
22 July/August 2013 Published by the IEEE Computer Society 0272-1716/13/$31.00 © 2013 IEEE

Big-Data Visualization

Customizing Computational
Methods for Visual Analytics
with Big Data
Jaegul Choo and Haesun Park ■ Georgia Tech

Owing to the complexities and obscuri-
ties in large-scale datasets (“big data”),
interest has increased in visual analyt-

ics1,2 (VA) because of humans’ ability to quickly
gain insight through visual analysis and decision
processes. Unfortunately, most state-of-the-art VA

tools or techniques don’t prop-
erly accommodate big data.

The inherent complexities of
VA with big data have two main
causes. The !rst is related to hu-
man perception. When the num-
ber of visualized objects (data
items or features) becomes large,
humans often have dif!culty
extracting meaningful informa-
tion. The second cause is the
limited screen space, which often
leads to signi!cant visual clutter
when a visualization displays too
many data items or features.

To improve visual scalabil-
ity, computational methods can

provide compact, meaningful information about
the raw data. Such methods include dimension
reduction, clustering, and methods that exploit
machine learning and data mining. These meth-
ods’ natural !t and appeal for VA for big data
have led to their integration into VA. However,
by themselves they don’t effectively support real-
time interactive VA for big data. Here, we suggest
ways to customize them to leverage aspects speci!c
to VA environments.

Hurdles to Full Integration
Achieving appropriate integration faces two main
hurdles. First, computational modules and their
output can be dif!cult to understand. Without
deep knowledge about the computational methods
and data, analysts might !nd the methods’ output
more dif!cult to understand than the original raw
data. Many computational algorithms are compli-
cated and often, for the sake of "exibility, involve
parameters that must be carefully determined.
If the analysts don’t understand the parameters’
functions, they might improperly set the param-
eters’ values. Thus, many VA systems choose a
speci!c computational method, treat it as a black
box, and focus on analysis of its output. However,
if the analysts don’t properly understand the algo-
rithm and its parameters, a computational mod-
ule still might not perform well enough to analyze
data properly.

Second, computational methods require signi!-
cant time. Most methods involve heavy computa-
tion. As they become more advanced and capable,
they tend to require more intensive computation.
Such computation usually has a squared or cubic
order of complexity in relation to the number of
data items or features. So, for big data, the signi!-
cant computation time required hinders real-time
visualization and subsequent interaction with the
computational modules.

The most important way over these hurdles is
to make computational methods fast enough to
ensure real-time visualization and interaction in
VA. If computational methods become responsive

Computational methods
can improve the scalability
of visual analytics (VA)
by providing compact,
meaningful information about
the input data. However, the
required computation time
hinders real-time interactive
visualization of big data. By
addressing discrepancies
between these methods and
VA, researchers have proposed
ways to customize them for VA.

 IEEE Computer Graphics and Applications 23

in real time, dif!culties in understanding them
can be partly alleviated by letting users quickly test
them in various ways interactively. An initial solu-
tion for making them fast could be to parallelize
algorithms across multiple cores or CPUs. How-
ever, this requires signi!cant effort and time and
creates signi!cant communication overhead. Fur-
thermore, signi!cant portions of some algorithms
can’t be parallelized. So, although this technique
might achieve a minor amount of speedup, real-
time VA demands much more.

Exploiting Discrepancies
To provide the necessary speed, we exploit sev-
eral crucial discrepancies between computational
methods and VA. To discuss these discrepancies,
we focus on the two aspects of VA we mentioned
earlier: human perception and screen space. Many
computational methods don’t consider these as-
pects because those methods aren’t entirely in-
tended for VA. So, they tend to compute excessively
precise results compared to what humans can per-
ceive in VA. If we could remove excessive computa-
tion, computational methods would become much
faster and allow for real-time interaction while
providing the human eye with comparable visual
results. Here, we examine this excessive computa-
tion in more detail from two angles: precision and
convergence.

Precision
Most computational methods work with the pre-
cision of modern CPUs, which is typically double
precision. This precision gives at least 10 signi!cant
decimal digits, and usually gives 15 to 17 digits.

Perception-based precision. Such precision, how-
ever, might be super"uous for humans’ perception
capability. For example, most people know that
¬ is approximately 3.14. Although some people
might know a more accurate value—for example,
3.141592—many wouldn’t usually care much about
the exact value.

Or, suppose that a document-topic-modeling al-
gorithm gives a certain document’s topical weight
vector as (17.3952%, 78.1541%, 4.4507%) for
three topics: sports, science, and politics. People
will likely perceive a topic’s weight at a precision
of tenths at most (17.4%, 78.2%, 4.5%). However,
having more accurate numbers won’t change their
perception signi!cantly.

Screen-space-wise precision. The precision in VA is
also bound by the limited resolution of the screen
space displaying the computational results. That

is, even though the results are represented in !ne-
grained numbers, they’re quantized into a much
coarser grain owing to the limited resolution.

For example, suppose a force-directed graph
layout method visualizes data in a scatterplot.
The visualization converts the resulting 2D coor-
dinates to the data points’ positions on a screen
with a limited number of pixels. For instance, if
the screen resolution is 1,024 × 768, each 2D co-
ordinate is quantized and mapped to 1,024 and

768 different values, respectively. In most cases,
such a granularity is coarser than what the com-
putational algorithm used—for example, single
or double precision. Therefore, even if the graph
layout computes a 2D coordinate of (1.34643678,
3.02862473), this might be converted to (1.35,
3.03) on the screen. In this sense, computational
algorithms performed at the computers’ precision
level are excessively accurate for visualization.

Convergence
Computational methods have become so compli-
cated that they often have no closed-form solu-
tion. Instead, many of them iteratively re!ne the
solution until it converges to a !nal solution. The
notion of convergence becomes critical in deter-
mining when to terminate the iterations, and al-
gorithms have their own stopping criteria based
on many well-studied theories and principles.

Perception-based convergence. For many computa-
tional methods, one important characteristic of
convergence is that the major re!nement of the so-
lution typically occurs in early iterations, whereas
only minor changes occur in later iterations. Con-
sidering that humans can quickly understand the
overall structure or trend in data, they might be
able to perceive enough information from an inter-
mediate result obtained from an earlier iteration.

For example, many clustering algorithms itera-
tively re!ne the cluster membership or coef!cient
for each data item. More speci!cally, given initial
cluster memberships of data items, k-means clus-
tering,3 a widely used algorithm, alternates two
steps iteratively:

Many computational algorithms are
complicated and often, for the sake of
!exibility, involve parameters that must be
carefully determined.

24 July/August 2013

Big-Data Visualization

1. Compute each cluster’s centroid by averaging
the feature vectors of that cluster’s data items.

2. Update each data item’s cluster assignment on
the basis of its closest cluster centroid.

The iteration terminates when no membership
changes occur.

For instance, we used k-means clustering to
cluster 50,000 Reuter newswire articles into 20
clusters. Figure 1 shows how many cluster mem-
bership changes occurred throughout the 40 itera-
tions. Major changes occurred in only the !rst few
iterations. For instance, fewer than 5 percent of
the data items changed their memberships after
the !fth iteration, as the blue line shows. After
the seventh iteration, more than 90 percent of
the data items had been correctly clustered, as the
red line shows. In addition, each iteration of the
k-means algorithm requires an equal amount of
time. Therefore, most of the time for running the
algorithm could be curtailed because it doesn’t
contribute much to a human’s perception in VA.

Screen-space-wise convergence. The coarse-grained
quantization due to the screen space’s limited
resolution can also affect convergence. To better
describe the idea, we show an example using mul-
tidimensional scaling (MDS), a common compu-
tational method. Basically, MDS tries to preserve
all the pairwise distances or relationships of data
items in the lower-dimensional space, which is
typically a 2D or 3D screen space.

In particular, our example uses nonmetric MDS,
which tries to preserve the distance values’ order-

ings instead of their actual values. Nonmetric
MDS is often better suited to VA than the original
MDS because humans care more about data items’
ordering. However, it requires much more inten-
sive computation than metric MDS.

We used nonmetric MDS on 2,000 data items
consisting of handwritten numbers. Of the 169 it-
erations, major changes occurred in only the !rst
few (see Figure 2a). After the fourth iteration, a
data item’s average pixel-wise coordinate change
was fewer than 10 pixels from the item’s coordi-
nates in the previous iteration, as the blue line
shows. After the 30th iteration, each data item
was on average fewer than 10 pixels away from the
!nal converged coordinate, as the red line shows.
Scatterplots generated by the !fth iteration and
the converged result (see Figures 2b and 2c, re-
spectively) con!rm that the changes between the
two are indeed minor.

Customizing Computational Methods
Here, we suggest how to customize computational
methods by tackling the precision and conver-
gence discrepancies.

Low-Precision Computation
One of the easiest ways to lower precision and thus
accelerate computation is to change double preci-
sion to single precision.

Figure 3 shows the results of using principal
component analysis (PCA)4 to generate a scatter-
plot of facial-image data with single and double
precision. Single precision took much less time, but
the two cases generated almost identical scatter-
plots. After analyzing the exact pixel-wise coordi-
nates at 1,024 × 768 resolution, we found only two
pixel-wise displacements between the two cases.

You could more carefully determine the compu-
tational precision on the basis of human percep-
tion and the screen resolution. For instance, you
could conduct a user study on how signi!cantly a
human’s perception of the results degrades as the
precision decreases. Conversely, you could formu-
late the minimum precision required for a given
resolution of the screen space.

So far, little research has focused on adopting
a lower precision than the standard double preci-
sion to save computation time. Researchers have
studied computation at an arbitrary precision, but
their primary purpose was to support much higher
precision than modern CPUs can handle.5

However, considerably decreasing the precision
might not always achieve computational ef!ciency
owing to hardware issues. Speci!cally, most CPUs
have a "oating-point unit (FPU)—a dedicated

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

No. of iterations

 N
o.

 o
f p

er
-it

er
at

io
n

ch
an

ge
s/

ac
cu

ra
cy

 (
%

)

Accuracy against !nal solution
Per-iteration changes

Figure 1. The relative changes of cluster memberships
between iterations, and the cluster membership
accuracy with respect to the !nal converged solution.
This example used k-means clustering to cluster
50,000 Reuter newswire articles into 20 clusters.
Most of the time for running the algorithm could
be curtailed because it doesn’t contribute much to a
human’s perception in visual analytics (VA).

 IEEE Computer Graphics and Applications 25

coprocessor that specializes in double-precision
"oating-point operations. Therefore, computation
with an arbitrarily low precision can’t easily ben-
e!t from FPUs. Nonetheless, in embedded systems
in mobile devices, which typically use low-cost
microprocessors without an FPU, lowering the
precision can signi!cantly boost interactive visu-
alization applications’ performance.

In addition, such low-precision computation can
turn most computation into !xed-point arithmetic,
which essentially represents a number as an inte-
ger scaled by a speci!c binary or decimal factor. Al-
though !xed-point arithmetic could break down the
numerical stability, embedded systems have actively
used it for ef!cient computation. Extending this idea
to VA could accelerate many computational methods
while maintaining their visual results’ quality when
numerical stability isn’t a critical concern.

Iteration-Level Interactive Visualization
As we discussed before, an algorithm can reach
a viable solution for VA much earlier than its
converged iteration. However, how to determine
such convergence criteria still isn’t clear. Instead,
we propose iteration-level interactive visualization,
which aims at visualizing intermediate results at
various iterations and letting users interact with
those results in real time.

As Figure 4 shows, this approach exploits a use-
ful characteristic of many iterative algorithms—
the intermediate result at each iteration shares
the same form as the !nal output. For instance,
many clustering algorithms, including k-means
clustering (see Figure 1), give the cluster mem-
berships or coef!cients of the entire set of data
items at each iteration and become more re!ned
as iterations proceed. In other words, you don’t
just obtain the clustering result for the !rst item
at the !rst iteration, the result for the second item
at the next iteration, and so on. Therefore, visu-
alizing the intermediate results can provide in-
formation about the entire data, although certain
individual data items might not be as precise in
earlier iterations.

Because this approach dynamically visualizes
the intermediate results, users can quickly get an
overview of them. Furthermore, interaction with
computational methods can become much more
responsive because interactions can be re"ected in
later iterations. So, if users make a speci!c change,
such as a parameter change, to a computational
method, they won’t need to wait through a com-
plete run of iterations to see the change’s results.

Iteration-level visualization isn’t a completely new
idea. For instance, force-directed graphs implemented

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

0.8

–0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

0.8

–0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

Av
er

ag
e

no
. o

f p
ix

el
-w

ise
 c

ha
ng

es

Pixel-wise changes from
!nal solution
Per-iteration pixel-wise changes

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

No. of iterations(a)

(b)

(c)

Figure 2. A scatterplot using nonmetric
multidimensional scaling. (a) The averaged sum of
the horizontal and vertical pixel position differences
for each data item between iterations, and the
same measures with respect to the !nal converged
solution. (b) The scatterplot generated by the
!fth iteration. (c) The scatterplot generated by
the converged result (the 169th iteration). In this
example, we used 2,000 data items consisting of
handwritten numbers and color-coded the number
labels. The changes between Figures 2b and 2c are
minor.

26 July/August 2013

Big-Data Visualization

with the D3 (Data-Driven Documents; http://
d3js.org) or Prefuse (http://prefuse.org) toolkits vi-
sualize data immediately after the !rst iteration.
Nonetheless, we claim that researchers have over-
looked the fact that many computational methods
are iterative.

This neglect is partly because customizing com-
putational methods sometimes requires knowledge
of how they work. For example, people unfamiliar
with eigendecomposition, PCA’s main algorithm,
might consider PCA to be a black-box algorithm.
Actually, eigendecomposition is an iterative al-
gorithm consisting of, say, the power iteration,
Lanczos iteration, and so on. So, you can redesign
PCA for iteration-level visualization. Many other
iterative algorithms could also be customized for
real-time VA.

Iterative Re"nement of Computational Results
Some user interactions might require more precise
information than what we’ve been describing.

One obvious example is zooming in or out.
Suppose the precision and convergence in the al-
gorithm that generated a scatterplot have been ad-
justed on the basis of the screen’s resolution. If the
user zooms in on a speci!c area, the 2D coordinate
information of data items in that area must be
represented with a !ner granularity.

Unlike the traditional approaches that give fully
precise results, our approaches require further
computation to obtain more precise results to sup-
port zoom-in and zoom-out on demand. To im-
prove this situation, we could iteratively re!ne the
computational results to a higher precision. Fig-
ure 5 shows such an example. During re!nement,
each step employed the previous step’s results,
which made each step ef!cient. To determine a
speci!c data item’s position at a higher resolution,
the re!nement needed to examine only the nearby
areas from the previous position.

Research in other domains points to possible
ways to realize this approach. Example techniques
include adaptive mesh re!nement6 in numerical
analysis and wavelet transform7 in image coding
or compression. Applying these ideas to integrate
computational methods in VA would open up an
interesting new research area.

Data Scale Con"nement
As Figure 5a clearly shows, the screen space’s reso-
lution limits the number of data items that can
be visualized. Suppose there are many more data
items than available pixels. Processing the entire
dataset doesn’t make much sense because there’s
no way to visualize all the items.

–0.20
–0.15

–0.10
–0.05 0 0.05 0.10 0.15

0.20 0.25 0.30

–0.20
–0.15

–0.10
–0.05 0 0.05 0.10 0.15

0.20 0.25 0.30

0.3

0.2

0.1

0

–0.1

–0.2

0.3

0.2

0.1

0

–0.1

–0.2

1,000
2,000

3,000
4,000

5,000
6,000

7,000
8,000

9,000
10,000

0

50

100

150

200

250

300

350

400

450

500

No. of data items

Ti
m

e
(s

ec
.)

Double precision
Single precision

(a)

(b)

(c)

Figure 3. Using principal component analysis to
generate scatterplots with single and double
precision. (a) The computation time depending on
the data size. (b) The scatterplot based on single-
precision computation. (c) The scatterplot based
on double-precision computation. This example
used facial-image data. For Figures 3b and 3c, we
visualized 1,420 data items and color-coded them
with their person ID. We represented each data
item as an 11,264-dimensional vector. We found
only two pixel-wise displacements between the
two cases.

 IEEE Computer Graphics and Applications 27

Data scale con!nement is particularly useful for
dealing with computational complexity. In prin-
ciple, as the number of data items increases, the
algorithm complexity can’t be more ef!cient than
O(n), which assumes that every data item is pro-
cessed at least once. Even such ideal complexity
can cause a computational bottleneck in real-time
VA. Having a !xed number of available pixels can
turn algorithmic complexity into O(1), in that you
can visualize only a speci!c number of data items
at most. One of the easiest ways to select this data
subset is random sampling, although you could
adopt other more carefully designed sampling
methods that better represent the entire dataset.

Some user interaction such as zoom-in or zoom-
out might require the computational results for
data items that haven’t yet been processed. In this
case, you can handle the situation through a dif-
ferent kind of ef!cient computation.

For example, suppose you have a large-scale da-
taset for which only a certain subset of the data
has been clustered. To obtain the remaining data
items’ cluster labels, you can apply a simple clas-
si!cation method based on the already computed
clusters.

Or, in the case of dimension reduction, suppose
PCA has been computed on a data subset. You can
project the remaining data onto the same space
via a linear transformation matrix given by PCA.
This is much more ef!cient than computing PCA
on the entire dataset.

Although these approximated approaches can’t
give the exact same results as those generated by

using the entire data from the beginning, they’re
a viable way to ensure real-time VA for big data.

To achieve tight integration between compu-
tational methods and VA, researchers from

each side must care more about the other side. In
particular, researchers who design computational
methods must realize that making an algorithm
more interactive and interpretable in practical
data analysis scenarios is just as important as
addressing practical concerns such as the data’s
maximum applicable size, computation time, and
memory requirements. On the other side, re-
searchers who apply computational methods to VA
need to understand the algorithm details as much
as possible and tailor them to make them blend
well in real-time VA.

Acknowledgments
US National Science Foundation (NSF) grant CCF-
0808863 partly supported this research. Any opin-
ions, !ndings, and conclusions or recommendations
in this article are the authors’ and don’t necessarily
re"ect the NSF’s views.

References
 1. D. Keim, “Information Visualization and Visual

Data Mining,” IEEE Trans. Visualization and Computer
Graphics, vol. 8, no. 1, 2002, pp. 1–8.

 2. J. Thomas and K. Cook, Illuminating the Path: The

(a)

Subroutine 1 Subroutine k…

Computational module

Output Visualization/summarization

Iterate

(b)

Subroutine 1 Subroutine k…

Computational module

Output Visualization/summarization

Iterate

Interaction

Interaction

Figure 4. Two approaches to applying computational methods to VA. (a) In the standard approach,
visualization and interaction occur only after the computational module !nishes its iterations. (b) In iteration-
level interactive visualization, intermediate results are visualized dynamically; users can interact with the
computational module during iterations.

28 July/August 2013

Big-Data Visualization

Research and Development Agenda for Visual Analytics,
IEEE CS, 2005.

 3. C. Bishop, Pattern Recognition and Machine Learning,
Springer, 2006.

 4. I.T. Jolliffe, Principal Component Analysis, Springer,
1986.

 5. D. Knuth, The Art of Computer Programming,
Addison-Wesley, 2006.

 6. M. Berger and P. Colella, “Local Adaptive Mesh
Re!nement for Shock Hydrodynamics,” J. Computa-
tional Physics, vol. 82, no. 1, 1989, pp. 64–84.

 7. C.K. Chui, An Introduction to Wavelets, Academic
Press, 1992.

Jaegul Choo is a research scientist and PhD candidate in
computational science and engineering at Georgia Tech. His
research interests include visualization, data mining, and
machine learning, focusing on dimension reduction and
clustering methods. Choo received an MS in electrical en-
gineering from Georgia Tech. Contact him at jaegul.choo@
cc.gatech.edu.

Haesun Park is a professor and an associate chair in Geor-
gia Tech’s School of Computational Science and Engineer-
ing. She’s also the director of the Foundations of Data and
Visual Analytics center and executive director of the Center
for Data Analytics, both at Georgia Tech. Her research in-
terests include numerical algorithms, data analysis, visual
analytics, text mining, and parallel computing. Park received
a PhD in computer science from Cornell University. She’s
a Society for Industrial and Applied Mathematics Fellow.
Contact her at hpark@cc.gatech.edu.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

ZZZ�FRPSXWHU�RUJ�LWSUR

(a)

(b)

(c)

0 16
0

12

0 48
0

36

0 80
0

60

Figure 5. Hierarchical precision re!nement of
computational results for a scatterplot at (a) 16 × 12,
(b) 48 × 36, and (c) 80 × 60 resolution. This !gure
uses the same data and method as in Figure 3. To
determine a speci!c data item’s position at a higher
resolution, the re!nement needed to examine only
the nearby areas from the previous position.

