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Abstract

Linear discriminant analysis (LDA) is a widely-used feauextraction method in classification.
However, the original LDA has limitations due to the assuomptof a unimodal structure for each
cluster, which is not satisfied in many applications such adaf image data when variations, e.g.
angle and illumination, can significantly influence the iregagln this paper, we propose a novel method
called hierarchical LDA (h-LDA), which takes into accouniefarchical subcluster structures of the
data in the LDA formulation and algorithm. We develop a tletical basis of hierarchical LDA by
identifying its relation to two-way multivariate analysd variance (MANOVA) based on the data
model and variance decomposition. Furthermore, an efficidgorithm for a regularized version of
h-LDA (h-RLDA) is presented using the QR decomposition ahd generalized SVD. To validate
the effectiveness of the proposed method, we compare faogmiion performance among h-RLDA,
LDA, PCA, and TensorFaces. Our experiments show that h-RpBluces better prediction accuracy
than other methods. When only a small subset of features aé (isduced dimensionality), the
superiority of h-RLDA over other methods becomes more fiiganit. It is also shown that h-RLDA is

a computationally much more efficient alternative to TeRsoes.

Index Terms

Dimension reduction, Feature extraction, Generalizedudar value decomposition, QR decompo-

sition, Hierarchical clustering, Undersampled problereg&®arization, Face recognition, Classification

. INTRODUCTION

Linear discriminant analysis (LDA) has been one of the madely-used dimension reduction
methods for classification problems over the past sevecaldiss. LDA provides an optimal linear
transformation into a lower dimensional space that presetiie cluster information. In facial
recognition applications, LDA has also proven its capgbiven when raw pixel values are
used as a feature vector without applying sophisticatetifeaencoding schemes [1].

Classical LDA relies on the nonsingularity of the scatter noas, where the number of
data must be greater than the dimensionality, which we calbwersampled case. However,
many modern data sets such as image data are undersampded) arder to mitigate the
undersampled problem, preprocessing steps such as @lircipmponent analysis (PCA) can be
applied prior to LDA [2]-[4]. On the other hand, Park et alvded an algorithm to directly
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solve the undersampled LDA problem without any addition@ppocessing steps by applying
the generalized singular value decomposition (GSVD) [1aBH also proposed its efficient and
robust version by applying QR decomposition and regulddng6].

One of the important limitations of LDA is the assumptionttle@ch class is modeled as
a unimodal Gaussian that can be fully described only with firet and the second order
statistics, i.e. mean and covariance. In reality, thereasgoarantee that the data conforms
to such assumptions. Furthermore, when the data is sigmiffcdependent on other factors
than the cluster label of interest, the data correspondirey particular label may not be simply
modeled as a unimodal Gaussian with a single mean and a aogariAlso, in many applications
such as face recognition, often the factors such as poseratidmination produces noticeably
different facial images of the same person.

In order to circumvent such problems, one may apply sevena&nts such as nonparametric
discriminant analysis (NDA) [7] , subclass discriminanalysis (SDA) [8], or regularized LDA
[6, 9]. NDA uses a nonparametric form of the between-clustatter matrix to relax the unimodal
Gaussian assumption. SDA applies the multi-modal Gaussei@atel directly by replacing each
cluster centroid with subcluster centroids in the definitiof between-cluster scatter matrix.
Although regularized LDA was originally introduced for tipeirpose of avoiding singularity of
the within-cluster scatter matrix for undersampled cassglarization also controls overfitting
by preventing the within-cluster relationship from becogitoo tight. Such regularization can
also be viewed as suppressing the effect of the off-diagooalponents in the within-cluster
scatter matrix, or equivalently, as imposing the identibyariance matrix as a prior form in a
Bayesian sense.

However, other information can be utilized in addition te tluster label. In face recognition,
there have been several approaches where various informgitch as angle, illumination, and/or
pose of images are utilized so that recognition performaacebe enhanced. TensorFaces [10]
has shown its advantages over PCA in face recognition by eartstg tensor data structures
based on all the available factors and then by applying Nar@®dD [10].

In this paper, we propose a novel method called hierarchib&l (h-LDA) that formulates a
new feature extraction method based on hierarchical e¢lgstgcture of depth two in the data. In
h-LDA, clusters are composed of several subclusters detethby other factors than the cluster

label of interest. The data points in a cluster do not haveetolbise, as in the unimodal Gaussian
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Fig. 1. Assume that the data points belong to two clusters: the triangular falusg to one cluster and the circular points
to the other cluster which can be further clustered into three subclust®fsntay represent the data from these two clusters

close to each other as a result of minimizing the within-cluster relationshimguoiocular points while h-LDA can avoid this

problem byemphasizing within-subcluster structure
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model, if subclusters are well-separated in the originatdee space. In this case, if the data
from other clusters happen to be located in the area sureslibg those subclusters, the classical
LDA would put them close to each other in the reduced dimendigpace, deteriorating the
cluster separability (see Figure 1). The criterion of h-LBécomposes the within-cluster scatter
matrix at a subcluster level, and enables us to adjust ttaivelweights of the decomposed
subcluster scatter matrices. Thus, avoiding subclustginmi

The rest of this paper is organized as follows. In Sectionh®, ¢lassical LDA is briefly
reviewed, and h-LDA for data with hierarchical cluster stwre is introduced in Section 3.
In Section 4, its relationship to two-way multivariate arsié of variance (MANOVA) in the
context of hypothesis testing is shown, and in Section 5,galagized version of h-LDA is
proposed. Experimental results on the Shimon Edelmants database are reported in Section

6, and finally conclusions are given in Section 7.

II. LINEAR DISCRIMINANT ANALYSIS

In LDA, an optimal dimension-reduced representation ofidatobtained by a linear trans-
formation that maximizes theonceptualratio of the between-cluster scatter (variance) versus
the within-cluster scatter of the data. In this section, wespnt an overview of the basic ideas
of LDA. For more details, refer to [11, 12].

Given a data matrixA = [a; as- -+ a,] € R™™, wheren columnsa;, : = 1, ..., n, of A

represent: data items in amn dimensional space, assume that the columng afe partitioned
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into p clusters as
A=A A - A,

where »
A; € R™™ and an =n.

i=1
Let \V; denote the set of column indices that belong to cluster the size of\;, a, the data
point represented in the-th column vector of4, ¢ the centroid of the-th cluster, and: the
global centroid. For example, in face recognitiofy, corresponds to the set of images of the
i-th person.
The scatter matrix within théth cIusterSS), the within-cluster scatter matri,,, the between-

cluster scatter matri¥,, and the total (or mixture) scatter matris, are defined as

SO =" (ar — ) (ar — D)7, (1)
keN;
p p
Sw =25 =" "(ar — ) (ar — V), (2)
i=1 i=1 keN;
p
Si= DS = — o
i=1 keN;
p
= Zni(c(i) —o)(cY — )T, and (3)
i=1

n

Sy = Z(ak —¢c)(ay —c)F
k=1
= Sw + Sb> (4)
respectively [2, 13].
In addition, we can also define virtual “square-root” fastéf,,, H,, and H, of S, S,, and

Sy, respectively, as

H, =[A — C(l)e(l)T’ Ay — 0(2)6(2)T’ A - C(p)e(p)T} c R )
Hy = [yni(e® — o), via(c® — ¢), ..., J/in(c® — )] € R™*, and ®)
Ht:[al_c""7a’n_c]:A—CQTERan’ (7)
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wheree® € R™*! ande € R™! are column vectors where all components are 1's. Then the

scatter matrices can be expressed as
S, = H,H!, S, = H,H], andS; = H.H; (8)

and
p

trace(Sy) Z Z la; — P2 andtrace(S,) = Z Z ¢ — ¢||2. 9

i=1 jEN; =1 jeN;

In the lower dimensional space obtained by a linear transdtion
GT .z e R™! — y e R, (10)
the within-cluster, the between-cluster, and the totattecanatrices become

SY =GTS,G, S =GTS,G, and SY =GTS,G,

w

where the superscript” denotes the scatter matrices in thelimensional space obtained by
applyingG”. In LDA, an optimal linear transformation matri¥” is found so that it minimizes
the within-cluster scatter measuteace(SY) and at the same time, maximizes the between-
cluster scatter measuteace(S) ). This optimization problem of two distinct measures is ligua

replaced with one that maximizes
J(G) = trace((G* S,G) "1 (GT S,Q)). (11)
AssumingS,, = H,HZ is nonsingular, it can be shown that [5, 14]

trace((SY)™1S)) < trace(S,'S,) = Z)‘“

where\;’s are the eigenvalues df,'S,. The upper bound ot (G) is achieved as
mgxtmce((SZ)_ng) = trace(S,,'Sy)

whenG € R™*! consists ofl eigenvectors of5;;1S, corresponding to thé largest eigenvalues
in the eigenvalue problem
S tSyr = A, (12)

where! is the number of nonzero eigenvaluesgf'S,. Since the rank of5, is at mostp — 1,
if we setl = p — 1, and solve forG from Eq. (12), then we can obtain the best dimension

reduction that does not lose the cluster separability nredsoy ¢trace(S,'Sy).
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Algorithm 1 LDA/GSVD
Given a data matrixd € R™*" where the columns are partitioned inialusters, this algorithm

computes the dimension reducing transformatienc R™*~1, For any vectorz € R™*!,

y = GTz ¢ RP~D*1 gives a(p — 1) dimensional representation of

1) ComputeH, € R™*? and H,, € R™*" from A according to Eq. (6) and (5), respectively.

HT
2) Compute the complete orthogonal decompositiod<of bT e Rtn)xm e
H’LU
R 0 .
PTKV = , where P € Ret7)x(+n) and 1V € R™*™ are orthogonal matrices,

0 0
and R is a square matrix withank(K) = rank(R).
3) Lett =rank(K).
4) ComputelV from the SVD of P(1:p,1:t),i.e., UTP(1:p,1: )W =X
R'W 0

5) Compute the firsp — 1 columns ofV , and assign them t6&/.
0 I

One limitation of using the criterig/ (G) is that.S,, must be invertible. However, in many
applications including face recognition, the dimensidgain is often much greater than the
number of dataz, making S,, singular. Expressing as«a?/3%, and using Eqg. (8), Eqg. (12) can
be rewritten as

FH,H 'y = o*H, H z. (13)

Then, this reformulation turns out to be a generalized sdargualue decomposition (GSVD)
problem [15]-[17], and it can give the solution of LDA regkss of the singularity of,,. This
GSVD-based LDA algorithm is summarized in Algorithm 1 LDAB®D. For more details, see
[5, 13].

[1l. HIERARCHICAL LDA (H-LDA)

An assumption of the classical LDA is that the data distidouin each cluster is a unimodal
Gaussian centered at a single centroid. Under this assomptinimizing the criterion expressed
in Eq. (11) gives the optimal solution based on the secondrasttistics over the data. In many

applications, however, the structure of the data cannotrbplg explained by this assumption.
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Relaxing such a simplified assumption, hierarchical LDA () assumes that the data in

clusteri, A;, can be further clustered intg subclusters as
Ai=1An An - Al

where @
Ai]‘ S Rmxn”, Z Nij = Ny.

Let V;; denote the set of column indices that belong to the subelysie clusteri, n;; the
size of V;; and (™) the centroid of each subcluster. In facial image data, thefsenages of a
specific person can be further clustered according to amajlegew, or illumination conditions
for example. Then, we can define the scatter matrix withirckgber; of clusters, Sws , their

sum in clusteri, S%, and the scatter matrix between subclusters in clu;stsfs , respectively,

as
S =" (ax — D) (ar — D), (14)
keN;
' qi
SS) Z Z ar — N (a, — )T and (15)
j=1 j=1 keN;;
Séz) _ Z Z (i) _ (ij) _ C(i))T

Jj=1 keN;

- Z ng; () — D) () — (T (16)
j=1

Then, the within-subcluster scatter matfy, and the between-subcluster scatter masjxare

defined respectively as

p p qi
S = Ys0-Y Y
=1

i=1 j=1
PG
= Z Z (ar — C(ij))(ak _ C(ij))T7 (17)
i=1 j=1 keN;;

July 22, 2008 DRAFT



p
S, = Z S(Z)
o
- Z Z Z () — @) (i) — )T

i=1 j=1 keN;;

p qi
- Z Z ny (€9 — cDy(l) — (T, (18)

i=1 j=1
From the identity
ax — ¢ = (aj, — c(ij)) + (C(ij) _ C(i)) + (C(i) —¢),

it can be proved that
S = Sw. + S, + S (29)

where the between-cluster scatter mafjxs defined as in Eqg. (3). Comparing Eq. (19) with Eq.
(4), the within-cluster scatter matri, in LDA is equivalent to the sum of the within-subcluster

scatter matrixS,,, and the between-subcluster scatter masjx as
Sw = Sw, + Sb,. (20)

Now we propose a new within-cluster scatter mat$fx, which is a convex combination of
Sw. ands,, as
St =aS,, +(1—-a)S,, 0<a<l, (21)

where o determines relative weights betweéh_, and S,,. By replacingS,, with the newly-

definedS”, h-LDA finds the solution that maximizes the new criterion
JNG) = trace((GTS"G)HGT S,G)). (22)

Consider the following three cases:~ 0, « ~ 1, anda = 0.5. Whena ~ 0 (see Figure
2(a)), the within-subcluster scatter mat, is disregarded and the between-subcluster scatter
matrix Sy, is emphasized, which can be considered as the original LOpAexpafter every data
point is relocated to its corresponding subcluster cetitMhena ~ 1 (see Figure 2(b)), h-LDA
minimizes only the within-subcluster radii, disregardihg distances between subclusters within
each cluster. When = 0.5, the within-subcluster scatter matr,, and the between-subcluster
scatter matrixS,, are equally weighted so that h-LDA becomes equivalent to lWyAEQ. (20),
which shows the equivalence of the within-cluster scattatrices between Figure 2(c)-(i) and

2(c)-(ii). Hence, h-LDA can be viewed as a generalization.BA\, and the parametex can be

July 22, 2008 DRAFT



10

Fig. 2. Example of h-LDA and the parameter All data points in each figure belong to one cluster.
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chosen by parameter optimization schemes such as cradati@i in order to attain maximum
classification performance. Considering the motivation -of0JA, attention should be payed to
the case of).5 < o ~ 1 since this can mitigate the unimodal Gaussian assumpti@akness
of the classical LDA, which can produce a transformatiort girajects the points in one cluster
onto essentially one point in the reduced dimensional space

Based on the LDA/GSVD framework [18], the “square-root” tastH,,,, H,,, and H" of
Sw., Sp., and S”, respectively, can also be defined as

H,, = [A;— c(ll)e(ll)T7 ey Argy — C(lql)e(lql)T’

Y

Agy — PDeV" , Agg, — ((242) ¢ (22)"

g e e

ey Apl — C(pl)e(pl)T, ceey qup —_ C(p‘IP)e(p‘ZP)T] 6 Ran7 (23)

Hbs - [\/ nll(c(ll) - C(l))7 SO \/m(c(lth) - C(l))a
A /n21 (c(21) _ 0(2))’ cee /n2q2 (0(2(]2) _ 6(2))7

. /—npqp(c(pqp) _ C(p))’ e /—npqp<c(pqp) _ C(p))] e R™**, (24)
H}, = [VaH,, V1—aH,] (25)
DRAFT
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Algorithm 2 h-LDA/GSVD
Given a data matrixA € R™*" where the columns are partitioned intcclusters, and each of

them is further clustered intg clusters fori =1, ..., p, respectively, this algorithm computes
the dimension reducing transformatich € R™*®-Y, For any vectorz € R™*!, y = GTx €
RP-Dx1 gives a(p — 1) dimensional representation of
1) ComputeH, € R™**, H, € R™" andH,, € R™** from A according to Egs. (6), (23),
and (24), respectively, where= >""_ ¢,.

H,
2) Compute the complete orthogonal decomposition fof = \/aHgS €
Vv1— ozHg;
RPHnts)>xm j g,
R 0
PTKM" = ., Where P € Retnts)x(ptnts) gnd 1/ € R™*™ are orthogonal,

0 0
and R is a square matrix withank(K") = rank(R).

3) Lett =rank(K").
4) Compute W from the SVD of(1 : p,1:¢),i.e, UTP(1:p,1: )W =X.

R'W 0
5) Compute the first — 1 columns ofV/ , and assign them t&'.
0 1
wheres = 37 ¢; ande(™ € R™i*! is a vector where all components are 1's. Then the scatter
matrices can be expressed as
Sw, = Hy H. . S, = Hy H], andS" = H!(H!)". (26)

Based on Algorithm 1 for the LDA/GSVD, the h-LDA/GSVD algdnh is designed and
summarized in Algorithm 2 h-LDA/GSVD.

V. RELATIONSHIP BETWEEN HLDA AND TwO-wAY MANOVA

Multivariate Analysis of Variance (MANOVA) [19, 20] is a hythesis testing method that
determines whether the data of each cluster is significaiiffigrent from each other based on the
data distribution, or equivalently, whether the treatmiactor that assigns different treatments

(or cluster labels) actually indicates a significantly eliéfint data distribution depending on the
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cluster label. For instance, suppose we have two groupsfantitrees and provide only one
group with plenty of water. If we observe the heights of treefr a few months later, probably
the average heights of the two groups would be noticeabferdiit compared to the variation
of heights within each group, and we could conclude that teatinent factor of giving more
water has a significant influence on the data. The observedidahis example is just a one
dimensional value, i.e. heights, but if the dimensionabfythe data becomes larger and the
number of clusters increases, then this test would requm®@ sophisticated measure. This is
the main motivation of MANOVA.

To begin with, MANOVA assumes each cluster is modeled as asSan with its own mean
vector but with a common covariance matrix. It can be eagignghat the estimates of the within-
cluster and the between-cluster covariances correspofd.t¢2) and Eq. (3) respectively, and
Eqg. (4) holds accordingly. Among many of MANOVA tests for tignificant difference between
cluster-wise data distributions, Hotelling-Lawley traest [21] usegrace(S,'S,) as a cluster
separability measure. As shown in Section 2, LDA gives theetision reduced representation
that preserves this measure as in the original space. Tnerdfis interesting to see that although
the objective of LDA is different from that of MANOVA based oHotelling-Lawley trace
measure, they are based on the same measure of class déparatwordingly, the dimension
reduction by LDA would not affect MANOVA tests since LDA pesestrace(S,'S,) in the
lower dimensional space.

Now we apply a similar analogy to the relationship betwedrDiA: and two-way MANOVA.
Starting from the data model of two-way MANOVA, we derive Vigriance decomposition, and
show the equivalence between the Hotelling-Lawley trasedad the h-LDA criterion. In two-
way MANOVA, each datum is assigned a pair of cluster labelsiciv are determined by two
treatment factors. To be more specific in trees case, twdénted factors such as water and
light might be considered as potential treatment factoepdnding on whether sufficient water
and/or light are provided, the heights of trees are obseaged dependent variable. Two-way
MANOVA test determines if each factor has a significant dffec the height of trees as well
as if the two factors are independent or not. For instance&de fecognition, if the first factor
corresponds to person id and the second to angles of view,isege would be given a person
id and an angle value as their label pair.

In two-way MANOVA, the k-th data point with its label paifi, j), which corresponds to the
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i-th treatment from the first factor and theth treatment from the second factor, is modeled as

ap = c+c 49 et (27)
wherec is the global mean;(*) fori = 1, - - - , p is the mean of the data with thieth treatment
from the first factor,c(?) for j = 1, ---, ¢ is the mean of the data with thgth treatment

from the second factor, and; ande¢, are independent and identically distributed (i.i.d.) zero
mean Gaussian random variables. Without loss of general@ycan impose the assumption that
7" =0and} i 9 = 0. The model in Eq. (27) implies that the cluster mean with
label pair (i, j) is represented as an additive model of two independent saltie and (),
with the cluster-wise error termy;. Then the instance-wise error tenis introduced to each
datumzx;,.
The total scatter matrix;, the residual scatter matri¥,, the interaction scatter matri¥;,
the first factor between-cluster scatter matsix and the second factor between-cluster scatter

matrix Sy, are defined respectively as

Sy = ZZ Z (ar, — c)(ap — )"
i=1 j=1 keN;;

n

= Z(ak —c)(a — )7, (28)

k=1
S, = Z Z Z (ar — c(”))(oz;c — c(”))T7 (29)
i=1 j=1 keN;;
P q

Sa = 303 ST () — i) — o) 4 o) (e — o) — ) 4 )T

i=1 j=1 keN;;

p q
- Z Z ni; (¢ — i) — ) 4 ) (i) — i) — ) 4 )T (30)

i=1 j=1

Sno= SO0 ST () (e o7

i=1 j=1 keN;;

= Z n; (™ — ¢)(c®) — )T, (31)
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S = ) ) > (=)D =)

i=1 j=1 keN;;
q . .
= Z (9 —e) (9 — )T (32)
j=1

From the above definitions, the total scatter mafijxn two-way MANOVA is decomposed as

Sy =S, + Sa + Sz + Sr. (33)

Assumingq; = ¢2 = --- = q, = ¢ in h-LDA, the within-subcluster scatter matri%,, in Eq.
(17) becomes the same as the residual scatter métrin Eq. (29). If we view the first factor

labeli as the cluster label of interest in h-LDA, and equate Eq. €f) Eq. (33), we obtain

Sy, = S, + Sio and (34)

s

S, = Sy (35)

Now in two-way MANOVA, the Hotelling-Lawley trace measurgX] the class separability due

to the first and second factors respectively as

H, = tmce(S;ijl) and (36)
Hy = trace(S, " Sp). (37)

By comparing these measures with the statistically-predwted thresholds, it is determined
whether an observed response to the treatment is statissmnificant. Similarly, the Hotelling-
Lawley measure determines whether an interaction betweeractors exists, i.e. whether two

factors are independent of each other, based on
H, = trace(S,S,).

Comparing Eq. (36) with the h-LDA criterion of Eq. (22), theligmn of h-LDA with @ = 1
gives the optimal linear transformation that preservegHbtelling-Lawley trace measurg, in
the two-way MANOVA model. Thus in this particular case @f= 1, we can conclude that the
underlying data model of h-LDA maintains the additive natof two independent factors as in
Eq. (27).
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V. H-LDA wWITH REGULARIZATION (H-RLDA)

Both h-LDA and LDA take into account only the estimates of thistfand the second order
statistics of the data, and the quality of these estimatikssren the number of data items.
In other words, as the number of data items increases, tihmatsts have smaller variances
or smaller deviations from the true underlying values. lis tense, the potential drawback in
h-LDA is that the estimates &f,,, andS,, may not be as confident as that$f due to further
splitting of the data into subclusters. In order to overcdhig problem, we propose introducing

a regularization term int&” in Eq. (22) as
JNG,y) = trace((GT(S" +v1)G)H(GT S,G))
= trace((GT(aS,, + (1 — a)S,, +v)G)H(G'S,G)), (38)

which enables us to avoid the difficulty resulting from theesof each subcluster being too
small by adjusting the value of > 0. The criterion to maximize Eq. (38) is a regularized form
of h-LDA, which we call h-RLDA.

Now we propose an algorithm for h-RLDA based on the efficiegularized LDA algorithm
that was recently proposed in [6].

Although regularized LDA has been commonly used for dimamsieduction of high di-
mensional data in many applications, high dimensionalég cmake the time complexity and
memory requirements very expensive. To cope with this prabkhe algorithms proposed in [6]
utilize QR decomposition for undersampled problem or Chglelecomposition for oversampled
problem as a preprocessing step, and these preprocesssgcstn reduce the problem size and
accordingly the computational complexity dramaticallye \Wscuss our algorithm in detail for
undersampled case, i.e., when the dimensionality is higfean the number of the data. The
oversampled case is analogous.

For any matrixA € R™*™ with m > n, there exists an orthogonal matiix € R™*™ and an
upper triangular matrixz € R™*" such that

a=ol " ) =(a @) OR — QiR

O(m—n)xn (m—n)xn

whereQ; € R™™ andQ, € R™* (™" Then we have

QTA=R, (39)
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and R can be partitioned int& clusters|R; --- R,] as in A, and R; can be further partitioned
into their subcluster$R;; --- R,,,] for i = 1, ..., p where R; = QT A, € R™™ and R;; =

QTA;; e Rv™isfor i = 1,..,pandj =1,..., ¢. Now the following matrices are formed
using R as
]:]ws = [Rll _ é(ll)e(ll)T’ o ’qul _ é(lql)e(1q1)T’

Ry — ¢@DeDT , Rog, — §(202) o(202)"

A é(pl)e(pl)T, T é(pQP)e(qu)T] € RV, (40)
H,, = [ /n_n(é(ll) _ é(l))’ o /—n1q1<é(1q1) _ é(1))7
N (6(21) _ 6(2))7 e \/@(6(2(]2) . 6(2)>,

e/ (60D — &Py e () — o)) e R (41)
H" = [JaH, V1—-aH,], and
H, = [yi(eW —¢),/na(é® —¢), ... Jap(e® —&)] e R, (42)

wheree@ = QTcW) ¢ R, 6@ = QTc) € R ¢ = QTc € R, ands = Y0 ¢ Itis

easy to see that
P[ws = waS, F[bs = {Hbs , }j{b = ?HTIE andf]b = Q{Hb

Then the scatter matrices can be represented as

S, = Hy HY) = QT Hy HY) Q1 = Q7 S0, Q1 (43)
Sy, = L H] = QT H, HL Q1 = Q1 S,,Q1, (44)
Sh = Hh(HM = a8, + (1 — a)S,,, and (45)
Sy = H,H = QT H,H] Q1 = Qf SyQ1. (46)

Suppose we find a matri that minimizesirace(G7 S G) and maximizesrace(G?9,G). Since

GTshG = GT(aSw, + (1 —a)$,)G

= GY(aH, H. + (1 - a)H, H)G (47)
= GTQ{(aH,, H. + (1—a)H, H])Q:G, and (48)
GTSG = GTHH]G=G"QTHH] Q.G = G"QTS,Q.G, (49)
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G = Q.G provides the solution for minimizingrace(G*S"G) and maximizingrace(G S, G),
which is the h-LDA/GSVD solution shown in Algorithm 2. The @ake discussion shows that
preprocessing by the QR decomposition can result in moreiezftty in solving h-LDA/GSVD
since it allows us to manipulate matrices of much smallee,sie.n x n rather thanm x m,
when the dimensiomn of the data is very high while there are not as many data iteesp
with m > n.

We now show that regularization oﬂg with the term~I, is equivalent to regularization on

Sh with the term~1,,. Consider

max trace((GT(S? +41,)@)"1(GT$,G)) and (50)
¢
max trace((GT(S" 4+ ~v1,,)G) " (GT S,@)). (51)

Note that

Sh AL, = <}j{; ﬁ[TL)((jz])T).

Since H'(HMT = QT Hh(H")TQ, and~I, = vQTQ,, we have
St yL = Hiy(HE)" + 71, = Q7 (H(H})" +71n)Q1 = QF (Sh +71.)Q1. (52)
From Egs. (49-50) and (52), we obtain

max trace((GT (Sh +~1,)G) "N (GT5,G)) = maxtrace(GTQT (S + vI,)01G) " H(GT QT 5,Q.G))
G G
= max trace((GT(S" 4+ ~vI1,)G)H(GT S,G)), (53)

where G = Q,G. Eq. (53) shows that the solution obtained from regulaiératafter QR
preprocessing, is equivalent to the LDA with regularizatapplied to the full space.

By applying QR preprocessing followed by regularization tlyakithm 2, we develop the
algorithm for h-RLDA, which is summarized in Algorithm 3.

VI. EXPERIMENTS
A. Experimental Setup

In order to study the practical advantages of h-RLDA, we ha@ied it to a face recognition

problem using Shimon Edelman’s face databa3éis data set contains 28 images that vary

tp://ftp.wisdom.weizmann.ac.il/pub/facebase
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Algorithm 3 h-RLDA/QR-GSVD
Given a data matrixl € R™*" with m > n where the columns are partitioned intelusters, and

each cluster is further clustered infoclusters for; = 1, ..., p, respectively, and a regularization
parametery > 0, this algorithm computes the dimension reducing transéion G € R™* -1,

For any vectorr € R™*!, y = GTx € RP~V*! gives a(p — 1) dimensional representation of

1) Compute the reduced QR decompositiondefi.e.,

A=QR

where@; € R™*" has orthonormal columns arf@d € R™*" is upper triangular.
2) Computefl,, € R™*", H, e R"** andH, € R™** from R according to Egs. (40), (41),
and (42) respectively, where= >""  ¢,.

T
\/5ij . e R(p+2n+s)><n’ i.e_’
Vi,

PTK, = R,, where P, € Rw+2"+5)x" has orthonormal columns arfél, € R"*" is upper

3) Compute the reduced QR decompositorf?qf:

triangular.
4) Computeli’, from the SVD of P,(1:p,1:n), i.e, UTP,(1:p,1: )W, = %,.
5) Solve the triangular systedi, G, = W, (:,1: p — 1) for G.,.
6) G =G,

depending on such factors as angles of view, various illatrons, and facial expressions. We
resized the originab12 x 352 pixel images t®4 x 44 pixel images due to memory restriction in
computation, and preprocessed them using the contrasédiradaptive histogram equalization
scheme [22]. Then each 2-dimensional image is represestadcng column vector by stacking
up the columns. Each image is given a set of labels that comqtarson id, angle of view,
illumination, and facial expression.

Table | shows the data sets for classification experiment®dta 1, 2, and 3, id was set to
the target label to classify as in general face recognitfgplieations, and one of the other labels

was used as the subcluster label for h-RLDA. In Data 4, 5, ardb&|s other than id are used
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as the target label under different subcluster labels. rDmcating labels other than id can be
taken advantage of in various fields of study. For exampleeatieg facial expression is useful
in psychology [23].

The proposed h-RLDA is compared to PCA, LDA/GSVD [1], and TeRaces [10] as a
preprocessing step for dimension reduction in classiboati

PCA does not use any label information while the other metttmdd DA/GSVD uses only
the person id, but h-RLDA and TensorFaces utilize subclusfermation <?>in addition to<?>
person id. For TensorFaces method, first, multilinear tewsa is constructed using all the
available label information. For example, if the data is posed of 10 person20 x 40 pixel
images with variations of 5 angles, 3 illuminations, and ddhexpressions, the size of the data
tensorD would be10 x 5 x 3 x 4 x 800. Then, Higher-Order SVD (HOSVD) [24] is performed
on the tensor dat®. For every possible combination of angles, illuminatioasd expressions,
the dimension reducing matrices of si¥@ x 800 are obtained from the computed core tensor
of HOSVD.

Dimension reducing matrices are then applied to the origiladéa, and/ -nearest neighbor
classification, wherd< = 1, is performed to estimate the label of each test data. In &ise c
of TensorFaces, since it produces multiple dimension riedumatrices, the training and test
images are mapped using each of them, and the closest gramayge to the target test image
is chosen as a candidate in each subspace. Among thoset ¢fas@isng images, one that has
the minimum distance is chosen, and its label is assigneldetaest image.

As a performance measure, we present recognition accaraoak computation time required
for each method. For h-RLDA, the parameterg0 < o < 1) and~ in Eq. (38) were optimized
using k-fold cross-validation with step size 6fl for o, and 27 i = 1,2,---,30 for ~,
respectively. In the case of multiple pairs of valuesxadnd~ produced the best cross-validation
accuracy, we chose the smallest valuefoand then the largest far.

All the experiments were done using Matlab on Windows XP WittGHz CPU with 1.5GB

memory, and the Matlab Tensor ToolBoxas used for TensorFaces algorithm.

2http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/
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Target Label Subcluster Label Training/Test Data #data | #dim
Training : 3 angles of view(0°, £34°), 3 illuminations, 3 facial expressions 729
Data 1 Angle of View
Test : 2 other angles of view(£17°), 3 illuminations, 3 facial expressions 486
i i Training : 5 angles of vieg0®, £17° 4 34°), 2 illuminations, 3 facial expressions 810
Data 2 Person Illumination
Test : 5 angles of vie@0®, £17° + 34°), 1s other illuminations, 3 facial expressions 405
. i Training : 5 angles of vie€0®, +17° =4 34°), 3 illuminations,2 facial expressions 810
Data 3 Facial Expression 2816
Test : 5 angles of vie@d®, +=17° 4= 34°), 3 illuminations,1 other facial expression 405
) Training : 8 persons, 3 illuminations, 3 facial expressions 360
Data 4|| Angle of View
Test :19 other persons, 3 illuminations, 3 facial expressions 855
X . Training : 8 persons, 5 angles of vieW0®, £17° + 34°), 3 facial expressions 360
Data 5 lllumination Person
Test : 19 other persons, 5 angles of vieW0°, £17° &+ 34°), 3 facial expressions 855
X i Training : 8 persons, 5 angles of viey0®, +17° + 34°), 3 illuminations 360
Data 6 || Facial Expression
Test : 19 other persons, 5 angles of vieW0°, +17° + 34°), 3 illuminations 855
B. Results

For six different training/test sets, the recognition aecies of PCA, LDA, TensorFaces,

and h-RLDA are shown in Table Il. Theoretically, the maximuwsgible reduced dimension

isn,p—1, p, andp — 1 for PCA, LDA, TensorFaces, and h-RLDA, respectively, wheres

the number of training data, angis the number of clusters to classify. For fair comparison

in terms of reduced dimension, the results frpnteading eigenvectors and two intermediate

dimensions for PCA are also presented in Table II. In all caseRLDA shows consistently

better performance. Another interesting observationas TlensorFaces did not outperform PCA

as clearly as reported in [10], and it did not perform as welLBA except for Data 4 although

it utilized more information than LDA. Although the diffemee of accuracies between LDA and

h-RLDA was not significant with Data 1, 2, and 3, it was significavith Data 4, 5, and 6. In

general, factors such as illumination and facial expressiay be harder to classify than person

id. They would have distinct subcluster structures depenadn, say, person id, and some of the

subclusters may be rather close to the data with other téabets. For instance, an image with

a smiling facial expression of person #1 may be much closérabwith a frowning expression

of the same person rather than the smiling face image of pet8qsee Figure 4). In this case,

making the distance among the data points in subclustehsnvatcluster shorter may also bring
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TABLE Il

COMPARISON OF FACE RECOGNITION ACCURACIE@Ab)

PCA LDA TensorFaces h-RLDA

Data 1|| Dimension| 729 300 100 27 26 27 26
Accuracy | 88.73% | 89.12% | 87.75% | 81.98% | 96.24% 85.92% 98.59%

Data 2 || Dimension| 810 300 100 27 26 27 26
Accuracy | 86.47% | 85.83% | 85.83% | 80.47% | 97.58% 90.94% 99.82%

Data 3 || Dimension| 810 300 100 27 26 27 26
Accuracy | 87.15% | 87.15% | 88.64% | 83.45% | 98.34% 89.42% 100%

Data 4 || Dimension| 360 150 50 5 4 5 4
Accuracy | 89.27% | 88.89% | 86.12% | 79.83% | 89.27%| 93.63% 95.53%

Data 5| Dimension| 360 150 50 3 2 3 2
Accuracy | 77.72% | 78.26% | 75.84% | 70.29% | 80.15% 64.72% 91.24%

Data 6 || Dimension| 360 150 50 3 2 3 2
Accuracy | 64.19% | 64.91% | 63.53% | 60.42% | 75.83% 69.61% 81.95%

TABLE Il

COMPARISON OF COMPUTATION TIMES IN SECONDS REQUIRED TO RURATA 1IN TABLE |

PCA | LDA/ | TensorFaces h-LDA/ h-RLDA/
GSvD GSVD | QR-regGSVD
Generating dimension reducing matrices or tenso&86 | 25.14 703 32.79 4.15
Performing classification using 1-NN 1.33 | 0.12 1120 0.12 0.12
Total computation time 419 | 25.26 1823 3291 4.27

data points in nearby subclusters from other clusters hegekeeping LDA from separating
different clusters in the reduced space. On the other hafitl,[MA can handle such cases by
adjusting the weights of the within-subcluster and the leetwsubcluster scatter matrices, which
explains the clearer difference in prediction accuracetsvben LDA and h-RLDA in Data 4, 5,
and 6.

In addition, Figure 3 shows the recognition accuracies &fous reduced dimensions in the
case of Data 1, where the reduced dimension can be for lesstlieatheoretically optimal
reduced dimension. In PCA, the reduced space of dimensior(p — 1) was obtained from the

d leading eigenvectors, and in LDA and h-RLDA, theleading generalized singular vectors.
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Fig. 3. Recognition accuracies versus subspace dimensionality of Dsitawin in Table |
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Fig. 4. Example of in facial expression recognition. Images with the dditiecbelong to cluster #1 (smiling facial expression)

and images with the solid line belong to cluster #2 (no facial expressionhvdain be further clustered into three subclusters
depending on person id. Note that images of two different clusters aatelb closely to each other according to person id.
When minimizing within-cluster distances in cluster #2, LDA may be interfaval the images in cluster #1.
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For TensorFaces, since the concept of leading basis vectd#©OSVD is not clear, we only
present the accuracy in full dimensionality. From Figurgv8,can observe that h-RLDA reaches
its maximum performance very fast even with the reduced d#so& of about 10 whereas
LDA requires almost the the theoretically optimal reducédeahsionp — 1 to produce its best
performance. This shows that the quality of the extractedufes of h-RLDA can be much

better than that of LDA especially when the reduced dimengasignificantly smaller than the
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theoretically optimal dimension @f— 1. Such advantages would also be exploited in applications
such as visualization of cluster structures where subatatitnension reduction to the reduced
dimension of 2 or 3 is required.

Finally, Table Il shows the computation time required tm ach method. From this table,
h-RLDA/QR-GSVD proves its efficiency due to QR preprocessingrd_-DA/GSVD and h-
LDA/GSVD, and h-RLDA is much faster than TensorFaces, whiéhhutilize additional label
information other than person id. The reason why 1-NN perforery slow in TensorFaces is
because mapping each test image into derived subspacdgesVimear system solving instead

of simple matrix-vector multiplication [10].

VIl. CONCLUSIONS

In this paper, a novel concept of hierarchical LDA (h-LDA)irgroduced by deriving the
within-cluster scatter matrices using additional infotima available allowing clustering the
data further with subclusters. The new h-LDA generalized #pplicability of LDA to the
cases when the assumption of a unimodal Gaussian model in ahaster is not necessarily
valid. We also presented its theoretical relationship to-tvay MANOVA in the context of
hypothesis testing. Utilizing regularization and adogtihe regularized LDA algorithm with QR
decomposition preprocessing, an efficient regularizedB-I(h-RLDA) algorithm is designed
and hierarchical LDA was successfully applied to the facegaition problem, and demonstrates
superior performance over other methods such as PCA, LDA, Tam$orFaces in terms of

prediction accuracy as well as computational complexity.
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