InterAxis: Steering Scatterplot Axes
via Observation-Level Interaction
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Fig. 1. An overview of the proposed visual analytics system, InterAkiswing a car dataset, which includes 387 data items with
18 attributes. The proposed system contains three panels: (A) the gloatiégw to provide a two-dimensional overview of data,
(B-D) the axis interaction panel to support the proposed interactiorbiiies, and (E) the data detail view to show the original
high-dimensional information of the data items of interest. The axis interaptioel (B-D) consists of (B) two drop zones (the
high-end and the low-end of each axis), which a user drags data pdimis iorder to steer the axis, (C) an interactive bar chart,
and a sub-panel containing buttons to save the current axis for fugardy middle) or to clear the data points currently assigned
to the axis (D, right) and a combo box to change the axis back to one amemgiginal features or the previously created axes
via our interaction (D, left).

Abstract —Scatterplots are effective visualization techniques for multidimensional data that use two (or three) axes to visualize data
items as a point at its corresponding x and y Cartesian coordinates. Typically, each axis is bound to a single data attribute. Inter-
active exploration occurs by changing the data attributes bound to each of these axes. In the case of using scatterplots to visualize
the outputs of dimension reduction techniques, the x and y axes are combinations of the true, high-dimensional data. For these
spatializations, the axes present usability challenges in terms of interpretability and interactivity. That is, understanding the axes
and interacting with them to make adjustments can be challenging. In this paper, we present InterAxis, a visual analytics technique
to properly interpret, de ne, and change an axis in a user-dr iven manner. Users are given the ability to de ne and modify a xes by
dragging data items to either side of the x or y axes, from which the system computes a linear combination of data attributes and binds
it to the axis. Further, users can directly tune the positive and negative contribution to these complex axes by using the visualization
of data attributes that correspond to each axis. We describe the details of our technique and demonstrate the intended usage through
two scenarios.

Index Terms —Scatterplots, user interaction, model steering

1 INTRODUCTION

Scatterplots are commonly utilized in visualizing relationships be-
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a chart that can be used for understanding the relationship betw
these two data attributes. However, this has a severe scalability
sue because two-dimensional (2D) scatterplots can represent only
features out of many at any given point of time.
Instead, an alternative strategy that better handles this scalability -
sue is dimension reduction, which involves multiple original feature
to represent each axis. Dimension reducti@fy fis a popular tech-
nique used to transform high-dimensional data into lower-dimensio
views (typically, 2D scatterplots). While a variety of approaches exis
their fundamental functionality is similar: to solve for distances be
tween data points in a lower-dimensional space that closely represe
the true distances between the points in a high-dimensional space. 7: -
is carried out by variations in solving for distance metrics from th T e®
data. s a7 o oy A T P W ma e e we e e W e v m me
In the visual and perceptual understanding of a scatterplantie
pretation of its axeplays a crucial role. That is, understanding wh
it means to have large/small values along xt@ y axis signi cantly
helps the users' reasoning process about why the relationships am
data items are close/remote in a scatterplot. In the case of traditional
scatterplots where each axis is directly mapped to a particular datal' he primary contributions of this work include the following:
attribute (without any dimension reduction), this process is straight- ) ) ) ) ] o
forward. However, this is not often the case when it comes to the axis @ Visual analytics technique for directly creating, modifying, and
of a 2D scatterplot generated by dimension reduction. One of the pri-  Visualizing complicated axes formed by a linear combination of
mary reasons is that only a limited set of dimension reduction methods ~data attributes
provide the interpretability of the axes of a scatterplot. Such meth-
ods include traditional methods such as principal component analysis
(PCA) [27] and linear discriminant analysi23], which form an axis
(or areduced dimension) explicitly as a linear combination of the orig-
inal dz_ata attribu_tes. Through thi_s linear combinati_on r_epresentation_ of  avisual analytics technigue to help users discover and weigh data
the original attributes, one can interpret the contribution of each orig-  airiputes
inal attribute to the axis. On the other hand, many other dimension
reduction methods form each axis implicitly in terms of the originalhe rest of this paper is organized as follows: Secfafiscusses re-
attributes, and thus they do not provide users with its clear meanimgted work. Sectior8 describes our proof-of-concept visual analytics
Most advanced non-linear dimension reduction methods such as meystem along with how the proposed interaction techniques are per-
ifold learning B3] correspond to this case. Even worse, in some othésrmed from the perspectives of both the front end and the back end,
popular methods such as multidimensional scaling (MCAE] fnd  followed by a discussion about our design rationale. Sedtijmesents
force-directed graph layouRf], these are rotation invariant, which several usage scenarios showcasing the advantages of the gropose
means that the axis is not de ned at all. Thus, communicating witleraction techniques. Sectiémpresents in-depth discussions about the
users about the meaning of the axes resulting from dimension redligiitations of our interaction techniques as well as potential directions
tion techniques is an open challenge. for improving them. Finally, Sectiof concludes the paper with some
Another issue with the scatterplot generated by dimension reddgture work.
tion lies in the lack ofinteractivity. Forming the axes via dimension
reduction does not typically allow human intervention. In other wordg, RELATED WORK
most of the dimension reduction methods are performed in a fully au this section, we discuss previous work about the visualization ap-
tomated manner on the basis of their own pre-de ned mathematiggiications of dimension reduction methods as well as user interactions
criteria, and thus, diverse user needs and task goals are not agedsideith them.
in this process. For instance, the PCA criterion, which maximally pre-
serves the total variance of data, may not align well with the goal 8f1 Multiattribute Data Visualization
a user's task. While MDS attempts to preserve all pairwise distancge design space for visualization techniques for representing multi-
with equal weights, one may want to focus on a subset of data poind&ribute data is large2B]. For example, the existing techniques in-
e.g., alocal region in a scatterplot, at a time. clude iconic displaysf], transforming displays based on geometric
Motivated by these challenges, we propose a novel interactigharacteristics13], and stacked visual representatioBg][ Among
knowledge speci cation method for multidimensional data visualizahese many techniques, one commonly used technique is the scatter-
tion, which is an alternative to the purely automatic process of generptot [12, 20, 45], owing to the visual simplicity and cultural familiarity
ing a scatterplot via dimension reduction. The proposed method intef-such charts43]. Scatterplots (such as the one shown in B)gep-
actively forms an axis, thereby generating a corresponding scatterptsent data on a Cartesian plane de ned by the two graphical axes (the
in a user-driven manner. The key novelty of the proposed method lieand they axes). Three-dimensional scatterplots are also an available
in the direct and seamless incorporation of user-selected data itemsdtion, but their use in information visualization is limited given the
characterizing the axis during the data exploration process. Our teplerceptual and visual challeng@8][47]. Systems that enable users to
nigue enables users to create and modify the axes by dragging dggaerate scatterplots include Tabledd][ GGobi [40], Matlab [34],
objects to the high and low locations on both thendy axes. The Spot re [1], and Microsoft Excel19]. One basic user interaction sup-
proposed method de nes the meaning of an axis accordingly in tperted by scatterplots is to select and change the mapping of the axes
form of a linear combination of original data features, similar to theo data attributes (Fi).
output of linear dimension reduction methods. Such a user-driven lin-As dataset complexities increase, often, the number of data at-
ear combination of data attributes is visualized on each axis, showimifputes to select from increases as well. This causes situations where
the positive or negative contribution of each attribute to the axis. Hiirectly selecting one out of hundreds or thousands of data attributes
nally, users can continually re ne the axes by dragging additional datan be less than optimal. As such, different types of techniques exist
points to the axes, or by directly adjusting the contribution of the data show more combinations of data attributes simultaneously. For ex-
attributes as part of the linear combination. ample, multiple scatterplots can be arranged into a single view called

Fig. 2. A scatterplot generated by Tabledd][ Users can interac-
aﬁvely explore data by selecting and changing the bindings between
gﬁga attributes and axes.

a user interaction technique enabling seamless interactivity via
both data objects and data attributes to steer the meaning of the
axes
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— As a result, groups and clusters emerge, which can be perceived as
L the sets of similar documents, based on the geographic "near=similar”
i | metaphor 89]. More recently, a visual analytics system applicable to
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pects of data by applying various dimension reduction methods to gen-
erate different scatterplot visualizatiordy.[
i Other kinds of high-dimensional data have also been visualized in
] the form of a scatterplot based on dimension reduction, including ed-
i ucation performance data, census dd®],[wine characteristics5],

facial images 8], and text document<T].
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2.3 Interactivity for Dimension Reduction in Information
Visualization

Mode!

In general, the axes created via dimension reduction techniques are de-
ned by linear or non-linear combinations of original data dimensions.
This complexity can lead to trust and interpretation challenges for do-
Fig. 3. A scatterplot matrix (adapted frortd]) showing all individual main experts exploring their data visuall¥(]. For example, users
pairwise feature scatterplots of an 8-dimensional dataset. may question whether their interpretation of a pattern is trustworthy or
if itis just an artifact of a dimension reduction technique. More funda-
mentally, using only two dimensions to represent considerably higher-
dimensional data inevitably involves signi cant information loss and
distortion. To overcome these issues, various user interactions have
been employed in numerous visual analytics systems.

One approach to user interaction is via direct manipulation of di-
mension reduction model parameters. For example, Jebra.
Basa, space, gof game, season, time T presented iPCA, a visual analytics application that visualizes high-

' dimensional data in a 2D scatterplot using PC26|][ They utilize
graphical controls (e.g., sliders) to enable users to directly manipulate
SRR L Nl the weight on the principal components used in PCA. As a result, the
adjustments by the user generate a new projection (i.e., a new scatter-
plot). Similar interaction guidelines have been used by other applica-
tions, such as a text visualization system called STREANAIT [
gaza, palestinian, israsl president, government, people A different set of techniques for incorporating user interactions into
such visual analytics systems also exists. Semantic interaction tech-
niques function by inferring model updates based on direct interac-
tions performed in the visualizatiod, 17]. For example, Endert
iraq, bush, iraqi al. have shown how directly manipulating the position of points in a
2D scatterplot can be used for inferring the parameters of PCA, MDS,
and GTM [18]. These inferences can also be used for exporting the
speci cation of distance functions computed in the dimension reduc-
tion step so that they can be reused, shared, or simply s&jed [

Other than manipulating data items to interact with scatterplots, re-
a scatterplot matrix12]. A scatterplot matrix (such as the examplesearchers have studied the interaction techniques that manipulate fea-
shown in Fig.3, adapted from15]) binds data attributes to rows andtures or dimensions. Yt al. have presented a technique called Dust
columns so that each cell in the matrix can represent a single scat&mMagnet that allows users to additionally place features or dimen-
plot. As such, users do not have to individually bind data attributes $tons on top of a scatterplot themselves to see which data items have
the axes and interactively choose among the potentially large numktayge values of these features or dimensiatg. [For text analysis, the
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Fig. 4. A Galaxy View generated by IN-SPIRE{] showing a scat-
terplot of documents (dots).

of choices. VIBE system allows users to perform similar interactions with key-
L . ) . . words B5]. In addition, Turkayet al. proposed a technique using
2.2 Applications of Dimension Reduction in Information dual scatterplots one of which shows data items while the other shows
Visualization features #4]. By providing brushing and linking as well as Itering

When using dimension reduction for visualization purposes, the gagierations on both data items and features in these dual scatterplots,
is to provide a low-dimensional view, typically a 2D scatterplot, irusers can check major patterns as well as outliers among data items
a manner that the original high-dimensional distances between datal among features.

points are maximally preserved in the resulting 2D views. These The technique proposed in this paper follows a similar idea of in-
views often show spatial clusters or groups of data representing ¢eracting with both data items and features, but the main novelty of
herent contents. The widely used dimension reduction methods usieel proposed technique against the existing work lies in the capability
for visualization include PCAZ7], MDS [31], self-organizing map of directly de ning and interpreting the axes of the 2D scatterplot by
(SOM) [29], and generative topographic mapping (GTM]).[ Re- assigning the data items of our interest to the axes. In this respect, our
cently, t-distributed stochastic neighbor embeddé® has been pro- work is related to PivotSlice, a technique recently proposed by Zhao
posed as a dimension reduction method, which is particularly suét al. that allows faceted browsing of high-dimensional d&@,[as

able for generating 2D scatterplots that can reveal meaningful insigiitallows users to specify data attributes on axes of the scatterplot by
about data such as clusters and outliers. directly dragging the attribute to the axis. However, our technique en-



ables users to drag data objects (instead of data attributes) to the aipresented as semi-transparent circles so that regions with oetlapp
Further, the proposed technique does not divide the scatterplot intdaa points can be highlighted. The scatterplot view supports zoom
multifaceted view. and pan via mouse wheel operations on a white space (to zoom on
Furthermore, a technique called exible linked ax&4][has arela- both axes simultaneously) or over a particular axis (to zoom only on
tionship with our work from a different aspect. That is, this techniquthis axis). Hovering over or clicking on a data point, one can check the
is a different type of interaction that allows users to draw axes on a cdall details (or the original high-dimensional information) of the data
vas, where scatterplots can be generated between any two neighboitgm in the data detail view (Fid.(E)).
axes. However, the main goal of this technique is fundamentally dif- The axis interaction panel consists of two drop zones (the high-end
ferent from ours in that it attempts to exibly coordinate and placand the low-end of each axis), which the user drags data points into in
multiple scatterplots on a large canvas, while our focus is on improgrder to steer the axis (Fi@(B)), an interactive bar chart (Fig(C)),
ing a single scatterplot for better supporting the interactive exploratiamd a sub-panel (Fid(D)) containing buttons to save the current axis
of data based on a more sophisticated, user-driven axis speci catior. further use or to clear the data points currently assigned to the axis
Further, Kondo and Collins have shown how directly interacting witand a combo box to change the axis back to one among the original
visualizations can be used for revealing temporal trends and relatideatures or the previously de ned axes. The bars in the interactive
ships between data item(]. Their work allowed users to manipulate bar chart represent the contributions/weights of attributes to the corre-
the position of data points in a scatterplot to reveal the temporal trergfsonding axis. The longer the length of a bar is, the stronger its cor-
in data, again enabling interactions directly on the data items in a saasponding attribute contributes to the axis. The bars are color-coded

terplot to parameterize a data model. by the signs of their weights: positive contributions in blue and neg-
ative contributions in red. Data points that are high on the positively
3 PROPOSED TECHNIQUE weighted (blue-colored) attributes will be placed on the high-end side

To realize the proposed interaction technique, we built a proof-0#f the axis. Data points that are high on the negatively weighted at-
concept visual analytics system. In this section, we describe (1) tigutes will be placed on the low-end side of the axis. For example,
overall design of the proposed visual analytics system, (2) the pi8-Fig- 1(C), sedans tend to be on the left side of the scatterplot, while
posed interaction to steer the axis in a user-driven manner, (3) the Rorts cars and cars with rear-wheel drive (RWD) tend to be on the
derlying mathematical details to support the proposed user interactigight side. Positive and negative weights represent the magnitude and
(4) the design rationale, and (5) the implementation details of the pi&t-which end of the axis the data points with those attributes will be
posed system. placed.

3.1 System Design 3.2 Interactive Axis Steering

As shown in Fig.1 by using the well-known Car dataset, which conThe proposed method provides two types of interactions: (1) data-level
sists of 387 data items with 18 attributethe proposed system mainly axis steering and (2) attribute-level axis manipulation. Data-level axis
contains three panels: (1) the scatterplot view (Rigd)), (2) the steering is prompted by dragging a data point from the scatterplot into
axis interaction panel to support the proposed interaction capabilitiés® two drop zones at the high- and the low- end of the axis. Attribute-
(Fig. 1(B-D)), and the data detail view (Fid(E)). level axis manipulation is prompted by directly adjusting the bars in
The user interaction technique presented in this paper fosters athie interactive bar chart.
sual data exploration process grounded in the principles of semanticThe main idea of the proposed interaction for steering the axis in
interaction techniquedp, 17]. That is, the system interprets the anaa user-driven manner lies in an intuitive process of incorporating data
lytical reasoning of exploratory user interactions to steer the underigems seamlessly while exploring data in a scatterplot. For example,
ing data model. The generic work ow supported by our user interag¢vhen a user nds data points that he likes (or dislikes) in the scatter-
tion technique is as follows: plot, he can drag them to the high-end (or the low-end) drop zone of
an axis (Fig.1(B)). Accordingly, a new axis is formed by re ecting
1. The user observes two data points that de ne the difference hRese choices of data items, which will then update the scatterplot on
tween the two semantic groupings (e.g., “nice cars” and “bagle basis of the newly formed axis. The technical details about how
cars”). we form a new axis will be described in the next section.
How the axis is formed from this process is summarized and visu-
alized as a bar chart (Fig(C)) so that a user can get an idea about

3. Interaxis computes the weighting of data attributes that suppogigw much a particular original feature or dimension is emphasized or

; : . ; - hasized. Given such a bar chart, a user can further reene th
these higher-level groupings (Ef). The weights are displayed c-emp - . AN
in the bar chart below the axis. meaning of an axis by directly manipulating the length of each bar

via drag-and-drop operations on the tip of the bar (attribute-level axis

4. The scatterplot updates to re ect the newly de ned axis, wher@anipulation). ) _ L )
data items are placed according to the similarity on either side of The entire interaction process can be dynamic and iterative. That is,
the axis (Eq2). a user can additionally assign new data items to an axis or remove data

items that was already assigned to an axis. Furthermore, the above-
5. The user can re ne the semantic grouping by adding/removirtigscribed direct manipulation on the bar chart can be performed at
data points or directly modifying the weighting in the visualizaany moment during such an interactive exploration of the bar chart.
tion below the axes. Finally, a user can save the current de nition of an axis, and then it is
registered as a new entry in the combo box (Bi@, left)) so that a
6. The user can save the axis for future use and continue to explaggr can later recover the axis to a previously saved one.
the visualization iteratively by using the same interaction concept
based on different semantic groupings. 3.3 Underlying Techniques

this section, we describe the underlying technique for the proposed
er interaction of forming the axis via data items. For the sake of
evity, we consider only the axis (the horizontal axis) in a scatter-
lot, but the following description can be generalized toytlaxis in
e same manner.
Data preprocessing. As will be discussed later, the underlying
http://www.idvbook.com/teaching-aid/data-sets/ model to de ne the axis is based on a linear combination of the orig-
2004-cars-and-trucks-data/ inal dimensions. To this end, we adopt data preprocessing steps used

2. The user drags one data item to each side of the axis.

The scatterplot view provides a 2D overview of the data. By defau
the rst and the second features of data, e.g., Retail Price and
(Horsepower), are assigned to thand they axes, respectively, but
this initial view can be set up by using a dimension reduction meth
such as PCAZ7] to provide another starting point. Data points are
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Table 1. Notations used in this paper tradeoff between a user interaction designed to require the adjustment
[ Notation ]| Description | of analytic model parameters directly, and the semantic interaction

Number of data items assigned to the approach_es that perform model steering through the inference of the
Mch high-end of thex axis user's actions16, 17]. o o _
Number of data items assigned to the Considering the underlying linear model described in the previous
Myl low-end of thex axis section, an alternative design choice would be to let users manipulate
Number of data items assigned to the the linear model (m_ore exactly, linear combination c_o_ef C|9nts) fr(_)m
Nyh high-end of they axis scratch. In fact, this type of approach has been utilized in previous
Number of data items assigned to the studle_s |n_clud|ng |P_CA2{6], where users want to manipulate the linear
Nyl low-end of they axis combination cqef cients from a PCA output.
R0 Set of data ftems assigned o the However, th|_s approach has_ several_lmportant drawpacks_ from a
AXh = a,?(’ hiah-end of thex axis user's perspective, the explanation of which can be found in Shiptman
—h— O Setof gata items assigned to the al.'s discussion on the formality in comp_uter-supporteql cooperative
Al = al?“ low-end of thex axis work [37]. In their work, Shipmaret al. pointed out the discrepancy
n—o Set of data ftems assianed to the between the_ formality required by a computer and the formality th_at
AP = a%‘h high-end of th gr can be provided by a human. Such a discrepancy can be described
A—o Igh-end of they axis from the two following aspects: The rstissue is that users may have
AVl = al}’v' Set of data items ass'gf‘ed to the only tacit knowledge about what they want, which cannot be fully for-
' low-end of.they axis malized at the beginning although a computer requires them to provide
To Ty Linear tranhsformatlon vectors flor the the full details right away, for example, understanding which data fea-
and they axes, respectively tures to adjust (and by how much). The second issue originates from

the tradeoff relationship between the amount of additidoahality
in linear regression model44). For a categorical variable withdif-  that the users have to provide and the additidreale t that they can
ferent categories, we use dummy encoding, which converts itcto aget out ofit. In other words, the capabilities requiring greater degrees
dimensional indicator vector where the value of each dimension is?i formality end up being less frequently us&f]
if a data item is in the category of the corresponding dimension and Therefore, with respect to interactive axis steering, the level of for-
0 otherwise. Next, we scale and translate each dimension (includiMglity that a system requires enables the users to fully specify the
both indicator and numerical variables) so that its value is exactly #IS as @ linear combination representation in terms of all the features.
the range from 0 to 1. However, users are not likely to have an exact idea of what the axis
Linear transformation. Assuming that such data preprocessing i§hould befacit knowledge). Further, setting each of the linear combi-
done, we denote a set of high-dimensional vectors of data items tRgtion coef cient values from scratch, particularly when the number of
the user gssigned (via a drgg-and-drop) to the high-end of thes dlmen3|on§ is large, can be a signi cant burden to users W.hen trying to
xh— xh.xh. . _xh ._form the axis as they want (ttiermality-bene t tradeoff), which ends
asA*"= ay;ay, an, anda se}lof those that he gragged 'nt‘ﬁp making such a capability less useful.
the low-end side of the axis asA*! = a’f' : ag:l; : aﬁlq . where On the other hand, our data-level interaction methodology nicely
N overcomes these challengesfofmality. The fact that the system re-
ires a full speci cation of a linear combination representation still
holds. However, using our data-level interactions, users do not need
to know the exact coef cient values in advance, but they only need to
tell the system the data items that they place on the axes one by one to

Nenh andny, represent the total number of the assigned points to t
high-end and the low-end of theaxis, respectively. Now, we de ne
the linear transformation vector for thexis as follows:

1% o 1

w=—8a" —3 al.xi'; (1) achieve the same capability. Through this iterative process, their tacit
Nxhj=1 Ml =1 knowledge can be incrementally formalized to explore a scatterplot.
Even though our interaction design contains direct manipulation capa-
This is then further scaled to have a unit Euclidean norm. bilities of linear combination coef cients (through interactions with a

One can de ne the linear transformation vectyrfor they axis  bar chart), this is not a main process but an optional, ne-tuning one,
in the same manner. Every data item is mapped toxth&is (and allowing users to intervene when they have formalized their insights
they axis) via the transformatioffx (andTy). That is, thei-th data and questions later in the process.
item whose high-dimensional vector is represented &smapped to
a point in our 2D scatterplot so that its 2D coordinates are represengf Implementation

as follows: . Our web-based visual analytics system is implemented using
(Ta; Ty & : (2)  JavaScript, and the main visualization modules are built on the D3
toolkit [4], a widespread JavaScript information visualization library.
Owing to the easy interpretability of this linear model, one can umbatasets are stored in a comma-separated values format, and the entire
derstand the meaning of this transformation in a straightforward mageta are directly fetched into the visualization at the time the web-
ner. That is, the resulting axis basically emphasizes the featuresite is loaded. The implemented system can be acceseipt
or dimensions that have large values on the high-dimensional vect@fgw.cc.gatech.edu/~hkim708/InterAxis . Once a dataset
contained inA%" but have low values on those &!. On the other is chosen among the several different ones that we prepared, canse
hand, we de-emphasize the features that have low values on the vediensly explore the data by using the proposed techniques.
contained inA%N but have high values on thoseA'. In this manner, In terms of computing performances, the proposed system can han-
as a data item has larger (or lower) values on these emphasized dinth@-up to several thousands of data points with no noticeable de-
sions and lower (or higher) values on the de-emphasized dimensiday, It is rather the front-end rendering module that suffers from
its x coordinate will have a higher (or lower) value, appearing more dhe scalability issues since our underlying mathematical model de-
the right (or left) side of thex axis. The notations used in this sectionscribed in Sectior8.3 works ef ciently with the time complexity of
are summarized in Tabtk O(n d+d log(d)), wherendenotes the number of data points and
d represents the number of features.
3.4 Design Rationale: Tradeoff between Explicit Parame-
ter Control and Implicit Model Steering 4 USAGE SCENARIOS

In this section, we discuss the design rationale behind our visual dn+this section, we demonstrate the effectiveness of the proposed inter-
alytic technique. The core focus of this technique is grounded in tlaetion technique in a multidimensional data exploration by using two
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Fig. 5. An initial scatterplot showing HP by Retail Price. Fig. 7. A scatterplot obtained after assigning several SUV cars on the
low-end and a sedan on the high-end drop zones of thes.
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Fig. 6. A scatterplot obtained after assigning Subaru WRX STi on tl :

high-end drop zone of theaxis and Pontiac Vibe on the low-end dropFig. 8. A scatterplot obtained after increasing the weight on Hwy MPG
zone of the axis. on thex axis by dragging the bar directly to the right.

real-world datasets: the Car dataset and the Crime dataset. differ in terms of how much horsepower one can get for the amount of
o money that one has to pay. One of her friends drives a Subaru WRX
4.1 Dataset Description STi, which she likes, so she decides to drag it to the high-end drop
The car dataset provides speci cations on new cars and trucks for tane of they axis. Her current car is a Pontiac Vibe, which she does
year 2004. The attributes of this dataset include vehicle categorigst like, and thus, in order to contrast the two, she drags this one to the
vehicle measurements, retail/dealer prices, and fuel ef ciency. Afteaw-end drop zone of thg axis.

removing data instances with missing values, we are left with 387 carsThe proposed system computes the axis accordingly, presenting

and 18 attributes. Amy with a new scatterplot (shown in Fi§). Upon exploring this

The communities and crime dataset, which is available atew, she observes that hgaxis re ects the difference between these
https://archive.ics.uci.edu/ml/datasets/ two cars, such as whether or not a car has all-wheel drive (AWD), is
Communities+and+Crime+Unnormalized , aggregates a sports car, is not a wagon, and has high HP, which can be checked

socioeconomic data from the 1990 US Census, law enforcement diatem the bar chart by summarizing these differences. The scatterplot
from the 1990 US Law Enforcement Management and Administrative ects these criteria. The layer across the bottom consists of wagons,
Statistics (LEMAS) survey, and crime reporting data from the 19%&nd the layer across the top consists of all sports cars, with the subset
FBI Uniform Crime Reporting (UCR). After removing data instanceacross the very top consisting of AWD sports cars.
with missing values, we are left with 1,901 communities and 112 However, she observes that some of the cars in this top half are
attributes. We used 200 of the highest populated communities for t88)Vs (given that they have lots of HP and some of them are AWD).
use case discussed in SectdbB. She drags three of these to the low-end drop zone okthis and
takes one of the sedans and places it in the high-end drop zone. The
4.2 Car Dataset resulting re-calculated view is shown in Fig.
To illustrate the functionality of our visual analytics technique, let us From this view, she can see that the axis now contains
consider the following usage scenario. Amy is shopping for a vehictenall/compact/large sedans on the right side and SUVs on the left
to purchase and wants to understand and make an informed decisiole. She browses the clusters revealed through this interaction to get
by using our interaction technique. Thus, she explores a datase®dfetter understanding of what the visual groupings mean (as shown in
387 cars containing 18 attributes for each car. These attributes incllide. 7). She sees that a part of heaxis is now de ned by fuel econ-
categorical, nominal, and continuous variables such as Sports Capifay (Hwy MPG). She had not considered this attribute of a car and
binary variable) and Retail Price (a continuous variable). decides that she wants to be somewhat economical with her choice.
Her visual exploration of the data starts with an initial scatterpldihe increases the weight on the Hwy MPG attribute by directly drag-
that shows HP by Retail Price on theand they axes, respectively. ging the blue bar further to the right.
From this view (shown in Fig5), she can see that there are cars that As a result, as shown in Fi®, she sees that while there are very
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Fig. 9. An initial scatterplot showing ViolentCrimesPerPop (the totdfig- 11. A scatterplot obtained after assigning Santa Clara, San Jose,
number of violent crimes per 100K population) by medincome (ménd Irvine to the high-end drop zone of tkexis and New Orleans
dian household income). and Green Bay to the low-end drop zone of the axis.

attributes describe these two notions about cities.

In Fig. 10, she observes the attributes that are shown to correspond
to “dangerous cities” are shown on thaxis (e.g., racePctBlack, Hou-
seVacant, etc.). The application sorts the list of attributes by magni-
tude, placing the most dominant attributes at the top. She discovers
that the percentage of vacant houses helps describe her notionef thes
cities. Re ecting on her time spent in these cities, she is reminded of
passing by many vacant houses.

Next, she decides to place some of the cities that she has been to
and liked in the high-end drop zone of tkexis, and the cities that
she did not like in the low-end drop zone of the axis. On the right
(high-end), she places Santa Clara, San Jose, and Irvine. On the left
(low-end), she places New Orleans and Green Bay. Highows the
updated visualization based on this feedback.

The new view in Figl1 shows her that she apparently enjoys visit-

tﬁgg cities that have a rather high cost of living and have a percentage of
d population that has recently immigrated to the area. She explores the

visualization, nding interesting insights such as Cleveland (on the top

right) has low costs of living as it is high on her “dangerous” axis. In

comparison, Spring eld is much lower on tlyeaxis, and has a similar
fuel-ef cient cars to the right side of heraxis, they are on the lower cost of living. At this point, she continues to explore these data, fasci-
part of hery axis (i.e., similar to the car that she does not like). Sheated by the data attributes that de ne the concepts of cities and areas
inspects them and nds cars such as the Toyota Prius and Hondatitat she has visited and that she did not consider prior to using this
sight. Instead, she inspects the cluster on the top right, representiig/alization. The application helped her realize that some of her con-
cars that are high on theaxis (i.e., similar to cars she likes), and orcepts are grounded in the data, discovering attributes about the cities
the right side of thes axis (sedans with good fuel economy). She ndghat help her describe subjective judgments, such as perceivey safe
the BMW 330xi from this cluster and heads to the dealership with a

Fig. 10. A scatterplot obtained after assigning high-crime cities in
high-end drop zone of thg axis and low-crime cities in the low-en
drop zone of the axis.

printout of the visualization and con dence in her decision. 5 Discussions
. ) Thus far, we presented our novel interaction capabilities allowing users
4.3 Communities and Crime Dataset to interactively de ne an axis without much additional effort while ex-

Now, we will follow the case of a tourist who uses the proposed tecRloring data in a scatterplot, along with several usage scenarios show-
nique to examine a communities and crime dataset. This dataset db-the effectiveness of the proposed interaction technique. In this sec-
tains socioeconomic, law enforcement, and crime data. This datal@®. We discuss the limitations and further improvements to overcome
is in contrast to the car dataset used in the previous usage scenarf®fm-
that it contains more data attributes (112, as compared to 18 for the car . .
dataset). As such, the task of our user is to discover the data attributes G0ing Beyond Linear Models
that help explain notions that she has about speci c cities. For exaMaus far, the proposed technique can characterize an axis as a wleighte
ple, she has the cities that she has been to and enjoyed: Does the lif&ar combination of the original features. Although this linear model
support her preference? Can she discover what tradeoffs shglis-im enables us to fully maintain the interpretability, it suffers from the
itly making that she is not aware of? Similarly, what about cities thaame limitation that other linear dimension reduction models have.
she considers “safe” or “dangerous”™? What if the axis semantically meaningful to us is highly non-linear or
She loads the application and starts by looking at the initial repurvi-linear? In machine learning and data mining, this issue has been
resentation (shown in Fi@) visualizing a scatterplot of the medianactively studied in the context of non-linear dimension reductgsh [
household income by the total number of violent crimes per 100K popr manifold learning methods such as isometric feature mapgi#ig [
ulation on thex andy axes. She drags three of the high-crime citieand locally linear embeddin@§]. In addition to their superior perfor-
to the top drop zone of theaxis, and three of the low-crime cities tomances in various prediction tasks, many of these methods claim that
the bottom drop zone. She refers to the top ofyhaxis as “dangerous the reduced dimensions generated by these non-linear methods may
cities”, and the bottom as “safe”. Her goal is to discover which dataost likely correspond to some high-level, meaningful notions that can



(a) Viewing angles mapped to thheandy axes

Fig. 13. An example of the proposed data-level interaction when ap-
plied to text data illustrating the challenge of applying the proposed
technigue to sparse data.

interaction technique.

5.2 Handling Sparse Data

Another limitation of our interaction technique arises when our multi-
dimensional data are sparse, meaning that there are few non-zero en
tries per dimension or data item. Such a sparsity issue is often found
in signi cantly high-dimensional data such as images, text documents,
and gene expression data. From the perspective of formality digstusse
in Section3.4, since our axis can be quickly crystalized as a linear
combination of (most of) the features even with a few data items, the
proposed data-level interaction technique only needs a small amount
of additional formality to de ne an axis.

However, this is no longer the case when each data item involves
only a fraction of the features. In this case, one may have to assign

(b) Facial expressions mapped to thaxis considerably more data items to an axis than in the dense data case
Fig. 12. Non-linear dimension reduction examples using facial imad til reaching a desired level of speci cation of an axis. For example,
data 2, 36]. ig. 13 shows an example of text data when we assigned a data item

to the high-end of an axis and another to the low-end. In this gure,
one can see that many data items have been placed near the origin,

be de ned only in a curvi-linear coordinate system. For instance, indicating that the currently formed axis did not successfully show the
the case of facial image data as shown in Ei2.high-level character- variations of the other data items since the other items do not contain
istics such as a viewing angle and a facial expression (from frowniilge keywords used for de ning the axis.
to smiling) have been mapped to the axis of the reduced-dimensionaOne potential strategy to circumvent this sparsity issue against the
space 42, 36). On the other hand, in a document data case, we mayoposed data-level interaction is to aggregate multiple dimensions
want to map something like the subjectivity or interestingness of amto a single group. To this end, we can perform clustering on these
article to our axis 24]. dimensions on the basis of their co-occurrence patterns among data

However, in reality, because of many issues such as measureni@fs, or alternatively, we can apply a dimension reduction method
noises and an insuf cient number of data items, it is often too optfuch as PCA, which can then provide a new de nition of the reduced
mistic to expect a non-linear dimension reduction method to nicefjmensions to start with as a linear combination of the original fea-
map our high-level notions to an axis in a fully automated manndHres. In this case, since our current interaction method also utilizes
Given this challenge, the proposed interaction method can open &pther linear model of these reduced dimensions, we can still main-
a new possibility to interactively de ne such a non-linear high_|eveqaln the full level of interpretability in terms of the original features.
notion that we want to reveal. Typically, manifold learning methods . . .
de ne a curvi-linear axis forming the manifold surface approximately-3 Guiding Users towards Buried Information
as a piece-wise linear model derived from the given high-dimensiorghis issue is more about a complementary approach to the proposed
data samples. If we extend the idea of user interaction proposed in tlaishnique rather than about its limitation. To describe this issue, sup-
paper as a piece-wise linear model, then our interaction can actuglise that a user formed one axis at the moment, which mainly involves
allow users to de ne such a complicated manifold surface and its axisparticular set of features. For example, ighows that only thg
via an intuitive user interactions. axis has been speci ed, but the user may not know which other data

Users may perform an interaction of drawing an arbitrary, curvatéms to choose to form another axis. In this case, given that the al-
line passing through data items or groups of these items in a partieady de nedy axis mainly involves features such as Wagon, AWD,
ular order, by which users could mean a progression of the aboW®A/D, Sports Car, and HP, the proposed system can recommend to the
mentioned characteristics such as document subjectivity. Then, ogers data item pairs that can emphasize the other ignored features.
data-level interaction technique can be applied to form an axis asnathis manner, the system can help users build the two axes, each
piece-wise linear model (rather than a single linear representatiai)which reveals complementary information about the data. Further-
from the adjacent data items or groups on the path to approximatetypre, considering the linear model that we currently adopt, this strat-
represent this curved line. In this manner, users can iteratively and @gy can be viewed as choosing two axes that are orthogonal to each
teractively de ne even a highly non-linear axis through our data-levether, which is in common with the output PCA. Therefore, as an algo-



rithm to recommend the data items for the next axis, we can exploit tfi@#] N. R. Draper, H. Smith, and E. Pownellpplied regression analysis

established algorithm used in PCA such as the power itera2ign [ Wiley, New York, 1966.
[15] N. Elmqyist, P. Dragicevic, and J.-D. Fekete. Rolling ttlice: Mul-
6 CONCLUSIONS tidimensional visual exploration using scatterplot matriavigation.

In this paper, we introduced InterAxis, a novel visual analytics tech- |EEE Transactions on Visualization and Computer Graphit¥¢G)
nigue to form and change an axis in a user-driven manner during gig 14(6):1539-1148, 2008. ion for visual i i
visual exploration of multidimensional data. By seamlessly incorp&tol A Endert. Semantic interaction for visual analyticsward coupling
. . . . cognition and computationEEE Computer Graphics and Applications
rating data items to form the axis, the prop_osed technique expresses an (CG&A), 34(4):8-15, 2014
axis as a We_lghted C(_)mblnatlon of th_e o_rlglnal f(_aatures or "?‘tt”b“tj(')fn A. Endert, P. Fiaux, and C. North. Semantic interactionvisual text
Users can directly adjust these contributions/weights of attributes for analytics. InProc. the SIGCHI Conference on Human Factors in Com-
each axis. In this manner, the proposed technique provides a direct puting Systempages 473-482. ACM, 2012.
way to specify axes through an interactive data exploration. Todemqig] A Endert, C. Han, D. Maiti, L. House, S. Leman, and C. Kort
strate the effectiveness of the proposed interaction techniques, we pre observation-level interaction with statistical models fimual analytics.
sented two usage scenarios by using real-world datasets such as carn Proc. the IEEE Conference on Visual Analytics Science actiria-
data and crime data. Finally, we discuss the potential limitations and ogy (VAST)pages 121-130, 2011.
the improvement strategies to overcome these limitations. [19] Excel. version 2013 (v15.0) Microsoft Corporation, Redmond, Wash-
As our future work, we plan to improve the scalability of our sys-  ington, 2014.
tem in terms of the computational cost of the underlying techniqué] S. Few.Now you see it: simple visualization techniques for quatitie
as well as the visual clutter issues. We also plan to support the ne- analysis Analytics Press, 2009.
tuning capabilities of the proposed system, such as assigning differ&ii 1. K. Fodor. A survey of dimension reduction techniqueg02.
weights to data items contained in a particular drop zone. The wdd] T. M. J. Fruchterman and E. M. Reingold. Graph drawing bscé-
presented in this paper advances our understanding of how to provide a directed placementSoftware: Practice and Experienc21(11):1129-

user interaction with analytic models incorporated into visualizations, = 1164, 1991. , o y _
[23] K. Fukunagalntroduction to Statistical Pattern Recognition, secodd e
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