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Customizing Computational 
Methods for Visual Analytics  
with Big Data
Jaegul Choo and Haesun Park ■ Georgia Tech

Owing to the complexities and obscuri-
ties in large-scale datasets (“big data”), 
interest has increased in visual analyt-

ics1,2 (VA) because of humans’ ability to quickly 
gain insight through visual analysis and decision 
processes. Unfortunately, most state-of-the-art VA 

tools or techniques don’t prop-
erly accommodate big data.

The inherent complexities of 
VA with big data have two main 
causes. The !rst is related to hu-
man perception. When the num-
ber of visualized objects (data 
items or features) becomes large, 
humans often have dif!culty 
extracting meaningful informa-
tion. The second cause is the 
limited screen space, which often 
leads to signi!cant visual clutter 
when a visualization displays too 
many data items or features.

To improve visual scalabil-
ity, computational methods can 

provide compact, meaningful information about 
the raw data. Such methods include dimension 
reduction, clustering, and methods that exploit 
machine learning and data mining. These meth-
ods’ natural !t and appeal for VA for big data 
have led to their integration into VA. However, 
by themselves they don’t effectively support real-
time interactive VA for big data. Here, we suggest 
ways to customize them to leverage aspects speci!c 
to VA environments.

Hurdles to Full Integration
Achieving appropriate integration faces two main 
hurdles. First, computational modules and their 
output can be dif!cult to understand. Without 
deep knowledge about the computational methods 
and data, analysts might !nd the methods’ output 
more dif!cult to understand than the original raw 
data. Many computational algorithms are compli-
cated and often, for the sake of "exibility, involve 
parameters that must be carefully determined. 
If the analysts don’t understand the parameters’ 
functions, they might improperly set the param-
eters’ values. Thus, many VA systems choose a 
speci!c computational method, treat it as a black 
box, and focus on analysis of its output. However, 
if the analysts don’t properly understand the algo-
rithm and its parameters, a computational mod-
ule still might not perform well enough to analyze 
data properly.

Second, computational methods require signi!-
cant time. Most methods involve heavy computa-
tion. As they become more advanced and capable, 
they tend to require more intensive computation. 
Such computation usually has a squared or cubic 
order of complexity in relation to the number of 
data items or features. So, for big data, the signi!-
cant computation time required hinders real-time 
visualization and subsequent interaction with the 
computational modules.

The most important way over these hurdles is 
to make computational methods fast enough to 
ensure real-time visualization and interaction in 
VA. If computational methods become responsive 
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addressing discrepancies 
between these methods and 
VA, researchers have proposed 
ways to customize them for VA.
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in real time, dif!culties in understanding them 
can be partly alleviated by letting users quickly test 
them in various ways interactively. An initial solu-
tion for making them fast could be to parallelize 
algorithms across multiple cores or CPUs. How-
ever, this requires signi!cant effort and time and 
creates signi!cant communication overhead. Fur-
thermore, signi!cant portions of some algorithms 
can’t be parallelized. So, although this technique 
might achieve a minor amount of speedup, real-
time VA demands much more.

Exploiting Discrepancies
To provide the necessary speed, we exploit sev-
eral crucial discrepancies between computational 
methods and VA. To discuss these discrepancies, 
we focus on the two aspects of VA we mentioned 
earlier: human perception and screen space. Many 
computational methods don’t consider these as-
pects because those methods aren’t entirely in-
tended for VA. So, they tend to compute excessively 
precise results compared to what humans can per-
ceive in VA. If we could remove excessive computa-
tion, computational methods would become much 
faster and allow for real-time interaction while 
providing the human eye with comparable visual 
results. Here, we examine this excessive computa-
tion in more detail from two angles: precision and 
convergence.

Precision
Most computational methods work with the pre-
cision of modern CPUs, which is typically double 
precision. This precision gives at least 10 signi!cant 
decimal digits, and usually gives 15 to 17 digits.

Perception-based precision. Such precision, how-
ever, might be super"uous for humans’ perception 
capability. For example, most people know that 
¬ is approximately 3.14. Although some people 
might know a more accurate value—for example, 
3.141592—many wouldn’t usually care much about 
the exact value.

Or, suppose that a document-topic-modeling al-
gorithm gives a certain document’s topical weight 
vector as (17.3952%, 78.1541%, 4.4507%) for 
three topics: sports, science, and politics. People 
will likely perceive a topic’s weight at a precision 
of tenths at most (17.4%, 78.2%, 4.5%). However, 
having more accurate numbers won’t change their 
perception signi!cantly.

Screen-space-wise precision. The precision in VA is 
also bound by the limited resolution of the screen 
space displaying the computational results. That 

is, even though the results are represented in !ne-
grained numbers, they’re quantized into a much 
coarser grain owing to the limited resolution.

For example, suppose a force-directed graph 
layout method visualizes data in a scatterplot. 
The visualization converts the resulting 2D coor-
dinates to the data points’ positions on a screen 
with a limited number of pixels. For instance, if 
the screen resolution is 1,024 × 768, each 2D co-
ordinate is quantized and mapped to 1,024 and 

768 different values, respectively. In most cases, 
such a granularity is coarser than what the com-
putational algorithm used—for example, single 
or double precision. Therefore, even if the graph 
layout computes a 2D coordinate of (1.34643678, 
3.02862473), this might be converted to (1.35, 
3.03) on the screen. In this sense, computational 
algorithms performed at the computers’ precision 
level are excessively accurate for visualization.

Convergence
Computational methods have become so compli-
cated that they often have no closed-form solu-
tion. Instead, many of them iteratively re!ne the 
solution until it converges to a !nal solution. The 
notion of convergence becomes critical in deter-
mining when to terminate the iterations, and al-
gorithms have their own stopping criteria based 
on many well-studied theories and principles.

Perception-based convergence. For many computa-
tional methods, one important characteristic of 
convergence is that the major re!nement of the so-
lution typically occurs in early iterations, whereas 
only minor changes occur in later iterations. Con-
sidering that humans can quickly understand the 
overall structure or trend in data, they might be 
able to perceive enough information from an inter-
mediate result obtained from an earlier iteration.

For example, many clustering algorithms itera-
tively re!ne the cluster membership or coef!cient 
for each data item. More speci!cally, given initial 
cluster memberships of data items, k-means clus-
tering,3 a widely used algorithm, alternates two 
steps iteratively:

Many computational algorithms are 
complicated and often, for the sake of 
!exibility, involve parameters that must be 
carefully determined. 
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1. Compute each cluster’s centroid by averaging 
the feature vectors of that cluster’s data items.

2. Update each data item’s cluster assignment on 
the basis of its closest cluster centroid.

The iteration terminates when no membership 
changes occur.

For instance, we used k-means clustering to 
cluster 50,000 Reuter newswire articles into 20 
clusters. Figure 1 shows how many cluster mem-
bership changes occurred throughout the 40 itera-
tions. Major changes occurred in only the !rst few 
iterations. For instance, fewer than 5 percent of 
the data items changed their memberships after 
the !fth iteration, as the blue line shows. After 
the seventh iteration, more than 90 percent of 
the data items had been correctly clustered, as the 
red line shows. In addition, each iteration of the 
k-means algorithm requires an equal amount of 
time. Therefore, most of the time for running the 
algorithm could be curtailed because it doesn’t 
contribute much to a human’s perception in VA.

Screen-space-wise convergence. The coarse-grained 
quantization due to the screen space’s limited 
resolution can also affect convergence. To better 
describe the idea, we show an example using mul-
tidimensional scaling (MDS), a common compu-
tational method. Basically, MDS tries to preserve 
all the pairwise distances or relationships of data 
items in the lower-dimensional space, which is 
typically a 2D or 3D screen space.

In particular, our example uses nonmetric MDS, 
which tries to preserve the distance values’ order-

ings instead of their actual values. Nonmetric 
MDS is often better suited to VA than the original 
MDS because humans care more about data items’ 
ordering. However, it requires much more inten-
sive computation than metric MDS.

We used nonmetric MDS on 2,000 data items 
consisting of handwritten numbers. Of the 169 it-
erations, major changes occurred in only the !rst 
few (see Figure 2a). After the fourth iteration, a 
data item’s average pixel-wise coordinate change 
was fewer than 10 pixels from the item’s coordi-
nates in the previous iteration, as the blue line 
shows. After the 30th iteration, each data item 
was on average fewer than 10 pixels away from the 
!nal converged coordinate, as the red line shows. 
Scatterplots generated by the !fth iteration and 
the converged result (see Figures 2b and 2c, re-
spectively) con!rm that the changes between the 
two are indeed minor.

Customizing Computational Methods
Here, we suggest how to customize computational 
methods by tackling the precision and conver-
gence discrepancies.

Low-Precision Computation
One of the easiest ways to lower precision and thus 
accelerate computation is to change double preci-
sion to single precision.

Figure 3 shows the results of using principal 
component analysis (PCA)4 to generate a scatter-
plot of facial-image data with single and double 
precision. Single precision took much less time, but 
the two cases generated almost identical scatter-
plots. After analyzing the exact pixel-wise coordi-
nates at 1,024 × 768 resolution, we found only two 
pixel-wise displacements between the two cases.

You could more carefully determine the compu-
tational precision on the basis of human percep-
tion and the screen resolution. For instance, you 
could conduct a user study on how signi!cantly a 
human’s perception of the results degrades as the 
precision decreases. Conversely, you could formu-
late the minimum precision required for a given 
resolution of the screen space.

So far, little research has focused on adopting 
a lower precision than the standard double preci-
sion to save computation time. Researchers have 
studied computation at an arbitrary precision, but 
their primary purpose was to support much higher 
precision than modern CPUs can handle.5

However, considerably decreasing the precision 
might not always achieve computational ef!ciency 
owing to hardware issues. Speci!cally, most CPUs 
have a "oating-point unit (FPU)—a dedicated 
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Figure 1. The relative changes of cluster memberships 
between iterations, and the cluster membership 
accuracy with respect to the !nal converged solution. 
This example used k-means clustering to cluster 
50,000 Reuter newswire articles into 20 clusters. 
Most of the time for running the algorithm could 
be curtailed because it doesn’t contribute much to a 
human’s perception in visual analytics (VA).
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coprocessor that specializes in double-precision 
"oating-point operations. Therefore, computation 
with an arbitrarily low precision can’t easily ben-
e!t from FPUs. Nonetheless, in embedded systems 
in mobile devices, which typically use low-cost 
microprocessors without an FPU, lowering the 
precision can signi!cantly boost interactive visu-
alization applications’ performance.

In addition, such low-precision computation can 
turn most computation into !xed-point arithmetic, 
which essentially represents a number as an inte-
ger scaled by a speci!c binary or decimal factor. Al-
though !xed-point arithmetic could break down the 
numerical stability, embedded systems have actively 
used it for ef!cient computation. Extending this idea 
to VA could accelerate many computational methods 
while maintaining their visual results’ quality when 
numerical stability isn’t a critical concern.

Iteration-Level Interactive Visualization
As we discussed before, an algorithm can reach 
a viable solution for VA much earlier than its 
converged iteration. However, how to determine 
such convergence criteria still isn’t clear. Instead, 
we propose iteration-level interactive visualization, 
which aims at visualizing intermediate results at 
various iterations and letting users interact with 
those results in real time.

As Figure 4 shows, this approach exploits a use-
ful characteristic of many iterative algorithms—
the intermediate result at each iteration shares 
the same form as the !nal output. For instance, 
many clustering algorithms, including k-means 
clustering (see Figure 1), give the cluster mem-
berships or coef!cients of the entire set of data 
items at each iteration and become more re!ned 
as iterations proceed. In other words, you don’t 
just obtain the clustering result for the !rst item 
at the !rst iteration, the result for the second item 
at the next iteration, and so on. Therefore, visu-
alizing the intermediate results can provide in-
formation about the entire data, although certain 
individual data items might not be as precise in 
earlier iterations.

Because this approach dynamically visualizes 
the intermediate results, users can quickly get an 
overview of them. Furthermore, interaction with 
computational methods can become much more 
responsive because interactions can be re"ected in 
later iterations. So, if users make a speci!c change, 
such as a parameter change, to a computational 
method, they won’t need to wait through a com-
plete run of iterations to see the change’s results.

Iteration-level visualization isn’t a completely new 
idea. For instance, force-directed graphs implemented 
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Figure 2. A scatterplot using nonmetric 
multidimensional scaling. (a) The averaged sum of 
the horizontal and vertical pixel position differences 
for each data item between iterations, and the 
same measures with respect to the !nal converged 
solution. (b) The scatterplot generated by the 
!fth iteration. (c) The scatterplot generated by 
the converged result (the 169th iteration). In this 
example, we used 2,000 data items consisting of 
handwritten numbers and color-coded the number 
labels. The changes between Figures 2b and 2c are 
minor.
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with the D3 (Data-Driven Documents; http://
d3js.org) or Prefuse (http://prefuse.org) toolkits vi-
sualize data immediately after the !rst iteration. 
Nonetheless, we claim that researchers have over-
looked the fact that many computational methods 
are iterative.

This neglect is partly because customizing com-
putational methods sometimes requires knowledge 
of how they work. For example, people unfamiliar 
with eigendecomposition, PCA’s main algorithm, 
might consider PCA to be a black-box algorithm. 
Actually, eigendecomposition is an iterative al-
gorithm consisting of, say, the power iteration, 
Lanczos iteration, and so on. So, you can redesign 
PCA for iteration-level visualization. Many other 
iterative algorithms could also be customized for 
real-time VA.

Iterative Re"nement of Computational Results
Some user interactions might require more precise 
information than what we’ve been describing.

One obvious example is zooming in or out. 
Suppose the precision and convergence in the al-
gorithm that generated a scatterplot have been ad-
justed on the basis of the screen’s resolution. If the 
user zooms in on a speci!c area, the 2D coordinate 
information of data items in that area must be 
represented with a !ner granularity.

Unlike the traditional approaches that give fully 
precise results, our approaches require further 
computation to obtain more precise results to sup-
port zoom-in and zoom-out on demand. To im-
prove this situation, we could iteratively re!ne the 
computational results to a higher precision. Fig-
ure 5 shows such an example. During re!nement, 
each step employed the previous step’s results, 
which made each step ef!cient. To determine a 
speci!c data item’s position at a higher resolution, 
the re!nement needed to examine only the nearby 
areas from the previous position.

Research in other domains points to possible 
ways to realize this approach. Example techniques 
include adaptive mesh re!nement6 in numerical 
analysis and wavelet transform7 in image coding 
or compression. Applying these ideas to integrate 
computational methods in VA would open up an 
interesting new research area.

Data Scale Con"nement
As Figure 5a clearly shows, the screen space’s reso-
lution limits the number of data items that can 
be visualized. Suppose there are many more data 
items than available pixels. Processing the entire 
dataset doesn’t make much sense because there’s 
no way to visualize all the items.
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Figure 3. Using principal component analysis to 
generate scatterplots with single and double 
precision. (a) The computation time depending on 
the data size. (b) The scatterplot based on single-
precision computation. (c) The scatterplot based 
on double-precision computation. This example 
used facial-image data. For Figures 3b and 3c, we 
visualized 1,420 data items and color-coded them 
with their person ID. We represented each data 
item as an 11,264-dimensional vector. We found 
only two pixel-wise displacements between the 
two cases.
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Data scale con!nement is particularly useful for 
dealing with computational complexity. In prin-
ciple, as the number of data items increases, the 
algorithm complexity can’t be more ef!cient than 
O(n), which assumes that every data item is pro-
cessed at least once. Even such ideal complexity 
can cause a computational bottleneck in real-time 
VA. Having a !xed number of available pixels can 
turn algorithmic complexity into O(1), in that you 
can visualize only a speci!c number of data items 
at most. One of the easiest ways to select this data 
subset is random sampling, although you could 
adopt other more carefully designed sampling 
methods that better represent the entire dataset.

Some user interaction such as zoom-in or zoom-
out might require the computational results for 
data items that haven’t yet been processed. In this 
case, you can handle the situation through a dif-
ferent kind of ef!cient computation.

For example, suppose you have a large-scale da-
taset for which only a certain subset of the data 
has been clustered. To obtain the remaining data 
items’ cluster labels, you can apply a simple clas-
si!cation method based on the already computed 
clusters.

Or, in the case of dimension reduction, suppose 
PCA has been computed on a data subset. You can 
project the remaining data onto the same space 
via a linear transformation matrix given by PCA. 
This is much more ef!cient than computing PCA 
on the entire dataset.

Although these approximated approaches can’t 
give the exact same results as those generated by 

using the entire data from the beginning, they’re 
a viable way to ensure real-time VA for big data.

To achieve tight integration between compu-
tational methods and VA, researchers from 

each side must care more about the other side. In 
particular, researchers who design computational 
methods must realize that making an algorithm 
more interactive and interpretable in practical 
data analysis scenarios is just as important as 
addressing practical concerns such as the data’s 
maximum applicable size, computation time, and 
memory requirements. On the other side, re-
searchers who apply computational methods to VA 
need to understand the algorithm details as much 
as possible and tailor them to make them blend 
well in real-time VA. 
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Figure 5. Hierarchical precision re!nement of 
computational results for a scatterplot at (a) 16 × 12, 
(b) 48 × 36, and (c) 80 × 60 resolution. This !gure 
uses the same data and method as in Figure 3. To 
determine a speci!c data item’s position at a higher 
resolution, the re!nement needed to examine only 
the nearby areas from the previous position.


