer vision [32]. Linear Discriminant Analysis

(LDA) is another well-known algorithm for dimension reduction. LDA transforms the original data to a

low dimensional space by maximizing the ratio of between-class distance to within-class distance. It has

been applied to various domains including text retrieval [5], face recognition [2], [25], [31], and microarray
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data classification [13].

Most previous work on PCA and LDA require that all the training data be available before the dimension

reduction step. This is known as the batch method. There is some recent work in vision and numerical

linear algebra literature for computing PCA incrementally [6], [17]. Despite the popularity of LDA in

the vision community, there is little work for computing it incrementally. The main difficulty is the

involvement of the eigenvalue problem of the product of scatter matrices, which is hard to maintain

incrementally. Although iterative algorithms have been proposed for neural network based LDA [7], [24],

they require ��������� time for one step updating, where � is the dimension of the data. This cost is still too

high, especially when the data has high dimension.

Maximum Margin Criterion (MMC) was recently proposed in [23] for dimension reduction. The optimal

transformation is computed by maximizing the sum of all interclass distances. MMC does not involve

the inversion of scatter matrices and thus avoids the singularity problem implicitly. An incremental

implementation of MMC can be found in [33].

III. LINEAR DISCRIMINANT ANALYSIS

For convenience, we present in Table I the important notations used in the paper.

This section gives a brief review of classical LDA, as well as its three extensions: regularized LDA,

PCA+LDA, and LDA/GSVD.

Given a data matrix 	�
 IR ��
�� , we consider finding a linear transformation ��
 IR��
�� that maps each

column ��� , for ��������� , of 	 in the � -dimensional space to a vector ���! ��!"#��� in the $ -dimensional

space.

Classical LDA aims to find the transformation � such that class structure of the original high-

dimensional space is preserved in the reduced space. Let the data matrix 	 be partitioned into % classes

as 	& (')	+*-,.	 � ,-/0/0/1,2	43�5 , where 	768
 IR ��
��09 , and :&;6=<#* �#6> ?� .

Let @A6 be the set of column indices that belong to the B th class, i.e., �C� , for ��
D@A6 , belongs to the B th

class.
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TABLE I

NOTATIONS

Notations Descriptions Notations Descriptions

� number of training data points � 9 number of data points in
�
-th class

�
dimension of the training data � number of classes

�
transformation matrix � data matrix

� 9 data matrix of the
�
-th class ��� between-class scatter matrix

�
	 within-class scatter matrix � centroid matrix

� global centroid of the training set � 9 centroid of the
�
-th class

In general, if each class is tightly grouped, but well-separated from the other classes, the quality of the

cluster is considered to be high. In discriminant analysis, two scatter matrices, within-class and between-

class scatter matrices, are defined to quantify the quality of the cluster, as follows [15]:


��  ;�
6=<#*

�
����� 9

��������� 6 �-��������� 6�� " ,

��  ;�

6=<#*
�
����� 9

��� 6���� �-��� 6���� � "  ;�
6=<#*

� 6 ��� 6���� ����� 6���� � " ,

where � 6 is the centroid of the B th class and � is the global centroid.

Define the matrices

� �  ')	+*���� *8/
� " * ,-/0/0/ ,2	 ; ��� ; /
� " ; 5>
 IR ��
�� , (1)

� �  '! �1*-��� *���� ��,-/0/0/ ," � ; �#� ; ��� � 5 
 IR �0
 ; , (2)

where � 6> �� � ,-/0/ /1, ��� " 
 IR ��9 .

Then the scatter matrices

$�

and

��

can be expressed as

$�  � � � "� ,


��  � � � "� . The traces of the

two scatter matrices can be computed as follows,

trace � 
$� �  ;�
6=<#*

�
���%� 9

&'& ���(��� 6 &'& �

trace � 
�� �  ;�
6=<#*

�#6 &'& � 6���� &'& �%)
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Hence, trace � 
$� � measures the closeness of the vectors within classes, while trace � 
 � � measures the

separation between classes.

In the lower-dimensional space resulting from the linear transformation � , the within-class and between-

class scatter matrices become


 ��  � � " � � ��� � " � � � "  &� " 
�� ��,

 ��  � � " � � �-� � " � � � "  &� " 
�� � )

An optimal transformation � would maximize trace � 
 �� � and minimize trace � 
 �� � . A common opti-

mization in classical LDA [15] is to compute

�  arg ������	�9 
 	 ��� <�
�� � 6��< �
trace

� ��� " 
�� ����� * � � " 
�� � �	� , (3)

where � 6 is the B th column of � .

The solution to the optimization in Eq. (3) can be obtained by solving the eigenvalue problem on


 � *� 
��
, if


��
is non-singular, or on


 � *� 
��
, if


 �
is non-singular. There are at most % � � eigenvectors

corresponding to nonzero eigenvalues, since the rank of the matrix

 �

is bounded from above by % ��� .

Therefore, the reduced dimension by classical LDA is at most %�� � . A stable way to solve this eigenvalue

problem is to apply SVD on the scatter matrices. Details on this can be found in [19], [31].

Classical LDA requires that one of the scatter matrices be non-singular. For many applications involving

undersampled data, where the data dimension is much greater than the number of data items, such as in

text and image retrieval, all scatter matrices are singular. Classical LDA is thus not applicable. This is

the so-called singularity or undersampled problem. To cope with this probelm, several methods, including

two-stage PCA+LDA, regularized LDA, and LDA/GSVD have been proposed in the past.

A common way to deal with the singularity problem is to apply an intermediate dimension reduction

stage, such as PCA, to reduce the dimension of the original data before classical LDA is applied.

The algorithm is known as PCA+LDA, or subspace LDA. In this two-stage PCA+LDA algorithm, the
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discriminant stage is preceded by a dimension reduction stage using PCA. A limitation of this approach

is that the optimal value of the reduced dimension for PCA is difficult to determine.

Another common way to deal with the singularity problem is to add some constant value to the diagonal

elements of

��

, as

������ @ � , for some

�����
, where @ � is an identity matrix [14]. It is easy to check that


����	� @ � is positive definite, hence non-singular. This approach is called regularized LDA (RLDA). A

limitation of RLDA is that the optimal value of the parameter
�

is difficult to determine. Cross-validation

is commonly applied for estimating the optimal
�

[22].

The LDA/GSVD algorithm in [18], [34] is a more recent approach. A new criterion for generalized

LDA is presented in [34]. The inversion of the matrix

 �

is avoided by applying the Generalized

Singular Value Decomposition (GSVD). LDA/GSVD computes the solution exactly without losing any

information. However, one limitation of this method is the high computational cost of GSVD, which limits

its applicability for large datasets, such as image and text data.

IV. BATCH IDR/QR

In this section, we present the batch implementation of the IDR/QR algorithm. This algorithm has

two stages. The first stage maximizes the separation between different classes via QR Decomposition

[16]. The second stage addresses the issue of minimizing the within-class distance, while keeping low

time/space complexity. Ignoring the issue of minimizing within-class distance, the first stage can be used

independently as a dimension reduction algorithm.

The first stage of IDR/QR aims to solve the following optimization problem,

�� arg ��� �
 � 
 < � trace ��� " 
�� ��� ) (4)

Note that this optimization only addresses the issue of maximizing the between-class distance. The solution

can be obtained by solving the eigenvalue problem on

 �

.

Theorem 4.1: Let

 �  ���
�� " be the SVD of


��
, where � 
 IR � 
�� has orthonormal columns, 
  

diag ��� *�,-/0/0/1,�� � � 
 IR �-
�� is diagonal, and �  rank � 
 � � . Then ���! �� solves the optimization problem
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in Eq. (4).

Proof: By the property of the trace, we have

trace � � " 
�� � � � trace � 
�� �  trace � 
 � " �+�  trace � 
�� " � �  ��
6=<#*
� 6 ,

where the first inequality follows from Lemma 7.1 in the Appendix. Thus, the optimization in (4) is

bounded from above by : �6=<#* � 6 .

On the other hand

trace � � � � � " 
�� � � �  trace � � " ��
�� " � �  trace � 
7�  ��
6 <#*
� 6 ,

that is, the upper bound is achieved with � �  � . This completes the proof of the theorem.

The solution can also be obtained through QR Decomposition on the centroid matrix
�

, which is the

so-called Orthogonal Centroid Method (OCM) [27], where

�  (' � *-, � � , / /0/8, � ; 5 (5)

consists of the % centroids. The result is summarized as follows.

Theorem 4.2: Let
�  �� � be the QR Decomposition of

�
, where �(
 IR � 
 ; has orthonormal columns

and ��
 IR ; 
 ; is upper triangular. Then

� �  ���� , (6)

for any orthogonal matrix � , solves the optimization problem in Eq. (4).

Proof: It is easy to check that
� �  ��� , where

� 
 IR ; 
 ; and the B th column of
�

is

 �#6 � � , / /0/1, � , � , � ,-/0/0/1, � � " �  �#6
� � �1*-, � � ,-/0/0/1, � ; � " )

Let
�  �� � be the QR Decomposition of

�
. Then


��  � � � "�  ���	� " � "  �� � � ��� " � " �
� "  ����� � " ,

where ��  � �	� " � " .
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For any � with orthonormal columns, it is clear that

trace
� � " 
�� � � � trace � 
�� �  trace

�
���� � "��  trace

�
�� � " � �  trace

�
�� � ,

where the the first inequality follows from Lemma 7.1 in the Appendix. Thus trace
�
�� � is an upper bound

for the optimization in (4). Next, we show that the upper bound is achieved by choosing � �  ��� for

any orthogonal � , as in (6).

By the property of the trace and the fact that � has orthonormal columns, we have

trace
� � � � � " 
�� � � �  trace

�
� " � " ���� � " ��� �  trace

�
� " �� � �  trace

�
�� � � "��  trace

�
�� � )

This completes the proof of the theorem.

Note the choice of orthogonal matrix � is arbitrary, since trace ��� " 
�� � �  trace � � " � " 
�� ����� , for

any orthogonal matrix � . In the OCM method [27], � is set to be the identity matrix for simplicity.

Remark 4.1: Note that from Theorem 4.1 and Theorem 4.2, both the matrix � based on the eigen-

decomposition of

$�

and the matrix � based on the QR Decomposition of
�

solve the optimization

problem in Eq. (4). In most applications, the % centroids in the dataset are linearly independent. In this

case, the column dimension of the matrix � in Theorem 4.1 is �� rank � 
 � �  % � � , which is one less

than the column dimension of the matrix � in Theorem 4.2. Experiments show that both solutions are

comparable in terms of classification accuracy. However, the solution based on QR Decomposition of
�

is preferred, when incremental updating is required. This is because of the key observation that when a

new data item is inserted, at most one column of the centroid matrix
�

is modified, which leads to the

efficient updating of the QR Decomposition of the centroid matrix. Details can be found in Section V.

The second stage of IDR/QR refines the first stage by addressing the issue of minimizing the within-

class distance. It incorporates the within-class scatter information by applying a relaxation scheme on �

in Eq. (6) (relaxing � from an orthogonal matrix to an arbitrary matrix). Note that the trace value in Eq.

(3) is the same for an arbitrary non-singular � ; however the constraints in Eq. (3) will not be satisfied for
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arbitrary � . In the second stage of IDR/QR, we look for a transformation matrix � such that �  ���� ,

for some � . Note that � is not required to be orthogonal. The original problem on computing � is

equivalent to computing � . Since

� " 
�� �� �� " � � " 
�� ���
� ,

� " 
�� �  �� " � � " 
�� ��� � ,

the original optimization on finding optimal � is equivalent to finding � , with �  �� " 
�� � and �  

� " 
�� � as the reduced between-class and within-class scatter matrices, respectively. Note that � has

much smaller size than the original scatter matrix

 �

(similarly for � ).

The optimal � can be computed efficiently using many existing LDA-based methods, since we are

dealing with matrices � and � of much smaller size, i.e., %�� % . A key observation is that the singularity

problem of � will not be as severe as the original

 �

, since � has much smaller size than

��

. We can

compute optimal � by simply applying regularized LDA; that is, we compute � , by solving a small

eigenvalue problem on ��� � � @ ; � �
* � , for some positive constant

�
. Extensive experiments show that the

solution is insensitive to the choice of
�

, due to the small size of � . The pseudo-code for this algorithm

is given in Algorithm 1.

A. Time and space complexity

We close this section by analyzing the time and space complexity of the batch IDR/QR algorithm.

It takes � � � � � for the formation of the centroid matrix
�

in Line 1. The complexity of doing QR

Decomposition in Line 2 is � � % � � � [16]. Lines 3 and 4 take ��� � ��% � and � � ��% � � respectively for

matrix multiplications. It then takes ����% � � � and � � %��-� for matrix multiplications in Lines 5 and 6,

respectively. Line 7 computes the eigen-decomposition of a %�� % matrix, hence takes ����% � � [16]. The

matrix multiplication in Line 8 takes � � ��% ��� .

Note that the dimension, � , and the number, � , of points are usually much larger than the number, % ,

of classes. Thus, the most expensive step Algorithm 1 is Line 3, which takes ��� �>� %0� time. Therefore,
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Algorithm 1: Batch IDR/QR

Input: data matrix � ;

Output: optimal transformation matrix
�

;

/* Stage I: */

1. Construct centroid matrix � ;

2. Compute QR Decomposition of � as ��� ��� , where
���

IR �	��
 , ��� IR 

��
 ;
/* Stage II: */

3. ����� �	 � ;

4. ����� �� � ;

5. ����� � � ; /*Reduced within-class scatter matrix*/

6. ����� � � ; /*Reduced between-class scatter matrix*/

7. Compute the � eigenvectors � 9 of �����! #" 

$&%(' � with decreasing eigenvalues;

8.
� � �*)

, where
) ��+ � '-,/.
.0.1, � 


2
.

TABLE II

COMPLEXITY COMPARISON: � IS THE NUMBER OF TRAINING DATA POINTS,
�

IS THE DIMENSION, AND � IS THE NUMBER OF CLASSES.

Methods Time Complexity Space Complexity

IDR/QR 34� � � � $ 35� � � $
PCA+LDA 34� �76 � $ 34� � � $
LDA/GSVD 34�8� � � � $ 6 � $ 34� � � $
OCM 34� � � � � 6 � $ 34� � � $
PCA 34� �76 � $ 34� � � $

the time complexity of IDR/QR is linear in the number of points, linear in the number of classes, and

linear in the dimension of the dataset.

It is clear that only the % centroids are required to reside in the main memory, hence the space complexity

of IDR/QR is ����� %0� . Table II lists the time and space complexity of several dimension reduction algorithms

discussed in this paper. It is clear from the table that IDR/QR is is more efficient than other LDA-based

methods (except OCM).
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V. INCREMENTAL IDR/QR

The incremental implementation of the IDR/QR algorithm is discussed in detail in this section. We

will adopt the following convention: For any variable � , its updated version after the insertion of a new

instance is denoted by �� . For example, the number, � 6 , of elements in the B th class will be changed to

�� 6 , while centroid � 6 will be changed to �� 6 .
With the insertion of a new instance, the centroid matrix

�
,
� �

and
� �

will change accordingly, as well

as � and � . The incremental updating in IDR/QR proceeds in three steps: (1) QR-updating of centroid

matrix
�  ' � *�,-/0/0/1, � 3A5 in Line 2 of Algorithm 1; (2) Updating of reduced within-class scatter matrix

� in Line 5; and (3) Updating of reduced between-class scatter matrix � in Line 6.

Let � be a new instance inserted; let � belong to the B th class. Without loss of generality, let us assume

that we have data from the 1st to the
�
th class, just before � is inserted. In general, this can be done by

switching the class labels between different classes. In the rest of this section, we consider the incremental

updating in IDR/QR in two distinct cases: (1) � belongs to an existing class, i.e., B � � ; (2) � belongs to

a new class, i.e., B � � . As will be seen later, the techniques for these two cases are quite different.

A. Insertion of a new instance from an existing class ( B � � )

Recall that we have data from the � st to
�
th classes, when a new instance � is being inserted. Since �

belongs to the B th class, with ��� B!� � , the insertion of � will not create a new class. In this section,

we show how to do the incremental updating in three steps.

1) Step 1: QR-updating of centroid matrix
�

: Since the new instance � belongs to the B th class,

�
�  ' � *�, / /0/1, � 6 ��� ,-/0/0/1, � 3A5 , where

�  � ��� 9��09 , and ��#6  �#6 � � . Hence, �
�

can be rewritten as

�
�  �	�	� / � " , for �� (� � ,-/0/0/1, � ,-/0/ /1, � � " , where the � appears at the B th position.

The problem of QR-updating of the centroid matrix
�

can be formulated as follows: Given the

QR Decomposition of the centroid matrix
�  � � , for � 
 IR ��
 3 , and � 
 IR 3 
 3 , compute the

QR Decomposition of �
�

.
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Since �
�  � � � / � " , the QR-updating of the centroid matrix,

�
, can be formulated as a rank-one

QR-updating. However, the algorithm in [16] cannot be directly applied, since it requires the complete QR

Decomposition, i.e., the matrix � is square, while in our case, we use the skinny QR Decomposition, i.e.

� is rectangular. Instead, we apply a small variation of the algorithm in [9] via the following two-stage

QR-updating: (1) A complete rank-one updating as in [16] on a small matrix; (2) A QR-updating by an

insertion of a new row. Details are given below.

Partition
�

into two parts: the projection onto the orthogonal basis � , and its orthogonal complement.

Mathematically,
�

can be partitioned into
�  ���+" � � ��@ � ��� " � � . It is easy to check that � "1��@ �

��� " � �  � , i.e. � @ � ��� " � � is orthogonal to, or lies in the orthogonal complement of, the subspace

spanned by the columns of � . It follows that

�
�  �	�	� / � "

 � � � ��� " � / � " � � @ � ��� " � � / � "
 � � � � � *8/ � " � �	� � / � " ,

where
� *� � " � ,

�
�  ��@ � ��� " � � . Next, we show how to compute the QR Decomposition of �

�

in two stages. The first stage updates the QR Decomposition of � � � � � * / � ">� . It corresponds to a

rank-one updating and can be done at ��� � � � [16]. This results in the updated QR Decomposition as

� � � � � *8/ � " �  �� * �+* , where � *  �� � * , and
� * 
 IR 3 
 3 is orthogonal.

Assume
&'& �
�
&'&�� � . Denote �  � 6��� � 6 ��� . Since � is orthogonal to the subspace spanned by the columns of

� , it is also orthogonal to the subspace spanned by the columns of � *  �� � * , i.e. ' � *�,���5 has orthonormal

columns.

The second stage computes QR-updating of

�
�  (' � *-,���5

���
	 � *

&'& �
�
&'& � "


���

 ,

which corresponds to the case that
&'& �
�
&'& � " is inserted as a new row. This stage can be done at ����� � �
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[16]. The updated QR Decomposition is

' � *-,���5

���
	 �+*

&'& �
�
&'& � "


���

  (' ���, ���5

���
	 ��
�


���

  �� �� ,

where ' ���, ���5  (' � *�,���5 � � , for some orthogonal matrix
�
� .

Combining both stages, we have

�
�  �� * � * � &'& �

�
&'& � / � "  (' � *�,���5

���
	 � *

&'& �
�
&'& � "


 ��

  �� ��

as the updated QR Decomposition of �
�

, assuming
&'& �
�
&'& � � . If

&'& �
�
&'&  � , then �

�  �� * � * is the updated

QR Decomposition of �
�

. Note that
�
� can be computed efficiently as

�
�  

� ��� � � � " � �.� , by doing

matrix-vector multiplication twice. Hence, the total time complexity for the QR-updating of the centroid

matrix
�

is ����� � � .

2) Step 2: Updating of � : Next we consider the updating of the reduced within-class scatter matrix

�  �� " � � � "� � (Line 5 of Algorithm 1). Let ��  �� " �� � �� "� �� be its updated version.

Note that
� �  ')	+* � � * /%�-" * ,-/0/0/ ,2	43(� � 3 /%�-"3 5 
 IR ��
�� . Its updated version �

� �
differs from

� �
in

the B th block. Let the B th block of
� �

be
� 6  	76�� � 6 /�� "6 . Then the B th block of its updated version

�
� �

is

�
� 6  �	76�� �� 6 / �� "6  (')	76 , � 5 � �� 6 / �� "6

 ')	76$��� 6 /
� "6 , � ��� 6 5 ��� �� 6���� 6 �1/ �� "6
 ' � 6 , � 5 ����/ �� "6 , (7)

where �  � ��� 6 , �� �� 6���� 6 and �� 6> 
���
	 �-6
�


 ��

 
 IR ��9 � * .
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The product �
� 6 �� "6 can be computed as

�
� 6 �� "6  �2' � 6 , � 5 ����/ �� "6 ���2' � 6 , � 5 ����/ �� "6 � "

 ' � 6 , � 5
���
	

� "6
� "


���

 � � / �� "6

���
	

� "6
� "


���



� ' � 6 , � 5 ��-6#/ � " � � ��/ �� "6 �-� ��-6 / � " �
 � 6 � "6 � � / � " � � / � " � � / � " � � � 6 � ��� ��/ � "

 � 6 � "6 � � � ��� �8/ � � ��� � " � � 6 ��/ � " , (8)

where the third equality follows, since � � 6 , � � ��-6  : ���%� 9 ����� � � 6 � � �  � , and � � / �� "6 ��� ��-6 / � " �  
� � "8� ��-"6 / ��-6 �  �� �#6 � ��� � � " .

Since
� � � "�  : 3� <#* � � � "� , we have

�
� �
�
� "�  

3�
� <#*

�
� � �� "�

 
�

* � � � 3 � � �< 6 �
� � �� "� � �

� 6 �� "6

 
3�
� <#*

� � � "� � � � ��� �8/�� � ��� � " � �#6 � / � " )

It follows that

��  �� " �� �
�
� "� ��

 �� " � � � "� �� � �� " � � ��� �8/�� � ��� � " �� � �#6 �� " � / � " ��
 �� " � � � "� �� � � �� � �� �1/ � �� � �� � " � � 6 ���/ �� "

� � � � � "� � � � �� � �� �1/�� �� � �� � " � � 6 ���/ �� "
 �

� � �� � �� �1/ � �� � �� � " � � 6 �� / �� " , (9)

where �
�  �� " � , and ��  �� " � . The assumption of the approximation in (9) is that the updated �� with

the insertion of a new instance is close to � .

The computation of �
� and �� takes ����� � � time. Thus, the computation for updating � takes ����� � � .
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3) Step 3: Updating of � : Finally, let us consider the updating of the reduced between-class scatter

matrix �( �� " � � � "� � (Line 6 of Algorithm 1). Its updated version is �� �� " �� �
�
� "� �� .

The key observation for efficient updating of � is that

�
� �  ('

�
��1* � �� * � �� ��,-/0/0/ ,

�
�� 3 � �� 3(� �� � 5

can be rewritten as

�
� �  (' �� *-, �� � ,-/0/0/1, �� 3 , �� 5��  (' �� , ���5�� ,

where �  

���
	

�
��� "


 ��

 ,

�  diag �  ��1*�,-/0/0/1,  ��>30� , and �  ('  ��1*�,-/0/0/1,  ��>3A5 " .

By the updated QR Decomposition �
�  �� �� , we have

�� " �� �  (' �� " �� , �� " �� 5��� (' �� , �� " �� 5��� �� � � �� " �� /�� " )
It is easy to check that ��  * �� �

� /�� , where �� � ��1*�,-/0/0/1, ��>3�� " . Hence, �� " ��  �� " * �� �
� /��� * �� �� /�� . It

follows that

��  �� " �� �
�
� "� ��� �� �� � � �� " �� /	� " �1/�� �� � � �� " �� /�� " � "

 
 �� � ��
 �
��
��?/���
?/�� " 
�
 �� � ��
 �

��
�� /��	
 /�� " 
 " )

Therefore, it takes � � � �-� time for updating � .

Overall, the total time for QR-updating of
�

and updating of � and � with the insertion of a new

instance from an existing class is ����� � � � �-� . The pseudo-code is given in Algorithm 2.

B. Insertion of a new instance from a new class ( B � � )

Recall that we have data from the � st to
�
th classes, upon the insertion of � . Since � belongs to B th class,

with B � � , the insertion of � will result in a new class. Without loss of generality, let us assume B  � � � .

Hence the � � � ��� th centroid �� 3 � *4 � . Then the updated centroid matrix �
�  ' � *A, � � ,-/0/ /8, � 3 , � 5  

' � , � 5 . In the following, we focus on the case when � does not lie in the space spanned by the
�

centroids� � 6�� 36=<#* .
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Algorithm 2: Updating Existing Class

Input: centroid matrix ����+ � '0, � 6 ,
.
.
.#, ��� 2 , its QR Decomposition ��� ��� , the matrix � , the size � � of

the
�

-th class for each
�

, and a new point � from the
�
-th class,

�����
Output: updated matrix �� , updated centroid matrix �� , its QR Decomposition �� �	�� �� , and updated matrix �� ;

1. �� � � � � , for
��
� � ; �� 9 � � 9 �
� ; � ��� %������ � ;

2. �� 9 � � 9 ��� ; �� � � � � , for each
��
� � ;

3. ���� + �� '0,
.
.
.(, �� 9 ,
.
.
.(, ���� 2 ;
4. � ' � � � � ; � 6 ��� "�� �*� � $ � ;
5. do rank-one QR-updating of

� � � ��� ' .�� � $ as
� � � ��� ' .�� � $ � � ' � ' ;

6. if ��� � 6 ���	� �
7. �� � � ' ; �� � � ' ;
8. else

9. !*� "�# %%$&$('%)+*, , "�# %%$($ ' )+* , , ; � � �-� ,
.
.
.#, � ,/.
.
.#, � $ � ;

10. do QR-updating of + � '0, ! 2
.//
0

� '

��� � 6 ��� � �
1322
4 as + � '-, ! 2

.//
0

� '

�5� � 6 ��� � �
1322
4 � � 6 � 6 ;

11. �� � � 6 ; �� � � 6 ;
12. endif

13. 6 �7�8� � 9 ; 94� �� 9 � � 9 ;
14. �6 �:�� � 6 ; �95�;�� � 9 ;
15. �� ������� �6<� �9 $ � �6<� �9 $ � � � 9 �9 �9 � ;

16. = � diag �?> �� '0,0./.
.(, > ��@� $ ; A ��+ > �� '0,
.
.
.#, > ��@� 2 � ;

17. B � � �� '0,
.
./.(, ��@� $ � ; �B*� '�� �� . B ;
18. ���� �%�� =C� �B . A � $ �%�� =C� �B . A � $ � ;

1) Step 1: QR-updating of centroid matrix
�

: Given the QR Decomposition
�  � � , it is

straightforward to compute the QR Decomposition of �
�

as �
�  �� �� by the Gram-Schmidt procedure

[16], where ��� ' ��,���5 , for some � . The time complexity for this step is ����� � � .

2) Step 2: Updating of � : With the insertion of � from a new class (
� � � ), the � � � ��� th block �

� 3 � *
is created, while

� � , for �  �� ,-/0/0/ , � keep unchanged. It is easy to check that �
� 3 � *  � . It follows that
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�
� �
�
� "�  � � � "� . Hence

��  �� " �� � �� "� ��� �� " � � � "� ��� (' ��,���5 " � � � "� ' ��,���5
�

���
	 � "

� � � "� � �

� �


���

  

���
	 �

�

� �


���

 )

The assumption in the above approximation is that � is the dominant part in �� .

3) Step 3: Updating of � : The updating of � follows the same idea as in the previous case. Note that

�
� �  ('

�
��1*-� �� *�� �� ��,-/0/0/ ,

�
�� 3 � * � �� 3 � * � �� � 5

can be rewritten as

�
� �  (' �� *-, �� � ,-/0/0/ , �� 3 � *-, ���5�� ,

where the matrix �  

���
	

�
��� "


 ��

 , and

�
is an diagonal matrix

�  diag �  � *-,-/0/0/ ,  � 3 � *.� , and �  
'  � *-,-/0/0/1,  � 3 � * 5 " .

By the updated QR Decomposition �
�  �� �� , we have

�� " �� �  �� " ' �� , ���5��� (' �� " �� , �� " �� 5��
 ' �� , �� " �� 5��  �� � � �� " �� /�� " )

It is easy to check that ��  *�� �
� / � , where �  �� ��1*-, / /0/1, ��>3 � *2� " . Hence, �� " ��  �� " * �� �

� /��� * �� �� / � .
Then �� can be computed by similar arguments as in the previous case. Therefore, it takes � � � ��� time

for updating � .

Thus, the time for QR-updating of
�

and updating of � and � with the insertion of a new instance

from a new class is ����� � � � ��� . The pseudo-code is given in Algorithm 3.

C. Main algorithm

With the above two incremental updating schemes, the incremental IDR/QR works as follows: For a

given new instance � , determine whether it is from an existing class or belongs to a new class. If it is
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Algorithm 3: Updating New Class

Input: centroid matrix � ��+ � '0, � 6 ,0.
./.(, ��� 2 , its QR Decomposition � � � � , the size � � of the
�

-th class

for each
�
, and a new point � from the � � �
� $ -th class

Output: updated matrix �� , updated centroid matrix �� , its QR Decomposition ���� �� �� , and updated matrix �� ;

1. �� � � � � , for
� � � ,
.
.
.#, � ; ��@� � ' � � ; �� � � �
� ;

2. do QR-updating of �����+ � , � 2 as ���� �� �� ;

3. ����

.//
0 � �
� �

1322
4 ;

4. = � diag
� > �� '0,
.
.
.#, > ��@� � '�� ; A � � > �� '0,
.
.
.#, > ��@� � '�� � ;

5. B � � �� '-,
.
.
.#, �� � � ' $ � ; �B � '�� �� B ;
6. ���� � �� =C� �B . A � $ � �� =C� �B . A � $ � ;

from an existing class, update the QR Decomposition of the centroid matrix
�

and � and � by applying

Algorithm 2; otherwise update the QR Decomposition of the centroid matrix
�

and � and � by applying

Algorithm 3; The above procedure is repeated until all points are considered. With the final updated ��

and �� , we can compute the % eigenvectors
��� 6�� ;6=<#* of � �� ��� @ ; � �

*
�� , and assign ' � *�,-/0/0/1, � ; 5 to � . Then

the transformation �� ���� , assuming �
�  �� �� is the updated QR Decomposition.

The incremental IDR/QR proposed obeys the following general criteria for an incremental learning

algorithm [28]: (1) It is able to learn new information from new data; (2) It does not require access to the

original data; (3) It preserves previously acquired knowledge; (4) It is able to accommodate new classes

that may be introduced with new data.

VI. EMPIRICAL EVALUATION

In this section, we evaluate both the batch version and the incremental version of the IDR/QR algorithm.

The performance is mainly measured in terms of the classification error rate and execution time. In the

experiment, we applied the K-Nearest Neighbor (K-NN) method [12] as the classification algorithm and

classification accuracies are estimated by 10-fold cross validation.
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TABLE III

STATISTICS FOR OUR TEST DATA SETS

Data set � of data points ( � ) � of dimensions (
�

) � of classes ( � )
AR 1638 8888 126

ORL 400 10304 40

tr41 878 7454 10

re0 1504 2886 13

Experimental Platform: All experiments were performed on a PC with a P4 1.8GHz CPU and 1GB

main memory running the Linux operating system.

Experimental Data Sets: Our experiments were performed on the following four real-world data sets,

which are from two different application domains, including face recognition and text retrieval. Some

characteristics of these data sets are shown in Table III.

1. AR1 is a popular face image data set [26]. The face images in AR contain a large area of occlusion,

due to the presence of sun glasses and scarves, which leads to a relatively large within-class variance

in the data set. In our experiments, we use a subset of the AR data set. This subset contains 1638

face images of entire face identities (126). The image size of this subset is ����� �����	� . We first crop

the image from row 100 to 500, column 200 to 550, and then subsample the cropped images down

to a size of � � � �
���  �������� .

2. ORL2 is another popular face image data set, which includes 40 face individuals, i.e., 40 classes. The

face images in ORL only contain pose variation, and are perfectly centralized/localized. The image

size of ORL is 
�� � � ���  � ��� ��� . All dimensions (10304 in number) are used to test our dimension

reduction algorithms.

3. tr41 document data set is derived from the TREC-5, TREC-6, and TREC-7 collections 3.

4. re1 document data set is derived from Reuters-21578 text categorization test collection Distribu-

1http://rvl1.ecn.purdue.edu/ � aleix/aleix face DB.html
2http://www.uk.research.att.com/facedatabase.html
3http: ��� trec.nist.gov



21

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 10 5 2 1 0.5 0.2 0.1

E
rr

or
 r

at
e

Regularization parameter

ORL
AR

tr41
re0

Fig. 1. The effect of regularization parameter  on batch IDR/QR

tion 1.0 4.

Both document datasets are from [35], where a stop-list is used to remove common words, and the

words are stemmed using Porter’s suffix-stripping algorithm [29]. Moreover, any term that occurs in fewer

than two documents was eliminated. Finally, the tf-idf weighting scheme [30] is used for encoding the

document collection with a term-document matrix.

A. The effect of regularization parameter
�

on batch IDR/QR

In this experiment, we study the effect of the regularization parameter
�

on IDR/QR. Note that
�

is

used in the second stage of IDR/QR as the regularization term (See Line 7 of Algorithm 1). The result

is summarized in Figure 1, where the horizontal axis denotes the value of the regularization parameter

�
and the vertical axis denotes the classification error rate of batch IDR/QR. 1-NN is used to compute

the classification error rate. It is clear from Figure 1 that the performance of batch IDR/QR is insensitive

to the choice of
�

. This is likely due to the fact that the reduced within-class and between-class scatter

matrices in Lines 5 and 6 of Algorithm 1 are of small size (
� � � ). In the following experiment, we

4http: ��� www.research.att.com ��� lewis
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simply set
�  � ) � .

B. The performance of batch IDR/QR

In this experiment, we compare the performance of the batch IDR/QR with several other dimension

reduction algorithms including PCA+LDA, LDA/GSVD, OCM, and PCA. Note that IDR/QR applies

regularization to the reduced within-class scatter, i.e., �
� � @ ; . We chose

�  � ) � in our experiments,

while it produced good overall results.

1) Classification performance: Figures 2-3 show the classification error rates on image and text

document data sets respectively, using five different dimension reduction algorithms. The main observations

are as follows:

� The most interesting result is from the AR data set. We can observe that batch IDR/QR, PCA+LDA

and LDA/GSVD significantly outperform other two dimension reduction algorithms, PCA and OCM,

in terms of the classification error rate. Recall that the face images in the AR data set contain a

large area of occlusion, which results in the large within-class variance in each class. The effort of

minimizing of the within-class variance achieves distinct success in this situation. However, neither

PCA nor OCM has the effort in minimizing the within-class variance. This explains why they have

a poor classification performance on AR.

� Another interesting observation is that OCM performs well on text data sets. This observation is

likely due to the fact that text data sets tend to have relatively small within-class variances. This

observation suggests that OCM is a good choice in practice if the data is known to have small

within-class variances.

2) Efficiency in computing the transformation: Figure 4 shows the execution time (on a log-scale) of

different tested methods for computing the transformation. Even with the log-scale presentation, we can

still observe that the execution time for computing the transformation by IDR/QR or OCM is significantly

smaller than that by PCA+LDA, LDA/GSVD, and PCA.
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Fig. 2. Comparison of classification error rate on image data sets: ORL (top) and AR (bottom)

3) The Effect of Small Reduced Dimension: Here, we evaluate the effect of small reduced dimension

on the classification error rate using the AR data set. Recall that the reduced dimension by the IDR/QR

algorithm is % , where % is the number of classes in the data set. If the value % is large (such as AR,

which contains 126 classes), the reduced representation may not be suitable for efficient indexing and

retrieval. Since the reduced dimensions from IDR/QR are ordered by their discriminant power (see Line 7

of Algorithm 1), an intuitive solution is to choose the first few dimensions in the reduced subspace from
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Fig. 3. Comparison of classification error rate on text document data sets: tr41 (top) and re0 (bottom)

IDR/QR. The experimental results are shown in Figure 5. As can be seen, the accuracy achieved by

keeping the first 20 dimensions only is still sufficiently high.

C. The Performance of incremental IDR/QR

In this experiment, we compare the performance of incremental IDR/QR with that of batch IDR/QR in

terms of classification error rate and the computational cost. We randomly order the data items in the data

set and insert them into the training set one by one incrementally with the given order. The remaining
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Fig. 6. Comparison of classification error rate between incremental IDR/QR and batch IDR/QR

data is used as the test set. Initially, we select the first
� ���

data items as the training set. Incremental

updating is then performed with the remaining data items inserted one at a time.

Figure 6 shows the achieved classification accuracies by batch IDR/QR and incremental IDR/QR on four

data sets. In the figure, the horizontal axis shows the portion of training data items, and the vertical axis

indicates the classification error rate (as a percentage). We observe a trend that the accuracy increases when

more and more training data items are involved. Another observation is that the accuracy by incremental

IDR/QR is quite close to that by batch IDR/QR. Indeed, on four data sets, the maximal accuracy deviation

between incremental IDR/QR and batch IDR/QR is within 4%. Recall that incremental IDR/QR is carried
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through QR Decomposition in three steps: (1) QR-updating of the centroid matrix
�

; (2) Updating of

the reduced within-class scatter � ; and (3) Updating of the reduced between-class scatter � . The first

and third steps are based on the exact scheme, while the second step involves approximation. Note that

the main rationale behind our approximation scheme in updating � is that the change of � matrix is

relatively small and can be neglected for each single updating, where
�  �� � is the QR Decomposition

of
�

.

To give a concrete idea of the benefit of using incremental IDR/QR from the perspective of efficiency,

we give a comparison of the compuational cost between batch IDR/QR and incremental IDR/QR. The

experimental results are given in Figure 7. As can be seen, the execution time of incremental IDR/QR is

significantly smaller than that of batch IDR/QR. Indeed, for a single updating, incremental IDR/QR takes

����� � � � ��� , while batch IDR/QR takes ��� � � � � , where
�

is the number of classes in the current training

set and � is the size of the current training set. The time for a single updating in incremental IDR/QR

is almost a constant � � ��% � %��-� , when all classes appear in the current training set, and the speed-up of

incremental IDR/QR over batch IDR/QR keeps increasing when more points are inserted into the training

set. Note that we only count the time for Lines 1–6 in Algorithm 1, since each updating in incremental

IDR/QR only involves the updating of the QR Decomposition (Line 2), � (Line 5) and � (Line 6).

VII. CONCLUSIONS

In this paper, we have proposed an LDA-based incremental dimension reduction algorithm, called

IDR/QR, which applies QR Decomposition rather than SVD. The IDR/QR algorithm does not require

whole data matrix in main memory. This is desirable for large data sets. More importantly, the IDR/QR

algorithm can work incrementally. In other words, when new data items are dynamically inserted, the

computational cost of the IDR/QR algorithm can be kept small by applying efficient QR-updating

techniques. In addition, our theoretical analysis indicates that the computational complexity of the IDR/QR

algorithm is linear in the number of the data items in the training data set as well as the number of

classes and the number of dimensions. Finally, our experimental results show that the accuracy achieved
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Fig. 7. Comparison of computional cost between incremental IDR/QR and batch IDR/QR.

by the IDR/QR algorithm is very close to the best possible accuracy achieved by other LDA-based

algorithms. However, the IDR/QR algorithm can be an order of magnitude faster. When dealing with

dynamic updating, the computational advantage of IDR/QR over SVD- or GSVD-based LDA algorithms

becomes more dramatic while still achieving the comparable accuracy.

As for future research, we plan to investigate the applications of the IDR/QR algorithm for searching

extremely high-dimenional multimedia data, such as video.



29

ACKNOWLEDGEMENT

This research was sponsored, in part, by the Army High Performance Computing Research Center

under the auspices of the Department of the Army, Army Research Laboratory cooperative agreement

number DAAD19-01-2-0014, and the National Science Foundation Grants CCR-0204109, ACI-0305543,

IIS-0308264, and DOE/ LLNL W-7045-ENG-48. The work of H. Park has been performed while at the

NSF and was partly supported by IR/D from the National Science Foundation (NSF). The content of

this work does not necessarily reflect the position or policy of the government and the National Science

Foundation, and no official endorsement should be inferred. Access to computing facilities was provided

by the AHPCRC and the Minnesota Supercomputing Institute.

APPENDIX

Lemma 7.1: Let 	�
 IR � 
�� be positive semi-definite, and � 
 IR� 
�� have orthogonal columns, where

����� . The following inequality holds

trace ��� " 	!��� � trace ��	 � )
Proof: Let ���
 IR � 
�� � � � � be the matrix such that ' � , �� 5 is orthogonal. That is,

' � , �� 5 / ' � , �� 5 "  &� � " � �� �� "  �@ � ,

where @ � 
 IR � 
�� is the identity matrix.

It follows that

trace � � " 	!���  trace ��	!� � " �  trace ��	 � � trace ��	 �� �� " �  trace ��	 � � trace � �� " 	 �� � � trace ��	 ��,

where the last inequality follows, since �� " 	 �� is positive semi-definite. This completes the proof of the

lemma.
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