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Abstract

Hierarchical organizations of information processing in the brain networks have been known

to exist and widely studied. To find proper hierarchical structures in the macaque brain, the

traditional methods need the entire pairwise hierarchical relationships between cortical

areas. In this paper, we present a new method that discovers hierarchical structures of

macaque brain networks by using partial information of pairwise hierarchical relationships.

Our method uses a graph-based manifold learning to exploit inherent relationship, and com-

putes pseudo distances of hierarchical levels for every pair of cortical areas. Then, we com-

pute hierarchy levels of all cortical areas by minimizing the sum of squared hierarchical

distance errors with the hierarchical information of few cortical areas. We evaluate our

method on the macaque brain data sets whose true hierarchical levels are known as the

FV91 model. The experimental results show that hierarchy levels computed by our method

are similar to the FV91 model, and its errors are much smaller than the errors of hierarchical

clustering approaches.

Introduction

Hierarchical organization in the brain networks has been known to enable the efficient pro-

cessing of information to support complex brain functions, and it has been studied in various

ways to understand structural and functional brain networks [1, 2]. Among the recent studies,

most of the work can be roughly categorized into the following two types of approaches: find-

ing hierarchical modularity in the brain [3–7], and hierarchical ordering of cortical areas in

the brain [8–14]. The former computes a hierarchy of modules by partitioning the organiza-

tion into submodules without using pairwise hierarchical relationships, but the result may not

reflect the information flow in the brain. Whereas the latter computes hierarchy levels of corti-

cal areas which successfully reflect the information flow, but it needs pairwise hierarchical

relationships.
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Hierarchical ordering of cortical areas in the brain was proposed to provide the under-

standing and insight about cortical structure and function by Felleman and Van Essen (1991)

[8]. To compute hierarchy orders of cortical areas, they first obtained the connectivities of cor-

tical areas which imply the existence of information flow between two cortical areas from tract

tracing experiments. Then, they derived 305 pairwise hierarchical relationships for the 32 cor-

tical areas by observing differential laminar source and termination patterns, and the pairwise

hierarchical relationships consists of three types on the pair of cortical areas which have a con-

nection between them: feedforward, feedback, and lateral. Specifically, the lateral pairwise

hierarchical relationship corresponds to the flow of information between two cortical areas

whose hierarchy levels are the same. The feedforward pairwise hierarchical relationship corre-

sponds to the flow of information from a cortical area of lower hierarchy level to a cortical area

of higher hierarchy level, and the reverse direction flow corresponds the feedback. Especially,

feedforward has two different types of weights which are ascending and strongly ascending,

and feedback also has two different types of weights which are descending and strongly

descending [8, 12]. Based on these extracted pairwise hierarchical relationships, Felleman and

Van Essen proposed the FV91 model which describes 10 discrete hierarchy levels of informa-

tion processing and a global view of areal relations (Table 1) [8]. Similarly, other related studies

also compute hierarchy levels based on the entire pairwise hierarchical relationships [9, 12,

14–17].

Although traditional methods including the FV91 model successfully compute hierarchical

orders of cortical areas in the brain, they need almost the entire pairwise hierarchical relation-

ships to compute hierarchy levels, and the technique of obtaining pairwise hierarchical rela-

tionships is complicated. For example, the technique using invasive method and anatomical

criteria is not applicable to the in vivo human brain, thus there is a very limited amount of

pairwise hierarchical information for human brain. Consequently, we have a question; How

can we compute hierarchy orders of cortical areas by using a restricted amount of pairwise

hierarchical relationships with small errors?

In this paper, we propose a novel method which computes hierarchy orders with the con-

nectivities of cortical areas and a smaller amount of pairwise hierarchical relationships. More

specifically, since the connectivities of cortical areas do not imply the pairwise hierarchical

relationships between cortical areas, we use the pseudo hierarchical distance to overcome the

lack of pairwise hierarchical relationships. Although we use a restricted amount of pairwise

hierarchical relationships, our method computes the hierarchy levels of cortical areas with

small errors. Whereas the traditional approaches need the entire pairwise hierarchical

Table 1. The FV91 model: Hierarchy levels of macaque vision and somatosensory-motor data sets [8].

Hierarchy Level The FV91 Model (vision) The FV91 Model (somatosensory-motor)

9 46 TF TH 35 36

8 STPa AITd AITv SMA 6 ld

7 7a FEF STPp CITd CITv 4 lg

6 VIP LIP MSTd MSTI FST PITd PITv 7a 7b

5 DP VOT Sll

4 MDP MIP PO MT V4t V4 Rl

3 PIP V3A 5

2 V3 VP 2

1 V2 1

0 V1 3a 3b

https://doi.org/10.1371/journal.pone.0177373.t001
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relationships of cortical areas to compute accurate hierarchy levels. In the later sections, we

will provide the motivation and the detailed description of our method. We will also evaluate

our method on the macaque brain data sets, and compare the experimental results with the

variants of FV91 models using the entire pairwise hierarchical relationships and the results of

hierarchical clustering approaches.

Methods

In this section, we propose a novel method that can solve the hierarchical ordering problem by

using the connectivities of cortical areas and the partial information of their pairwise hierar-

chical relationships. We note that the connectivities of cortical areas corresponds to the exis-

tences of information flow between two cortical areas, and do not imply the pairwise

hierarchical relationships between cortical areas. Thus, we define pseudo hierarchical distance
to overcome the lack of pairwise hierarchical relationships, and compute hierarchy levels of

cortical areas by minimizing the hierarchical distance errors. Our method is displayed in Alg

1, and it consists of three parts: manifold learning, modeling the hierarchical distance, mini-

mizing the hierarchical distance errors. We will discuss them in details in the following

sections.

1. Manifold Learning. In this part, we compute the k-dimensional embedding of cortical

areas in the brain by using connectivity of cortical areas without the pairwise hierarchical

relationships, so that we can capture the unseen relationships between cortical areas by

using k-dimensional vectors. Especially, we use Laplacian eigenmap to compute k-dimen-

sional representative vectors given the adjacency matrix of brain connectivity graph.

2. Modeling Hierarchical Distance. We assume that if the information is processed in step-

wise fashion, then the direct interaction between two cortical areas which have a large hier-

archical distance would be relatively rare. Based on this assumption, in this part we

compute similarities s(ui, uj) for every pair of nodes by using k-dimensional embedding,

and define pseudo hierarchical distance μ(ui, uj) by using similarities s(ui, uj) to overcome

the lack of pairwise hierarchical relationships.

3. Minimizing the Hierarchical Distances Errors. In this part, we set the hierarchy level h
(ui) for a few nodes, e.g., h(V1) = 0, and compute hierarchy levels of cortical areas by mini-

mizing the sum of the square of the hierarchical distance errors for all the pairs.

Algorithm 1 Hierarchical Ordering with Partial Pairwise Hierarchical Relationships

Input:The n × n weightedadjacencymatrixW
Output:Hierarchylevelsh = (h(u1), . . ., h(un)) for n corticalareas
1: ManifoldLearning.

Eigen-decomposea directedgraphLaplacianLd definedin Eq (1) with rank-
k and contructY in Eq (2)
ComputeZ in Eq (3) by normalizingrow vectorsof Y

2: ModelingHierarchicalDistance.
Computea regularizedTanimotosimilaritys(ui, uj) for every pair by
usingZ (Eq (4))
Computea pseudohierarchicaldistanceμ(ui, uj) by using s(ui, uj) (Eq (5))

3: Minimizingthe ErrorFunction.
Fix the hierarchylevelfor some corticalareas,e.g.,h(ui) = 0
Computeh = (h(u1), . . ., h(un)) by minimizing∑ui, uj(|h(ui) − h(uj)| − μ(ui,
uj))

2 in the interval[0, K]
Map h(ui) into discretedomain{0, 1, . . ., K}

Hierarchical ordering with partial pairwise hierarchical relationships on the macaque brain data sets
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Manifold learning based on directed normalized Laplacian

Before computing similarities between cortical areas, we first use manifold learning to com-

pute k-dimensional vectors which represent cortical areas in the brain. To computes low-

dimensional representative vectors, we use graph Laplacian eigenmap which is one of the man-

ifold learning techniques, and we will introduce it in this section. We note that we do not use

pairwise hierarchical relationships to compute such low-dimensional embedding, and we only

need connectivity matrix of cortical areas whose weight elements are 0 or 1, where the positive

weight 1 implies the existences of information flow between two cortical areas.

Suppose that two cortical areas are connected or they have relatively many common con-

nected cortical areas. Then, we argue that their k-dimensional representative vectors should be

close to each other. Manifold learning is suitable to compute such representative vectors, since

it computes a low-dimensional representation of the data set which preserves locality proper-

ties [18, 19]. That is, if two points x1 and x2 are similar or close to each other, then f(x1) and f

(x2) are close to each other, where f(x) = (f1(x), . . ., fk(x)) is a k-dimensional representative vec-

tor computed by the manifold learning given the data x.

Laplacian eigenmap is one of the effective manifold learning techniques given the graph G
= (V, E), and it is widely used in data mining and machine learning, where n = |V| [18, 20–22].

Among its variants, combinatorial Laplacian L = (D − W) is the most basic Laplacian operator

given the symmetric graph, where W is the n × n adjacency matrix such that its element Wi,j is

1 when there exist an edge from node ui to uj and zero when there is no edge, and D is the diag-

onal matrix consisting of d(ui) = ∑j Wi,j. We can compute k-dimensional representative vectors

by computing the first k eigenfunctions of Laplacian operator L. There are also normalized

Laplacian matrices of symmetric graph which are Lrw = I − D−1 W and Lsym ¼ I � D� 1
2WD� 1

2.

Since the brain networks are directed, we use directed normalized Laplacian which reflects

information flows to compute k-dimensional representative vectors.

Normalized directed Laplacian Ld is defined as

Ld ¼ I �
Ψ1=2PΨ� 1=2 þΨ� 1=2P>Ψ1=2

2
; ð1Þ

where the Perron vector ψ is the unique left eigenvector corresponding the largest eigenvalue ρ
of the transition matrix P = D−1 W, and C is a n × n diagonal matrix with Cii = ψi. Let Y be

the matrix which consists of the first k eigenvectors of Ld, then row vectors of Y are k-dimen-

sional vectors

Y ¼ ½y
1
; :::; yk� subject to Ldyi ¼ liyi; ð2Þ

where eigenvalues of Ld satisfy 0 = λ1 < λ2� . . .� λn−1, and yi is the first i-th eigenvector of

Ld. Especially, we normalize row vectors of Y so that each row vector lies on the surface of k-

dimensional sphere as

Z ¼ ðdiagðY>YÞÞ� 1Y: ð3Þ

That is, the row vectors of Z in Eq (3) are k-dimensional representative vectors of cortical areas

in the brain.

Modeling the hierarchical distance

In this section, we compute similarities between cortical areas by using k-dimensional repre-

sentative vectors, and model the hierarchical distance to overcome the lack of pairwise hierar-

chical relationships.

Hierarchical ordering with partial pairwise hierarchical relationships on the macaque brain data sets
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We use Tanimoto similarity and k-dimensional representative vectors to compute similari-

ties between cortical areas. Tanimoto Similarity is a generalized version of Jaccard similarity,

which measures the similarities between vectors [23]. For two vectors f(ui) and f(uj), it is

defined as
fðuiÞ

>fðujÞ

kfðuiÞ� fðujÞk22þfðuiÞ
>fðujÞ

. To limit the maximum and minimum values, we define a simi-

larity s(ui, uj) of two cortical areas ui and uj by using regularized Tanimoto similarity

sðui; ujÞ ¼
fðuiÞ

>fðujÞ
k fðuiÞ � fðujÞ k2

2
þfðuiÞ

>fðujÞ þ �
; ð4Þ

where � = 1/δ and s(ui, uj) 2 [−δ, δ].

Now we model the hierarchical distance of every pair based on the similarity s(ui, uj)
defined in Eq (4). Let hðuiÞ 2 R be a hierarchical level of cortical area ui, and zðui; ujÞ 2 R be

an absolute value of difference between hierarchical levels of cortical areas ui and uj, i.e., z(ui,
uj) = |h(ui) − h(uj)|. If we set maxui h(ui) = K and minui h(ui) = 0, then h(ui) 2 [0, K] and z(ui,
uj) 2 [0, K]. Since we do not know the exact z(ui, uj), we introduce a pseudo hierarchical dis-

tance μ(ui, uj) which is an estimated mean of z(ui, uj). We define μ(ui, uj) as

mðui; ujÞ ¼ d � sðui; ujÞ; ð5Þ

where δ = K/2 and � = 1/δ. We note that the pseudo hierarchical distance μ(ui, uj) is in the

interval [0, K]. The pseudo hierarchical distance μ(ui, uj) between cortical areas ui and uj is

small when their similarity s(ui, uj) is large, and μ(ui, uj) is large when their similarity s(ui, uj) is

small.

Minimizing hierarchical distance errors

In this section, we define the objective function based on the pseudo hierarchical distance, and

compute hierarchy levels of all cortical areas by minimizing the objective function.

We note that the hierarchical distances in the graph are symmetric and nonnegative, even if

the graph is directed. Thus, we consider a symmetric objective function, whereas we used the

directed normalized Laplacian in the previous sections. Basically, we want to minimize the

sum of the squared error of z(ui, uj) and μ(ui, uj) for all pairs. However, we do not know the

exact hierarchy levels of all cortical areas Approximate hierarchy levels ~h ¼ ð~hðu1Þ; :::;
~hðunÞÞ

for n cortical areas That is, we set the objective function as

minimize
h

X

ui ;uj

ðzðui; ujÞ � mðui; ujÞÞ
2

¼ minimize
h

X

ui ;uj

ðjhðuiÞ � hðujÞj � mðui; ujÞÞ
2
;

ð6Þ

where h consists of hierarchy levels of cortical areas such that h = (h(u1), . . ., h(un)). The rea-

son of considering all pairs is that the recent studies suggest the importance of role of long-dis-

tance connections in the brain [1, 24–27], and we interpret long-distance connections as paths

between all cortical areas.

We fix the hierarchy levels for specific cortical areas before solving Eq (6), e.g., h(V1) = 0.

Then, we solve Eq (6) to compute hierarchy levels in the continuous domain, i.e., h(ui) 2 [0,

K]. We can use an average of local minimum, since the FV91 model is also just one of the

150,000 equally plausible solution [15]. Next, we map the computed hierarchy levels to the dis-

crete domain {0, 1, 2, . . ., K}, e.g., rounding to integer.

Hierarchical ordering with partial pairwise hierarchical relationships on the macaque brain data sets
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In the experiment section, we will show that we can similarly compute hierarchy levels

compared to the FV91 model with partial pairwise hierarchical relationships. We will assume

that we can relatively easily infer the cortical areas which have the smallest or the largest hierar-

chy level. That is, we will use the partial pairwise hierarchical relationships about only some

cortical areas of the minimum hierarchy level or the highest hierarchy level, and we will fix the

hierarchy levels of a few cortical areas as 0 or K to minimize Eq (6).

Selecting parameters

In Alg 1, we need to select two parameters k and K which are the dimension of Laplacian

eigenmap and the maximum hierarchical level, respectively. We can select them by analyzing

the spectral gap γi of Laplacian which are the differences between eigenvalues s.t. γi = λi − λi+1,

and we can compute them by using the eigen-decomposition of graph Laplacian [22]. We note

that we do not use pairwise hierarchical relationships of cortical areas to compute two parame-

ters k and K, since we need only the connectivity matrix of cortical areas whose weight are 0 or

1 to construct graph Laplacian.

For example, the spectral gaps of directed Laplacian Ld of macaque vision network are dis-

played in Fig 1. The 1st, 2nd, 3rd spectral gaps in Fig 1 are relatively large than others, thus we

can notice that macaque vision cortical areas can be categorized as high-, medium- or low-

level. However, since we want to obtain a more separated hierarchical structure, we select

k = 4. We can also determine the maximum hierarchy level K by using the spectral gaps. In

Fig 1, the five consecutive spectral gaps from the 4th spectral gap are relatively similar, and the

Fig 1. The spectral gaps of directed Laplacian of macaque vision data set. We use the spectral gaps to

select parameters k and K. We compute the spectral gaps by using the eigen-decomposition of graph

Laplacian, and do not use any pairwise hierarchical relationships of cortical areas.

https://doi.org/10.1371/journal.pone.0177373.g001
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9th spectral gap is relatively very small. Thus, we can select 8 as the total number of hierarchy

levels, then the maximum hierarchical level K is 7 when the minimum level is 0, i.e., h(ui) 2 {0,

1, 2, . . ., 7}. Meanwhile, K = 9 or K = 10 are also possible candidates for K according to the dis-

tribution of spectral gap. We note that the maximum level of the FV91 model is 9, and the

maximum level of the modified FV91 model is 10. To compare the FV91 model, we set K = 9

in the experiments.

Experimental results

In this section, we report the experimental results on the macaque brain data sets whose true

hierarchical levels are known as FV91 model. We use the measures which are Pearson Correla-
tion Coefficient (PCC), Mean-Absolute Error (MAE) and Root Mean Square Error (RMSE) for

comparison.

PCCð~xÞ ¼
Pn

i ðxðuiÞ � mÞð~xðuiÞ � ~mÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i ðxðuiÞ � mÞ
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i ð~xðuiÞ � ~mÞ2
q ;

MAEð~xÞ ¼
1

n

Xn

i¼1

jxðuiÞ � ~xðuiÞj;

RMSEð~xÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðxðuiÞ � ~xðuiÞÞ
2

s

;

where ~x ¼ ð~xðu1Þ; :::; ~xðunÞ,m ¼ 1

n

Pn
i xðuiÞ, and ~m ¼ 1

n

Pn
i ~xðuiÞ. The range of PCC is [−1,

1], and the optimum value of PCC is 1. The minimum of both MAE and RMSE are 0. Suppose

that x = (x(u1), . . ., x(un) be the hierarchy levels of FV91 model, and ~x ¼ ð~xðu1Þ; :::; ~xðunÞ be

approximate hierarchy levels computed by other methods. Then, if the approximate solution is

similar with the FV91 model, then PCC will be close to 1, and MAE and RMSE will be small

and close to 0.

We empirically compare our method with the FV91 model [8], hierarchical ordering with

social rank [28], traditional hierarchical clustering [29], and EM-based hierarchical clustering

[30]. We use directed normalized Laplacian for embedding directed graph data set. For tradi-

tional hierarchical clustering (HC), we use pdist.m, linkage.m, and cluster.m function in

MATLAB with 49 different settings. We use 7 different distance metrics in pdist.m for com-

puting pairwise distance between object pairs: Euclidean (Euclid), Standardized Euclidean

(SEuclid), cosine (Cos), correlation (Corr), Chebychev (Cheb), Mahalanobis (Mah), Hamming

(Ham). We also use 7 different methods in linkage.m for computing distance between clusters:

average, centroid, complete, median, single, ward, weighted.

Data sets

Let us remind that we use the connectivities of cortical areas and the partial information of

pairwise hierarchical relationships for our method, and connectivities of cortical areas do not

imply the pairwise hierarchical relationships. The connectivity matrix (adjacency matrix) W

consists of 0 or 1 weights, where Wi,j = 1 means the existences of information flow from i-th

cortical area to j-th cortical area, and Wi,j = 0 means the nonexistence of information flow

from i-th cortical area to j-th cortical area. Since we want to analyze the hierarchical structure

of macaque brain, we use two data sets which are macaque vision and somatosensory-motor

data sets are provided in [8]. We note that if we want to apply our method to other data sets,

we can use the connectivity obtained from fMRI, EEG, MEG, and DTI by the graph theoretical

analysis of structural and functional systems [31].

Hierarchical ordering with partial pairwise hierarchical relationships on the macaque brain data sets
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For macaque vision data, we use the ‘fve32.mat’ file which includes the 32 × 32 adjacency

matrix corresponding to 32 visual cortical areas and their 315 connections. The weights of con-

nections are 0 or 1. For macaque somatosensory-motor data, we use the ‘macaque47.mat’ file

which includes the 47 × 47 adjacency matrix corresponding to both vision and somatosen-

sory-motor systems. We extract the 16 × 16 principal submatrix from the original 47 × 47 adja-

cency matrix to obtain the adjacency matrix of induced subgraph of 16 somatosensory-motor

cortical areas. The weights of connections are also 0 or 1.

Experiments on macaque vision data

In this section, we report the experimental results on the macaque vision data set. We use the

adjacency matrix W which consists of only 0 or 1 values depending on the connection in the

brain. The adjacency matrix W can not describe the pairwise hierarchical relationships such as

feedforward, feedback, and lateral. Thus, we use partial pairwise hierarchical relationships in

addition.

For macaque visual cortex data set, we use the pairwise hierarchical relationships about

only the V1 cortical area whose hierarchy level is the smallest, and fix its hierarchy level as 0

i.e., h(V1) = 0. It corresponds to 5.08% = 16/315 of pairwise hierarchical relationships which

FV91 model used. We run Alg 1 with h(V1) = 0 and Eq (6), and display the averaged results as

the scatter plot in the middle of Fig 2. The scatter plot shows that hierarchy levels computed by

our method are similar to the FV91 model, even though we use a very small amount of pair-

wise hierarchical information compared to the FV91 model and FV91 modified model.

Meanwhile, we get the TH and 46 cortical areas as the top 2 hierarchy levels in the middle

of Fig 2. Hence, it would be reasonable to set h(TH) = K or h(46) = K in addition, where K = 9.

Setting h(V1) = 0 and h(46) = K corresponds to 12.38% of pairwise hierarchical relationships

which FV91 model used, and the experimental result is displayed as the scatter plot in the right

of Fig 2. In the right scatter plot, the cortical areas of high hierarchy levels in the FV91 model

have more accurate hierarchy levels compared to the scatter plot in the middle of Fig 2. Despite

of using partial pairwise hierarchical relationships, the results of our method displayed in the

Fig 2. The scatter plot between the FV91 model [8] and FV91 modified model [12] for the data set of macaque brain vision (left). Comparison

between the results of our method and the FV91 model on the macaque vision data set (middle and right). We used the adjacency matrix and at most

12.38% of pairwise hierarchical relationships which FV91 and FV91 modified models used. Although we used a small partial pairwise hierarchical

relationships, we get similar result with the FV91 and FV91 modified models. The red line is a linear regression line.

https://doi.org/10.1371/journal.pone.0177373.g002
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right scatter plot have high PCC and small errors: PCC = 0.890, MAE = 1.094, and

RMSE = 1.403. The result of FV91 modified model displayed in the left of Fig 2 is slightly bet-

ter than ours: PCC = 0.940, MAE = 0.377, and RMSE = 0.796. However, the FV91 modified

model used the entire pairwise hierarchical relationships, and it can not compute hierarchical

levels of MDP and MIP regions [12]. If we consider the potential errors of MDP and MIP cor-

tical areas in FV91 modified model, then error values of FV91 modified model may be worse.

We also compare the results of our method and various versions of traditional hierarchical

clustering methods [29], and the experimental results are displayed in Fig 3. Although we

select the 7 best results among 49 different settings of hierarchical clustering by considering

low RMSE and high PCC, we can see that the traditional hierarchical clustering algorithms can

not effectively find the hierarchical structures. Since hierarchical clustering just merges (or

splits) clusters in a greedy manner by using cluster dissimilarity, it can not accurately find hier-

archical structures which reflect the information flow in the brain. That is, the assigned cluster

numbers from 0 to K for n nodes can not properly reflect the information flow in the brain.

We can see that the cortical areas of the lowest level in the results of hierarchical clustering

have hierarchical levels from 4 to 6 in the FV91 model. In addition, in the results of

Fig 3. Comparison among the results of the FV91 model [8], our method and traditional hierarchical clustering methods [29] on the macaque

vision data set. The performance is measured by using PCC, MAE, and RMSE. Although our method uses 12.38% of pairwise hierarchical relationships

compared to the FV91 model, we get similar results to the FV91 model. In addition, the errors of our method are much smaller than the errors of traditional

hierarchical clustering methods. The red line is a linear regression line.

https://doi.org/10.1371/journal.pone.0177373.g003
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hierarchical clustering, we can hardly find the differences of hierarchy levels among the corti-

cal areas which have hierarchical levels from 0 to 4 in the FV91 model. Whereas the result of

our method shows an apparent hierarchical structure which is much closer to the FV91 model

than the results of hierarchical clustering. There are also big differences between performances

of our method and hierarchical clustering in terms of PCC, MAE, and RMSE. PCC of our

method is close to the optimum 1, and is much higher than PCC of various hierarchical clus-

tering results. Both MAE and RMSE of our method are much smaller than the results of hierar-

chical clustering.

Finally, we compare the results of our method, hierarchical ordering with social rank [28],

and EM-based hierarchical clustering [30], and the experimental results are displayed in Fig 4.

Although we select the best result of hierarchical ordering with social rank and EM-based hier-

archical clustering by considering low RMSE and high PCC respectively, both methods can

not effectively find the hierarchical structures. We can see that the maximum level in the result

of hierarchical ordering with social rank is just 3, and we can hardly find any similar tendency

between the FV91 model and the results of hierarchical ordering with social rank. We guess

the reason is that the hierarchical property in the social network is quite different with the hier-

archical property in the brain network. We also can not find any advantages of EM-based hier-

archical clustering for hierarchical ordering of cortical areas in Fig 4. The PCC, MAE, and

RMSE of EM-based hierarchical clustering are worse than the results of traditional hierarchical

clustering with SEuclid distance. Thus, there are large differences among the performances of

our method, hierarchical ordering with social rank, and EM-based hierarchical clustering in

terms of PCC, MAE, and RMSE. PCC of our method is much higher than PCC of the two

Fig 4. Comparison among the results of the FV91 model [8], our method, hierarchical ordering with social rank [28], and EM-based hierarchical

clustering [30] on the macaque vision data set. The performance is measured by using PCC, MAE, and RMSE. The result of our method is similar to the

FV91 model. In addition, the errors of our method are much smaller than the errors of hierarchical ordering with social rank, and EM-based hierarchical

clustering.

https://doi.org/10.1371/journal.pone.0177373.g004
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methods, and both MAE and RMSE of our method are also much smaller than the results of

two methods.

Experiments on macaque sensory-motor data

In this section, we report the experimental results on the macaque somatosensory-motor data

set. We compare the FV91 model, hierarchical clustering, and our method. We again use the

adjacency matrix W and partial pairwise hierarchical relationships.

We display the experimental results of our method and the traditional hierarchical cluster-

ing methods [29] on the macaque somatosensory-motor network as the scatter plots in Fig 5.

We run Alg 1 with h(3a), h(3b) = 0 and h(35), h(36) = 9 which correspond to 36.45% of pair-

wise hierarchical relationships which FV91 model used. The top left scatter plot in Fig 5 shows

that hierarchy levels computed by our method are similar to the FV91 model, even though we

use partial pairwise hierarchical relationships. We also run hierarchical clustering with 49 dif-

ferent settings, and select the best result for each distance metric by considering low RMSE

and high PCC. We display these 7 results as the scatter plots in Fig 5. We can see that our

method outperforms various hierarchical clustering approaches. The figures show that the

Fig 5. Comparison among the results of the FV91 model [8], our method and various versions of hierarchical clustering [29] on the macaque

somatosensory-motor data set. The performance is measured by using PCC, MAE, and RMSE. Although our method uses 36.45% pairwise hierarchical

relationships compared to the FV91 model, we get similar results to the FV91 model. In addition, the errors of our method are much smaller than the errors of

hierarchical clustering. The red line is a linear regression line.

https://doi.org/10.1371/journal.pone.0177373.g005
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traditional hierarchical clustering approach can not effectively find the hierarchical structures,

whereas our method finds a similar hierarchical structure to the FV91 model. There are also

big differences between performances of our method and hierarchical clustering approach in

terms of PCC, MAE, and RMSE. PCC of our method is close to the optimum 1, and is much

higher than PCC of various hierarchical clustering results. Both MAE and RMSE of our

method are also much smaller than the results of hierarchical clustering.

Finally, we compare the experimental results of our method, hierarchical ordering with

social rank [28], and EM-based hierarchical clustering [30] on the macaque somatosensory-

motor network in Fig 6. Although we select the best result of hierarchical ordering with social

rank and EM-based hierarchical clustering by considering low RMSE and high PCC respec-

tively, both methods can not find the proper hierarchical structures. In Fig 6, we can see that

the maximum level in the result of hierarchical ordering with social rank is just 2, and we can

hardly find any similar tendency between the FV91 model and the results of hierarchical

ordering with social rank and EM-based hierarchical clustering. PCC of our method is much

higher than PCC of the two methods, and both MAE and RMSE of our method are also much

smaller than the results of two methods. Especially, PCC of hierarchical ordering with social

rank and EM-based hierarchical clustering are -0.628 and 0.063 respectively, and they are poor

results.

Conclusion

In this paper, we suggested a new framework that compute the hierarchy orders of cortical

areas in the macaque brain by using partial pairwise hierarchical relationships. To overcome

the lack of pairwise hierarchical relationships, we used a directed Laplacian eigenmap to

Fig 6. Comparison among the results of the FV91 model [8], our method, hierarchical ordering with social rank [28], and EM-based hierarchical

clustering [30] on the macaque somatosensory-motor data set. The performance is measured by using PCC, MAE, and RMSE. The result of our method

is similar to the FV91 model. The results of our method is superior than the results of hierarchical ordering with social rank and EM-based hierarchical

clustering in terms of PCC, MAE, and RMSE.

https://doi.org/10.1371/journal.pone.0177373.g006
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exploit the inherent topology of the brain networks as a low-dimensional embedding, and we

defined pseudo hierarchical distances for every pair of cortical areas by using the low-dimen-

sional embedding. We computed hierarchy levels of cortical areas by minimizing the sum of

squared hierarchical distance errors with the hierarchical information of few cortical areas.

The experimental results showed that hierarchy levels computed by our method are similar to

the FV91 model, even though we used partial pairwise hierarchical relationships. Furthermore,

we showed that our method outperforms hierarchical clustering methods in terms of several

error measures. Thus, we conclude that our method is quite a good compromise between the

variant of FV91 models and hierarchical clustering method for computing hierarchy orders of

cortical areas in the brain.
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