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Abstract

Linear discriminant analysis (LDA) is a widely-used feature extraction method in classification.

However, the original LDA has limitations due to the assumption of a unimodal structure for each

cluster, which is not satisfied in many applications such as facial image data when variations, e.g.

angle and illumination, can significantly influence the images. In this paper, we propose a novel method

called hierarchical LDA (h-LDA), which takes into account hierarchical subcluster structures of the

data in the LDA formulation and algorithm. We develop a theoretical basis of hierarchical LDA by

identifying its relation to two-way multivariate analysisof variance (MANOVA) based on the data

model and variance decomposition. Furthermore, an efficient algorithm for a regularized version of

h-LDA (h-RLDA) is presented using the QR decomposition and the generalized SVD. To validate

the effectiveness of the proposed method, we compare face recognition performance among h-RLDA,

LDA, PCA, and TensorFaces. Our experiments show that h-RLDAproduces better prediction accuracy

than other methods. When only a small subset of features are used (reduced dimensionality), the

superiority of h-RLDA over other methods becomes more significant. It is also shown that h-RLDA is

a computationally much more efficient alternative to TensorFaces.

Index Terms

Dimension reduction, Feature extraction, Generalized singular value decomposition, QR decompo-

sition, Hierarchical clustering, Undersampled problem, Regularization, Face recognition, Classification

I. I NTRODUCTION

Linear discriminant analysis (LDA) has been one of the most widely-used dimension reduction

methods for classification problems over the past several decades. LDA provides an optimal linear

transformation into a lower dimensional space that preserves the cluster information. In facial

recognition applications, LDA has also proven its capability even when raw pixel values are

used as a feature vector without applying sophisticated feature encoding schemes [1].

Classical LDA relies on the nonsingularity of the scatter matrices, where the number of

data must be greater than the dimensionality, which we call an oversampled case. However,

many modern data sets such as image data are undersampled, and in order to mitigate the

undersampled problem, preprocessing steps such as principal component analysis (PCA) can be

applied prior to LDA [2]–[4]. On the other hand, Park et al. devised an algorithm to directly
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solve the undersampled LDA problem without any additional preprocessing steps by applying

the generalized singular value decomposition (GSVD) [1, 5], and also proposed its efficient and

robust version by applying QR decomposition and regularization [6].

One of the important limitations of LDA is the assumption that each class is modeled as

a unimodal Gaussian that can be fully described only with thefirst and the second order

statistics, i.e. mean and covariance. In reality, there is no guarantee that the data conforms

to such assumptions. Furthermore, when the data is significantly dependent on other factors

than the cluster label of interest, the data corresponding to a particular label may not be simply

modeled as a unimodal Gaussian with a single mean and a covariance. Also, in many applications

such as face recognition, often the factors such as pose and/or illumination produces noticeably

different facial images of the same person.

In order to circumvent such problems, one may apply several variants such as nonparametric

discriminant analysis (NDA) [7] , subclass discriminant analysis (SDA) [8], or regularized LDA

[6, 9]. NDA uses a nonparametric form of the between-clusterscatter matrix to relax the unimodal

Gaussian assumption. SDA applies the multi-modal Gaussianmodel directly by replacing each

cluster centroid with subcluster centroids in the definition of between-cluster scatter matrix.

Although regularized LDA was originally introduced for thepurpose of avoiding singularity of

the within-cluster scatter matrix for undersampled cases,regularization also controls overfitting

by preventing the within-cluster relationship from becoming too tight. Such regularization can

also be viewed as suppressing the effect of the off-diagonalcomponents in the within-cluster

scatter matrix, or equivalently, as imposing the identity covariance matrix as a prior form in a

Bayesian sense.

However, other information can be utilized in addition to the cluster label. In face recognition,

there have been several approaches where various information such as angle, illumination, and/or

pose of images are utilized so that recognition performancecan be enhanced. TensorFaces [10]

has shown its advantages over PCA in face recognition by constructing tensor data structures

based on all the available factors and then by applying N-mode SVD [10].

In this paper, we propose a novel method called hierarchicalLDA (h-LDA) that formulates a

new feature extraction method based on hierarchical cluster structure of depth two in the data. In

h-LDA, clusters are composed of several subclusters determined by other factors than the cluster

label of interest. The data points in a cluster do not have to be close, as in the unimodal Gaussian
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Fig. 1. Assume that the data points belong to two clusters: the triangular pointsbelong to one cluster and the circular points

to the other cluster which can be further clustered into three subclusters. LDA may represent the data from these two clusters

close to each other as a result of minimizing the within-cluster relationship among circular points while h-LDA can avoid this

problem byemphasizing within-subcluster structure.

model, if subclusters are well-separated in the original feature space. In this case, if the data

from other clusters happen to be located in the area surrounded by those subclusters, the classical

LDA would put them close to each other in the reduced dimensional space, deteriorating the

cluster separability (see Figure 1). The criterion of h-LDAdecomposes the within-cluster scatter

matrix at a subcluster level, and enables us to adjust the relative weights of the decomposed

subcluster scatter matrices. Thus, avoiding subcluster mixing.

The rest of this paper is organized as follows. In Section 2, the classical LDA is briefly

reviewed, and h-LDA for data with hierarchical cluster structure is introduced in Section 3.

In Section 4, its relationship to two-way multivariate analysis of variance (MANOVA) in the

context of hypothesis testing is shown, and in Section 5, a regularized version of h-LDA is

proposed. Experimental results on the Shimon Edelman’s face database are reported in Section

6, and finally conclusions are given in Section 7.

II. L INEAR DISCRIMINANT ANALYSIS

In LDA, an optimal dimension-reduced representation of data is obtained by a linear trans-

formation that maximizes theconceptualratio of the between-cluster scatter (variance) versus

the within-cluster scatter of the data. In this section, we present an overview of the basic ideas

of LDA. For more details, refer to [11, 12].

Given a data matrixA = [a1 a2 · · · an] ∈ R
m×n, wheren columnsai, i = 1, . . . , n, of A

representn data items in anm dimensional space, assume that the columns ofA are partitioned
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into p clusters as

A = [A1 A2 · · · Ap],

where

Ai ∈ R
m×ni and

p
∑

i=1

ni = n.

Let Ni denote the set of column indices that belong to clusteri, ni the size ofNi, ak the data

point represented in thek-th column vector ofA, c(i) the centroid of thei-th cluster, andc the

global centroid. For example, in face recognition,Ai corresponds to the set of images of the

i-th person.

The scatter matrix within thei-th clusterS(i)
w , the within-cluster scatter matrixSw, the between-

cluster scatter matrixSb, and the total (or mixture) scatter matrixSt, are defined as

S(i)
w =

∑

k∈Ni

(ak − c(i))(ak − c(i))T , (1)

Sw =

p
∑

i=1

S(i)
w =

p
∑

i=1

∑

k∈Ni

(ak − c(i))(ak − c(i))T , (2)

Sb =

p
∑

i=1

∑

k∈Ni

(c(i) − c)(c(i) − c)T

=

p
∑

i=1

ni(c
(i) − c)(c(i) − c)T , and (3)

St =
n

∑

k=1

(ak − c)(ak − c)T

= Sw + Sb, (4)

respectively [2, 13].

In addition, we can also define virtual “square-root” factors Hw, Hb, andHt of Sw, Sb, and

St, respectively, as

Hw = [A1 − c(1)e(1)T

, A2 − c(2)e(2)T

, . . . , Ap − c(p)e(p)T

] ∈ R
m×n, (5)

Hb = [
√

n1(c
(1) − c),

√
n2(c

(2) − c), . . . ,
√

np(c
(p) − c)] ∈ R

m×p, and (6)

Ht = [a1 − c, . . . , an − c] = A − ceT ∈ R
m×n, (7)
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wheree(i) ∈ R
ni×1 and e ∈ R

n×1 are column vectors where all components are 1’s. Then the

scatter matrices can be expressed as

Sw = HwHT
w , Sb = HbH

T
b , andSt = HtH

T
t , (8)

and

trace(Sw) =

p
∑

i=1

∑

j∈Ni

‖aj − c(i)‖2
2 and trace(Sb) =

p
∑

i=1

∑

j∈Ni

‖c(i) − c‖2
2. (9)

In the lower dimensional space obtained by a linear transformation

GT : x ∈ R
m×1 → y ∈ R

l×1, (10)

the within-cluster, the between-cluster, and the total scatter matrices become

SY
w = GT SwG, SY

b = GT SbG, and SY
t = GT StG,

where the superscriptY denotes the scatter matrices in thel dimensional space obtained by

applyingGT . In LDA, an optimal linear transformation matrixGT is found so that it minimizes

the within-cluster scatter measuretrace(SY
w ) and at the same time, maximizes the between-

cluster scatter measuretrace(SY
b ). This optimization problem of two distinct measures is usually

replaced with one that maximizes

J(G) = trace((GT SwG)−1(GT SbG)). (11)

AssumingSw = HwHT
w is nonsingular, it can be shown that [5, 14]

trace((SY
w )−1SY

b ) ≤ trace(S−1
w Sb) =

∑

i

λi,

whereλi’s are the eigenvalues ofS−1
w Sb. The upper bound onJ(G) is achieved as

max
G

trace((SY
w )−1SY

b ) = trace(S−1
w Sb)

whenG ∈ R
m×l consists ofl eigenvectors ofS−1

w Sb corresponding to thel largest eigenvalues

in the eigenvalue problem

S−1
w Sbx = λx, (12)

wherel is the number of nonzero eigenvalues ofS−1
w Sb. Since the rank ofSb is at mostp − 1,

if we set l = p − 1, and solve forG from Eq. (12), then we can obtain the best dimension

reduction that does not lose the cluster separability measured by trace(S−1
w Sb).
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Algorithm 1 LDA/GSVD
Given a data matrixA ∈ R

m×n where the columns are partitioned intop clusters, this algorithm

computes the dimension reducing transformationG ∈ R
m×(p−1). For any vectorx ∈ R

m×1,

y = GT x ∈ R
(p−1)×1 gives a(p − 1) dimensional representation ofx.

1) ComputeHb ∈ R
m×p andHw ∈ R

m×n from A according to Eq. (6) and (5), respectively.

2) Compute the complete orthogonal decomposition ofK =





HT
b

HT
w



 ∈ R
(p+n)×m, i.e.,

P T KV =





R 0

0 0



 , whereP ∈ R
(p+n)×(p+n) andV ∈ R

m×m are orthogonal matrices,

andR is a square matrix withrank(K) = rank(R).

3) Let t = rank(K).

4) ComputeW from the SVD ofP (1 : p, 1 : t), i.e., UT P (1 : p, 1 : t)W = Σ.

5) Compute the firstp − 1 columns ofV





R−1W 0

0 I



, and assign them toG.

One limitation of using the criteriaJ(G) is that Sw must be invertible. However, in many

applications including face recognition, the dimensionality m is often much greater than the

number of datan, makingSw singular. Expressingλ asα2/β2, and using Eq. (8), Eq. (12) can

be rewritten as

β2HbH
T
b x = α2HwHT

wx. (13)

Then, this reformulation turns out to be a generalized singular value decomposition (GSVD)

problem [15]–[17], and it can give the solution of LDA regardless of the singularity ofSw. This

GSVD-based LDA algorithm is summarized in Algorithm 1 LDA/GSVD. For more details, see

[5, 13].

III. H IERARCHICAL LDA ( H-LDA)

An assumption of the classical LDA is that the data distribution in each cluster is a unimodal

Gaussian centered at a single centroid. Under this assumption, minimizing the criterion expressed

in Eq. (11) gives the optimal solution based on the second order statistics over the data. In many

applications, however, the structure of the data cannot be simply explained by this assumption.

July 22, 2008 DRAFT



8

Relaxing such a simplified assumption, hierarchical LDA (h-LDA) assumes that the data in

clusteri, Ai, can be further clustered intoqi subclusters as

Ai = [Ai1 Ai2 · · · Aiqi
],

where

Aij ∈ R
m×nij ,

qi
∑

j=1

nij = ni.

Let Nij denote the set of column indices that belong to the subcluster j in clusteri, nij the

size ofNij andc(ij) the centroid of each subcluster. In facial image data, the set of images of a

specific person can be further clustered according to anglesof view, or illumination conditions

for example. Then, we can define the scatter matrix within subclusterj of clusteri, S
(ij)
ws , their

sum in clusteri, S
(i)
ws , and the scatter matrix between subclusters in clusteri, S

(i)
bs

, respectively,

as

S(ij)
ws

=
∑

k∈Nij

(ak − c(ij))(ak − c(ij))T , (14)

S(i)
ws

=

qi
∑

j=1

S(ij)
ws

=

qi
∑

j=1

∑

k∈Nij

(ak − c(ij))(ak − c(ij))T , and (15)

S
(i)
bs

=

qi
∑

j=1

∑

k∈Nij

(c(ij) − c(i))(c(ij) − c(i))T

=

qi
∑

j=1

nij(c
(ij) − c(i))(c(ij) − c(i))T . (16)

Then, the within-subcluster scatter matrixSws
and the between-subcluster scatter matrixSbs

are

defined respectively as

Sws
=

p
∑

i=1

S(i)
ws

=

p
∑

i=1

qi
∑

j=1

S(ij)
ws

=

p
∑

i=1

qi
∑

j=1

∑

k∈Nij

(ak − c(ij))(ak − c(ij))T , (17)
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Sbs
=

p
∑

i=1

S
(i)
bs

=

p
∑

i=1

qi
∑

j=1

∑

k∈Nij

(c(ij) − c(i))(c(ij) − c(i))T

=

p
∑

i=1

qi
∑

j=1

ni(c
(ij) − c(i))(c(ij) − c(i))T . (18)

From the identity

ak − c = (ak − c(ij)) + (c(ij) − c(i)) + (c(i) − c),

it can be proved that

St = Sws
+ Sbs

+ Sb (19)

where the between-cluster scatter matrixSb is defined as in Eq. (3). Comparing Eq. (19) with Eq.

(4), the within-cluster scatter matrixSw in LDA is equivalent to the sum of the within-subcluster

scatter matrixSws
and the between-subcluster scatter matrixSbs

as

Sw = Sws
+ Sbs

. (20)

Now we propose a new within-cluster scatter matrixSh
w, which is a convex combination of

Sws
andSbs

as

Sh
w = αSws

+ (1 − α)Sbs
, 0 ≤ α ≤ 1, (21)

whereα determines relative weights betweenSws
and Sbs

. By replacingSw with the newly-

definedSh
w, h-LDA finds the solution that maximizes the new criterion

Jh(G) = trace((GT Sh
wG)−1(GT SbG)). (22)

Consider the following three cases:α ≃ 0, α ≃ 1, and α = 0.5. When α ≃ 0 (see Figure

2(a)), the within-subcluster scatter matrixSws
is disregarded and the between-subcluster scatter

matrix Sbs
is emphasized, which can be considered as the original LDA applied after every data

point is relocated to its corresponding subcluster centroid. Whenα ≃ 1 (see Figure 2(b)), h-LDA

minimizes only the within-subcluster radii, disregardingthe distances between subclusters within

each cluster. Whenα = 0.5, the within-subcluster scatter matrixSws
and the between-subcluster

scatter matrixSbs
are equally weighted so that h-LDA becomes equivalent to LDAby Eq. (20),

which shows the equivalence of the within-cluster scatter matrices between Figure 2(c)-(i) and

2(c)-(ii). Hence, h-LDA can be viewed as a generalization ofLDA, and the parameterα can be
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Fig. 2. Example of h-LDA and the parameterα. All data points in each figure belong to one cluster.

(a) α ≃ 0 (b) α ≃ 1

(c)-(i) α = 0.5 (c)-(ii) α = 0.5

chosen by parameter optimization schemes such as cross-validation in order to attain maximum

classification performance. Considering the motivation of h-LDA, attention should be payed to

the case of0.5 < α ≃ 1 since this can mitigate the unimodal Gaussian assumption weakness

of the classical LDA, which can produce a transformation that projects the points in one cluster

onto essentially one point in the reduced dimensional space.

Based on the LDA/GSVD framework [18], the “square-root” factors Hws
, Hbs

, and Hh
w of

Sws
, Sbs

, andSh
w, respectively, can also be defined as

Hws
= [A11 − c(11)e(11)T

, . . . , A1q1 − c(1q1)e(1q1)T

,

A21 − c(21)e(21)T

, . . . , A2q2 − c(2q2)e(2q2)T

,

. . . , Ap1 − c(p1)e(p1)T

, . . . , Apqp
− c(pqp)e(pqp)T

] ∈ R
m×n, (23)

Hbs
= [

√
n11(c

(11) − c(1)), . . . ,
√

n1q1(c
(1q1) − c(1)),

√
n21(c

(21) − c(2)), . . . ,
√

n2q2(c
(2q2) − c(2)),

. . . ,
√

npqp
(c(pqp) − c(p)), . . . ,

√
npqp

(c(pqp) − c(p))] ∈ R
m×s, (24)

Hh
w = [

√
αHws

√
1 − αHbs

] (25)
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Algorithm 2 h-LDA/GSVD
Given a data matrixA ∈ R

m×n where the columns are partitioned intop clusters, and each of

them is further clustered intoqi clusters fori = 1, . . . , p, respectively, this algorithm computes

the dimension reducing transformationG ∈ R
m×(p−1). For any vectorx ∈ R

m×1, y = GT x ∈
R

(p−1)×1 gives a(p − 1) dimensional representation ofx.

1) ComputeHb ∈ R
m×p, Hws

∈ R
m×n, andHbs

∈ R
m×s from A according to Eqs. (6), (23),

and (24), respectively, wheres =
∑p

i=1 qi.

2) Compute the complete orthogonal decomposition ofKh =











HT
b√

αHT
ws√

1 − αHT
bs











∈

R
(p+n+s)×m, i.e.

P T KhV =





R 0

0 0



 , whereP ∈ R
(p+n+s)×(p+n+s) andV ∈ R

m×m are orthogonal,

andR is a square matrix withrank(Kh) = rank(R).

3) Let t = rank(Kh).

4) Compute W from the SVD ofP (1 : p, 1 : t), i.e., UT P (1 : p, 1 : t)W = Σ.

5) Compute the firstk − 1 columns ofV





R−1W 0

0 I



, and assign them toG.

wheres =
∑p

i=1 qi ande(ij) ∈ R
nij×1 is a vector where all components are 1’s. Then the scatter

matrices can be expressed as

Sws
= Hws

HT
ws

, Sbs
= Hbs

HT
bs

, andSh
w = Hh

w(Hh
w)T . (26)

Based on Algorithm 1 for the LDA/GSVD, the h-LDA/GSVD algorithm is designed and

summarized in Algorithm 2 h-LDA/GSVD.

IV. RELATIONSHIP BETWEEN H-LDA AND TWO-WAY MANOVA

Multivariate Analysis of Variance (MANOVA) [19, 20] is a hypothesis testing method that

determines whether the data of each cluster is significantlydifferent from each other based on the

data distribution, or equivalently, whether the treatmentfactor that assigns different treatments

(or cluster labels) actually indicates a significantly different data distribution depending on the
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cluster label. For instance, suppose we have two groups of infant trees and provide only one

group with plenty of water. If we observe the heights of the trees a few months later, probably

the average heights of the two groups would be noticeably different compared to the variation

of heights within each group, and we could conclude that the treatment factor of giving more

water has a significant influence on the data. The observed data in this example is just a one

dimensional value, i.e. heights, but if the dimensionalityof the data becomes larger and the

number of clusters increases, then this test would require amore sophisticated measure. This is

the main motivation of MANOVA.

To begin with, MANOVA assumes each cluster is modeled as a Gaussian with its own mean

vector but with a common covariance matrix. It can be easily seen that the estimates of the within-

cluster and the between-cluster covariances correspond toEq. (2) and Eq. (3) respectively, and

Eq. (4) holds accordingly. Among many of MANOVA tests for thesignificant difference between

cluster-wise data distributions, Hotelling-Lawley tracetest [21] usestrace(S−1
w Sb) as a cluster

separability measure. As shown in Section 2, LDA gives the dimension reduced representation

that preserves this measure as in the original space. Therefore, it is interesting to see that although

the objective of LDA is different from that of MANOVA based onHotelling-Lawley trace

measure, they are based on the same measure of class separability. Accordingly, the dimension

reduction by LDA would not affect MANOVA tests since LDA preservestrace(S−1
w Sb) in the

lower dimensional space.

Now we apply a similar analogy to the relationship between h-LDA and two-way MANOVA.

Starting from the data model of two-way MANOVA, we derive itsvariance decomposition, and

show the equivalence between the Hotelling-Lawley trace test and the h-LDA criterion. In two-

way MANOVA, each datum is assigned a pair of cluster labels, which are determined by two

treatment factors. To be more specific in trees case, two treatment factors such as water and

light might be considered as potential treatment factors. Depending on whether sufficient water

and/or light are provided, the heights of trees are observedas a dependent variable. Two-way

MANOVA test determines if each factor has a significant effect on the height of trees as well

as if the two factors are independent or not. For instance in face recognition, if the first factor

corresponds to person id and the second to angles of view, each image would be given a person

id and an angle value as their label pair.

In two-way MANOVA, thek-th data point with its label pair(i, j), which corresponds to the
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i-th treatment from the first factor and thej-th treatment from the second factor, is modeled as

xk = c + c(i·) + c(·j) + ǫij + ǫk, (27)

wherec is the global mean,c(i·) for i = 1, · · · , p is the mean of the data with thei-th treatment

from the first factor,c(·j) for j = 1, · · · , q is the mean of the data with thej-th treatment

from the second factor, andǫij and ǫk are independent and identically distributed (i.i.d.) zero

mean Gaussian random variables. Without loss of generality, we can impose the assumption that
∑p

i=1 c(i·) = 0 and
∑q

j=1 c(·j) = 0. The model in Eq. (27) implies that the cluster mean with

label pair (i, j) is represented as an additive model of two independent values, c(i·) and c(·j),

with the cluster-wise error termǫij. Then the instance-wise error termǫk is introduced to each

datumxk.

The total scatter matrixSt, the residual scatter matrixSr, the interaction scatter matrixSi,

the first factor between-cluster scatter matrixSb1 and the second factor between-cluster scatter

matrix Sb2 are defined respectively as

St =

p
∑

i=1

q
∑

j=1

∑

k∈Nij

(ak − c)(ak − c)T

=
n

∑

k=1

(ak − c)(ak − c)T , (28)

Sr =

p
∑

i=1

q
∑

j=1

∑

k∈Nij

(ak − c(ij))(ak − c(ij))T , (29)

Sa =

p
∑

i=1

q
∑

j=1

∑

k∈Nij

(c(ij) − c(i.) − c(.j) + c)(c(ij) − c(i.) − c(.j) + c)T

=

p
∑

i=1

q
∑

j=1

nij(c
(ij) − c(i.) − c(.j) + c)(c(ij) − c(i.) − c(.j) + c)T , (30)

Sb1 =

p
∑

i=1

q
∑

j=1

∑

k∈Nij

(c(i.) − c)(c(i.) − c)T

=

p
∑

i=1

ni.(c
(i.) − c)(c(i.) − c)T , (31)
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Sb2 =

p
∑

i=1

q
∑

j=1

∑

k∈Nij

(c(.j) − c)(c(.j) − c)T

=

q
∑

j=1

n.j(c
(.j) − c)(c(.j) − c)T . (32)

From the above definitions, the total scatter matrixSt in two-way MANOVA is decomposed as

St = Sr + Sa + Sb2 + Sb1. (33)

Assumingq1 = q2 = · · · = qp = q in h-LDA, the within-subcluster scatter matrixSws
in Eq.

(17) becomes the same as the residual scatter matrixSr in Eq. (29). If we view the first factor

label i as the cluster label of interest in h-LDA, and equate Eq. (19)and Eq. (33), we obtain

Sbs
= Sa + Sb2 and (34)

Sb = Sb1. (35)

Now in two-way MANOVA, the Hotelling-Lawley trace measures[21] the class separability due

to the first and second factors respectively as

H1 = trace(S−1
ws

Sb1) and (36)

H2 = trace(S−1
ws

Sb2). (37)

By comparing these measures with the statistically-predetermined thresholds, it is determined

whether an observed response to the treatment is statistically significant. Similarly, the Hotelling-

Lawley measure determines whether an interaction between two factors exists, i.e. whether two

factors are independent of each other, based on

Ha = trace(S−1
ws

Sa).

Comparing Eq. (36) with the h-LDA criterion of Eq. (22), the solution of h-LDA with α = 1

gives the optimal linear transformation that preserves theHotelling-Lawley trace measureH1 in

the two-way MANOVA model. Thus in this particular case ofα = 1, we can conclude that the

underlying data model of h-LDA maintains the additive nature of two independent factors as in

Eq. (27).
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V. H-LDA WITH REGULARIZATION (H-RLDA)

Both h-LDA and LDA take into account only the estimates of the first and the second order

statistics of the data, and the quality of these estimates relies on the number of data items.

In other words, as the number of data items increases, the estimators have smaller variances

or smaller deviations from the true underlying values. In this sense, the potential drawback in

h-LDA is that the estimates ofSws
andSbs

may not be as confident as that ofSw due to further

splitting of the data into subclusters. In order to overcomethis problem, we propose introducing

a regularization term intoSh
w in Eq. (22) as

Jh(G, γ) = trace((GT (Sh
w + γI)G)−1(GT SbG))

= trace((GT (αSws
+ (1 − α)Sbs

+ γI)G)−1(GT SbG)), (38)

which enables us to avoid the difficulty resulting from the size of each subcluster being too

small by adjusting the value ofγ > 0. The criterion to maximize Eq. (38) is a regularized form

of h-LDA, which we call h-RLDA.

Now we propose an algorithm for h-RLDA based on the efficient regularized LDA algorithm

that was recently proposed in [6].

Although regularized LDA has been commonly used for dimension reduction of high di-

mensional data in many applications, high dimensionality can make the time complexity and

memory requirements very expensive. To cope with this problem, the algorithms proposed in [6]

utilize QR decomposition for undersampled problem or Cholesky decomposition for oversampled

problem as a preprocessing step, and these preprocessing steps can reduce the problem size and

accordingly the computational complexity dramatically. We discuss our algorithm in detail for

undersampled case, i.e., when the dimensionality is higherthan the number of the data. The

oversampled case is analogous.

For any matrixA ∈ R
m×n with m ≥ n, there exists an orthogonal matrixQ ∈ R

m×m and an

upper triangular matrixR ∈ R
n×n such that

A = Q





R

0(m−n)×n



 =
(

Q1 Q2

)





R

0(m−n)×n



 = Q1R

whereQ1 ∈ R
m×n andQ2 ∈ R

m×(m−n). Then we have

QT
1 A = R, (39)
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andR can be partitioned intok clusters[R1 · · · Rp] as inA, andRi can be further partitioned

into their subclusters[Ri1 · · · Riqi
] for i = 1, . . . , p where Ri = QT

1 Ai ∈ R
n×ni and Rij =

QT
1 Aij ∈ R

n×nij for i = 1, ..., p and j = 1, . . . , qi. Now the following matrices are formed

usingR as

Ĥws
= [R11 − ĉ(11)e(11)T

, . . . , R1q1 − ĉ(1q1)e(1q1)T

,

R21 − ĉ(21)e(21)T

, . . . , R2q2 − ĉ(2q2)e(2q2)T

,

. . . , Rp1 − ĉ(p1)e(p1)T

, . . . , Rpqp
− ĉ(pqp)e(pqp)T

] ∈ R
n×n, (40)

Ĥbs
= [

√
n11(ĉ

(11) − ĉ(1)), . . . ,
√

n1q1(ĉ
(1q1) − ĉ(1)),

√
n21(ĉ

(21) − ĉ(2)), . . . ,
√

n2q2(ĉ
(2q2) − ĉ(2)),

. . . ,
√

np1(ĉ
(p1) − ĉ(p)), . . . ,

√
npqp

(ĉ(pqp) − ĉ(p))] ∈ R
n×s (41)

Ĥh
w = [

√
αĤws

√
1 − αĤbs

], and

Ĥb = [
√

n1(ĉ
(1) − ĉ),

√
n2(ĉ

(2) − ĉ), . . . ,
√

nk(ĉ
(k) − ĉ)] ∈ R

n×k, (42)

where ĉ(ij) = QT
1 c(ij) ∈ R

n×1, ĉ(i) = QT
1 c(i) ∈ R

n×1, ĉ = QT
1 c ∈ R

n×1, ands =
∑p

i=1 qi. It is

easy to see that

Ĥws
= QT

1 Hws
, Ĥbs

= QT
1 Hbs

, Ĥh
w = QT

1 Hh
w and Ĥb = QT

1 Hb.

Then the scatter matrices can be represented as

Ŝws
= Ĥws

ĤT
ws

= QT
1 Hws

HT
ws

Q1 = QT
1 Sws

Q1, (43)

Ŝbs
= ĤbĤ

T
bs

= QT
1 Hbs

HT
bs

Q1 = QT
1 Sbs

Q1, (44)

Ŝh
w = Ĥh

w(Ĥh
w)T = αŜws

+ (1 − α)Ŝbs
, and (45)

Ŝb = ĤbĤ
T
b = QT

1 HbH
T
b Q1 = QT

1 SbQ1. (46)

Suppose we find a matrix̂G that minimizestrace(ĜT Ŝh
wĜ) and maximizestrace(ĜT ŜbĜ). Since

ĜT Ŝh
wĜ = ĜT (αŜws

+ (1 − α)Ŝbs
)Ĝ

= ĜT (αĤws
ĤT

ws
+ (1 − α)Ĥbs

ĤT
bs

)Ĝ (47)

= ĜT QT
1 (αHws

HT
ws

+ (1 − α)Hbs
HT

bs
)Q1Ĝ, and (48)

ĜT ŜbĜ = ĜT ĤbĤ
T
b Ĝ = ĜT QT

1 HbH
T
b Q1Ĝ = ĜT QT

1 SbQ1Ĝ, (49)
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G = Q1Ĝ provides the solution for minimizingtrace(GT Sh
wG) and maximizingtrace(GT SbG),

which is the h-LDA/GSVD solution shown in Algorithm 2. The above discussion shows that

preprocessing by the QR decomposition can result in more efficiency in solving h-LDA/GSVD

since it allows us to manipulate matrices of much smaller size, i.e.n × n rather thanm × m,

when the dimensionm of the data is very high while there are not as many data items,i.e. n

with m ≫ n.

We now show that regularization on̂Sh
w with the termγIn is equivalent to regularization on

Sh
w with the termγIm. Consider

max
Ĝ

trace((ĜT (Ŝh
w + γIn)Ĝ)−1(ĜT ŜbĜ)) and (50)

max
G

trace((GT (Sh
w + γIm)G)−1(GT SbG)). (51)

Note that

Ŝh
w + γIn =

(

Ĥh
w

√
γIn

)





(Ĥh
w)T

√
γIn



 .

SinceĤh
w(Ĥh

w)T = QT
1 Hh

w(Hh
w)T Q1 andγIn = γQT

1 Q1, we have

Ŝh
w + γIn = Ĥh

w(Ĥh
w)T + γIn = QT

1 (Hh
w(Hh

w)T + γIm)Q1 = QT
1 (Sh

w + γIm)Q1. (52)

From Eqs. (49-50) and (52), we obtain

max
Ĝ

trace((ĜT (Ŝh
w + γIn)Ĝ)−1(ĜT ŜbĜ)) = max

Ĝ

trace((ĜTQT
1 (Sh

w + γIm)Q1Ĝ)−1(ĜT QT
1 SbQ1Ĝ))

= max
G

trace((GT (Sh
w + γIm)G)−1(GT SbG)), (53)

where G = Q1Ĝ. Eq. (53) shows that the solution obtained from regularization, after QR

preprocessing, is equivalent to the LDA with regularization applied to the full space.

By applying QR preprocessing followed by regularization to Algorithm 2, we develop the

algorithm for h-RLDA, which is summarized in Algorithm 3.

VI. EXPERIMENTS

A. Experimental Setup

In order to study the practical advantages of h-RLDA, we have applied it to a face recognition

problem using Shimon Edelman’s face database1. This data set contains 28 images that vary

1ftp://ftp.wisdom.weizmann.ac.il/pub/facebase

July 22, 2008 DRAFT



18

Algorithm 3 h-RLDA/QR-GSVD
Given a data matrixA ∈ R

m×n with m ≥ n where the columns are partitioned intop clusters, and

each cluster is further clustered intoqi clusters fori = 1, . . . , p, respectively, and a regularization

parameterγ > 0, this algorithm computes the dimension reducing transformationG ∈ R
m×(p−1).

For any vectorx ∈ R
m×1, y = GT x ∈ R

(p−1)×1 gives a(p− 1) dimensional representation ofx.

1) Compute the reduced QR decomposition ofA, i.e.,

A = Q1R

whereQ1 ∈ R
m×n has orthonormal columns andR ∈ R

n×n is upper triangular.

2) ComputeĤws
∈ R

n×n, Ĥbs
∈ R

n×s, andĤb ∈ R
n×p from R according to Eqs. (40), (41),

and (42) respectively, wheres =
∑p

i=1 qi.

3) Compute the reduced QR decompositon ofK̂γ =















ĤT
b√

αĤT
ws√

1 − αĤT
bs√

γIn















∈ R
(p+2n+s)×n, i.e.,

P̂ T
γ K̂γ = R̂γ, whereP̂γ ∈ R

(p+2n+s)×n has orthonormal columns and̂Rγ ∈ R
n×n is upper

triangular.

4) ComputeŴγ from the SVD ofP̂γ(1 : p, 1 : n), i.e., ÛT
γ P̂γ(1 : p, 1 : n)Ŵγ = Σ̂γ .

5) Solve the triangular system̂RγĜγ = Ŵγ(:, 1 : p − 1) for Ĝγ.

6) G = Q1Ĝγ.

depending on such factors as angles of view, various illuminations, and facial expressions. We

resized the original512×352 pixel images to64×44 pixel images due to memory restriction in

computation, and preprocessed them using the contrast-limited adaptive histogram equalization

scheme [22]. Then each 2-dimensional image is represented as a long column vector by stacking

up the columns. Each image is given a set of labels that contain person id, angle of view,

illumination, and facial expression.

Table I shows the data sets for classification experiments. In Data 1, 2, and 3, id was set to

the target label to classify as in general face recognition applications, and one of the other labels

was used as the subcluster label for h-RLDA. In Data 4, 5, and 6,labels other than id are used
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as the target label under different subcluster labels. Discriminating labels other than id can be

taken advantage of in various fields of study. For example, detecting facial expression is useful

in psychology [23].

The proposed h-RLDA is compared to PCA, LDA/GSVD [1], and TensorFaces [10] as a

preprocessing step for dimension reduction in classification.

PCA does not use any label information while the other methodsdo. LDA/GSVD uses only

the person id, but h-RLDA and TensorFaces utilize subclusterinformation <?>in addition to<?>

person id. For TensorFaces method, first, multilinear tensor data is constructed using all the

available label information. For example, if the data is composed of 10 persons’20 × 40 pixel

images with variations of 5 angles, 3 illuminations, and 4 facial expressions, the size of the data

tensorD would be10× 5× 3× 4× 800. Then, Higher-Order SVD (HOSVD) [24] is performed

on the tensor dataD. For every possible combination of angles, illuminations,and expressions,

the dimension reducing matrices of size10 × 800 are obtained from the computed core tensor

of HOSVD.

Dimension reducing matrices are then applied to the original data, andK-nearest neighbor

classification, whereK = 1, is performed to estimate the label of each test data. In the case

of TensorFaces, since it produces multiple dimension reducing matrices, the training and test

images are mapped using each of them, and the closest training image to the target test image

is chosen as a candidate in each subspace. Among those closest training images, one that has

the minimum distance is chosen, and its label is assigned to the test image.

As a performance measure, we present recognition accuracies and computation time required

for each method. For h-RLDA, the parametersα (0 ≤ α ≤ 1) andγ in Eq. (38) were optimized

using k-fold cross-validation with step size of0.1 for α, and 2−i, i = 1, 2, · · · , 30 for γ,

respectively. In the case of multiple pairs of values ofα andγ produced the best cross-validation

accuracy, we chose the smallest value forγ and then the largest forα.

All the experiments were done using Matlab on Windows XP with1.6GHz CPU with 1.5GB

memory, and the Matlab Tensor Toolbox2 was used for TensorFaces algorithm.

2http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/
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TABLE I

DESCRIPTION OF DATA SETUP

Target Label Subcluster Label Training/Test Data #data #dim

Data 1 Angle of View
Training : 3 angles of view(0◦,±34◦), 3 illuminations, 3 facial expressions

Test :2 other angles of view(±17◦), 3 illuminations, 3 facial expressions

729

486

Data 2 Person Illumination
Training : 5 angles of view(0◦,±17◦ ± 34◦), 2 illuminations, 3 facial expressions

Test : 5 angles of view(0◦,±17◦ ± 34◦), 1s other illuminations, 3 facial expressions

810

405

Data 3 Facial Expression
Training : 5 angles of view(0◦,±17◦ ± 34◦), 3 illuminations,2 facial expressions

Test : 5 angles of view(0◦,±17◦ ± 34◦), 3 illuminations,1 other facial expression

810

405
2816

Data 4 Angle of View
Training : 8 persons, 3 illuminations, 3 facial expressions

Test :19 other persons, 3 illuminations, 3 facial expressions

360

855

Data 5 Illumination Person
Training : 8 persons, 5 angles of view(0◦,±17◦ ± 34◦), 3 facial expressions

Test :19 other persons, 5 angles of view(0◦,±17◦ ± 34◦), 3 facial expressions

360

855

Data 6 Facial Expression
Training : 8 persons, 5 angles of view(0◦,±17◦ ± 34◦), 3 illuminations

Test :19 other persons, 5 angles of view(0◦,±17◦ ± 34◦), 3 illuminations

360

855

B. Results

For six different training/test sets, the recognition accuracies of PCA, LDA, TensorFaces,

and h-RLDA are shown in Table II. Theoretically, the maximum possible reduced dimension

is n, p − 1, p, andp − 1 for PCA, LDA, TensorFaces, and h-RLDA, respectively, wheren is

the number of training data, andp is the number of clusters to classify. For fair comparison

in terms of reduced dimension, the results fromp leading eigenvectors and two intermediate

dimensions for PCA are also presented in Table II. In all cases, h-RLDA shows consistently

better performance. Another interesting observation is that TensorFaces did not outperform PCA

as clearly as reported in [10], and it did not perform as well as LDA except for Data 4 although

it utilized more information than LDA. Although the difference of accuracies between LDA and

h-RLDA was not significant with Data 1, 2, and 3, it was significant with Data 4, 5, and 6. In

general, factors such as illumination and facial expression may be harder to classify than person

id. They would have distinct subcluster structures depending on, say, person id, and some of the

subclusters may be rather close to the data with other targetlabels. For instance, an image with

a smiling facial expression of person #1 may be much closer tothat with a frowning expression

of the same person rather than the smiling face image of person #2 (see Figure 4). In this case,

making the distance among the data points in subclusters within a cluster shorter may also bring
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TABLE II

COMPARISON OF FACE RECOGNITION ACCURACIES(%)

PCA LDA TensorFaces h-RLDA

Data 1 Dimension 729 300 100 27 26 27 26

Accuracy 88.73% 89.12% 87.75% 81.98% 96.24% 85.92% 98.59%

Data 2 Dimension 810 300 100 27 26 27 26

Accuracy 86.47% 85.83% 85.83% 80.47% 97.58% 90.94% 99.82%

Data 3 Dimension 810 300 100 27 26 27 26

Accuracy 87.15% 87.15% 88.64% 83.45% 98.34% 89.42% 100%

Data 4 Dimension 360 150 50 5 4 5 4

Accuracy 89.27% 88.89% 86.12% 79.83% 89.27% 93.63% 95.53%

Data 5 Dimension 360 150 50 3 2 3 2

Accuracy 77.72% 78.26% 75.84% 70.29% 80.15% 64.72% 91.24%

Data 6 Dimension 360 150 50 3 2 3 2

Accuracy 64.19% 64.91% 63.53% 60.42% 75.83% 69.61% 81.95%

TABLE III

COMPARISON OF COMPUTATION TIMES IN SECONDS REQUIRED TO RUNDATA 1 IN TABLE I

PCA LDA/ TensorFaces h-LDA/ h-RLDA/

GSVD GSVD QR-regGSVD

Generating dimension reducing matrices or tensors2.86 25.14 703 32.79 4.15

Performing classification using 1-NN 1.33 0.12 1120 0.12 0.12

Total computation time 4.19 25.26 1823 32.91 4.27

data points in nearby subclusters from other clusters together, keeping LDA from separating

different clusters in the reduced space. On the other hand, h-RLDA can handle such cases by

adjusting the weights of the within-subcluster and the between-subcluster scatter matrices, which

explains the clearer difference in prediction accuracies between LDA and h-RLDA in Data 4, 5,

and 6.

In addition, Figure 3 shows the recognition accuracies for various reduced dimensions in the

case of Data 1, where the reduced dimension can be for less than the theoretically optimal

reduced dimension. In PCA, the reduced space of dimensiond ≤ (p− 1) was obtained from the

d leading eigenvectors, and in LDA and h-RLDA, thed leading generalized singular vectors.
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Fig. 3. Recognition accuracies versus subspace dimensionality of Data 1shown in Table I
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Fig. 4. Example of in facial expression recognition. Images with the dottedline belong to cluster #1 (smiling facial expression)

and images with the solid line belong to cluster #2 (no facial expression) which can be further clustered into three subclusters

depending on person id. Note that images of two different clusters are located closely to each other according to person id.

When minimizing within-cluster distances in cluster #2, LDA may be interferedwith the images in cluster #1.

For TensorFaces, since the concept of leading basis vectorsin HOSVD is not clear, we only

present the accuracy in full dimensionality. From Figure 3,we can observe that h-RLDA reaches

its maximum performance very fast even with the reduced dimension of about 10 whereas

LDA requires almost the the theoretically optimal reduced dimensionp − 1 to produce its best

performance. This shows that the quality of the extracted features of h-RLDA can be much

better than that of LDA especially when the reduced dimension is significantly smaller than the
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theoretically optimal dimension ofp−1. Such advantages would also be exploited in applications

such as visualization of cluster structures where substantial dimension reduction to the reduced

dimension of 2 or 3 is required.

Finally, Table III shows the computation time required to run each method. From this table,

h-RLDA/QR-GSVD proves its efficiency due to QR preprocessing over LDA/GSVD and h-

LDA/GSVD, and h-RLDA is much faster than TensorFaces, while both utilize additional label

information other than person id. The reason why 1-NN performs very slow in TensorFaces is

because mapping each test image into derived subspaces involves linear system solving instead

of simple matrix-vector multiplication [10].

VII. C ONCLUSIONS

In this paper, a novel concept of hierarchical LDA (h-LDA) isintroduced by deriving the

within-cluster scatter matrices using additional information available allowing clustering the

data further with subclusters. The new h-LDA generalized the applicability of LDA to the

cases when the assumption of a unimodal Gaussian model in each cluster is not necessarily

valid. We also presented its theoretical relationship to two-way MANOVA in the context of

hypothesis testing. Utilizing regularization and adopting the regularized LDA algorithm with QR

decomposition preprocessing, an efficient regularized h-LDA (h-RLDA) algorithm is designed

and hierarchical LDA was successfully applied to the face recognition problem, and demonstrates

superior performance over other methods such as PCA, LDA, andTensorFaces in terms of

prediction accuracy as well as computational complexity.
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