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The problem of discovering motifs from protein sequences is a critical and challenging task in the field of
bioinformatics. The task involves clustering relatively similar protein segments from a huge collection of
protein sequences and culling high quality motifs from a set of clusters. A granular computing strategy
combined with K-means clustering algorithm was previously proposed for the task, but this strategy
requires a manual selection of biologically meaningful clusters which are to be used as an initial condi-
tion. This manipulated clustering method is undisciplined as well as computationally expensive. In this
paper, we utilize sparse non-negative matrix factorization (SNMF) to cluster a large protein data set.
We show how to combine this method with Fuzzy C-means algorithm and incorporate bio-statistics
information to increase the number of clusters whose structural similarity is high. Our experimental
results show that an SNMF approach provides better protein groupings in terms of similarities in
secondary structures while maintaining similarities in protein primary sequences.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Proteins are vital parts of organisms, providing structural or
mechanical functions and participating in every process within
cells such as cell signaling, immune responses, and the cell cycle.
Proteins are complete biological molecules in a stable conforma-
tion and are made of twenty possible amino acids arranged in a lin-
ear chain. The chemical interactions of amino acid residues
determine the conformation of proteins and form a relationship
between protein sequences and structures. Therefore, understand-
ing the close relationship between protein sequences and struc-
tures by discovering its hidden knowledge has been one of the
primary interests in bioinformatics research.

A protein sequence motif is a recurring pattern in sequences
that is prevalent in a number of proteins. Protein motifs are known
to have biological significance such as binding sites and conserved
domains. If a sequence motif is in the exon of a gene, it can encode
a structural motif which is a three dimensional motif determining a
unique element of the overall structure of a protein. With this
property, sequence motifs can predict other proteins’ structural
or functional behaviors. Therefore, discovering sequence motifs is
ll rights reserved.
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a key task to comprehend the connection of sequences with their
structures.

PROSITE (Hulo et al., 2004), PRINTS (Attwood et al., 2002) and
BLOCKS (Henikoff, Henikoff, & Pietrokovski, 1999; Henikoff,
Henikoff, & Pietrokovski, 1999) are currently the most popular mo-
tif databases. However, since the sequence motifs from these serv-
ers search through the same protein family members, they might
carry little information about the consensus region beyond protein
families (Zhong, Altun, Harrison, Tai, & Pan, 2005). On the other
hand, many software programs for discovering one or more candi-
date motifs from a number of nucleotide or protein sequences have
been developed. These include PhyloGibbs (Siddharthan, Siggia, &
van Nimwegen, 2005), CisModule (Zhou & Wong, 2004), WeederH
(Pavesi, Zambelli, & Pesole, 2007), and MEME (Bailey & Elkan,
1994). For example, MEME utilizes hidden Markov models
(HMM) to generate statistical information for each candidate
motif. However, such tools can handle only small to medium scale
data sets and inappropriate for huge data sets.

In order to obtain universally preserved sequence patterns
across protein family boundaries, we use an extremely large data
set collected from various protein families. After collecting a
number of protein sequences, their protein family information is
ignored in further processing. Therefore, the task of discovering
protein motifs is mainly divided into three steps: collecting all
the possible protein segments with a fixed window size, clustering
the segments, and evaluating the quality of discovered motifs with
respect to its structural closeness. Collecting all the possible
protein segments are completed in previous studies by Chen, Tai,
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Harrison, and Pan (2006), Chen, Tai, Harrison, and Pan (2006),
Chen, Pellicer, Tai, Harrison, and Pan (2008), and Chen and Johnson
(2009) using a sliding window technique from a protein profile
data set. After clustering, evaluating the quality of discovered mo-
tifs is conducted by comparing the secondary structures in each
cluster.

Therefore, clustering protein segments is the most challenging
and crucial task. Previously, K-means clustering algorithms with
supervised initial points were proposed by Zhong et al. (2005)
and Chen et al. (2006), Chen et al. (2006), Chen et al. (2008), and
Chen and Johnson (2009). These methods improve on an earlier
approach where naive K-means algorithm was used by Han and
Baker (1983). The improved K-means approach proposed in Zhong
et al. (2005) increased the number of clusters having high struc-
tural homology, by selecting ‘good’ initial points from a number
of preliminary results obtained by using a K-means algorithm with
random initial seeds. Utilizing a granular computing strategy to
divide the original data set into smaller subsets and introducing
a greedier K-means algorithm (Chen et al., 2006, Chen et al.,
2006), or subsequent filtering process with support vector machine
(Chen et al., 2008, Chen & Johnson, 2009), Chen et al. further im-
proved the overall quality of the clusters in terms of biological,
chemical, and computational meanings. Those high quality of
motifs are used to predict local tertiary structure of proteins in
Chen and Johnson (2009) as well. However, these clustering tech-
niques are undisciplined, insecure, and computationally expensive.
They are actually supervised methods since they plug good initial
cluster centers, which are evaluated and selected after several
runs, into a final K-means algorithm. Also, the selection process
requires repeated runs of K-means and additional user setups,
which increase the computational costs.

In this paper, we propose to use sparse nonnegative matrix fac-
torization (SNMF) (Kim & Park, 2008, Kim & Park, 2007) to cluster
the protein segments data set. Originally proposed as a dimension
reduction method for nonnegative data, NMF has been successfully
applied to several tasks in computational biology described by
Devarajan (2008). Areas of application include molecular pattern
discovery, class prediction, functional analysis of genes, and
biomedical informatics. As an extension of NMF, SNMF which im-
poses sparsity constraints on the low dimensional factors showed
superior results for microarry data analysis with computational
efficiency as demonstrated in Kim and Park (2007). Recently, Kim
and Park demonstrated that SNMF was able to produce more con-
sistent results than K-means with random initial seeds (Kim &
Park, 2008), because SNMF tends to converge with any initial
setups, while K-means algorithm is very sensitive to its initial set-
ups. Additionally, we show how to incorporate a bio-statistics to
improve the results with its high structural similarity. Unlike the
previous methods, we avoid using the secondary structure of the
data being studied in the process of clustering as the structure
should be used only for evaluation. Instead, we use Chou–Fasman
parameters, statistical information on existing protein data which
do not require knowing of the secondary structure of the proteins
being studied.

The work in this paper makes four contributions in the study of
molecular biology. First, we explore the use of SNMF to a new
problem domain, protein profiles. NMF has been used for various
data including image, text, microarry gene or protein expression
data. As far as we know, this is the first time that NMF has ever
been applied to a protein profile data set. Even with the same
SNMF algorithm, adjustment of parameters to different data for-
mat was a challenge. Second, we adopt Chou–Fasman parameters
(Chou & Fasman, 1974; Chou & Fasman, 1978) which give us the
statistical relationship between sequence and secondary structure
and improve the quality of resulting motifs. It is also shown that
the inclusion of Chou–Fasman parameters itself is a powerful tool
to improve the quality of clusters even with a K-means algorithm
with random initial seeds. Third, by applying granular computing
strategy, we were able to overcome the issues with obscure assign-
ments with SNMF method for large data sets. The final contribution
is designing a new measurement which evaluates the quality of
motifs based on a ‘statistical’ structural information inferred from
its primary sequence. With this measurement, we can evaluate its
structural significance without loss of sequential similarity.

Combining all the techniques aforementioned, the work con-
ducts the following tasks. First, we use granular computing to split
the extremely large collection of protein segments into smaller
subsets and then use the Chou–Fasman parameters to add an ana-
lyzed structural information. SNMF is applied to each small subset
in parallel. Our experimental results demonstrate that SNMF pro-
duces better results in terms of their structural agreements than
other previous methods conducted in Chen et al. (2006), Chen
et al. (2006), and Zhong et al. (2005). The remaining paper is orga-
nized as follows. We review some of the previous methods closely
related to our method in Section 2. Then in Section 3, we introduce
NMF and SNMF, and explain the use of Fuzzy C-means clustering
and Chou–Fasman parameters. The experiments and the final
results are described in Section 4, followed by the conclusion and
future research work in Section 5.
2. Related works

DNA or protein sequence motifs have been discovered through
the studies of evolutionary conservation by de novo computation
with various tools such as MEME (Bailey & Elkan, 1994), CisModule
(Zhou & Wong, 2004), PhyloGibbs (Siddharthan et al., 2005) and
WeederH (Pavesi et al., 2007). However, these programs take
proteins from the same protein families. Therefore, they are
unequipped to discover patterns appearing across protein family
boundaries. Expecting that protein motifs carrying biological signif-
icance can be found from different protein families as well, K-means
clustering algorithms have been utilized for a large data set of
proteins from diverse protein families in Chen et al. (2006), Chen
et al. (2006), Chen et al. (2008), Chen and Johnson (2009), and Zhong
et al. (2005).

K-means clustering algorithms are efficient for large data sets,
but performance is sensitive to initial points and the order of
instances. Peña et al. compared four different initialization meth-
ods for K-means algorithm: Random, Forgy, MacQueen and Kaufman
in Peña, Lozano, and Larrañaga (1999). The random method initial-
izes a partition of K clusters at random, while the Forgy method
(Forgy, 1965) randomly chooses K seeds as initial cluster centers
and assigns each data to a cluster of the nearest seed. Macqueen
(1967) initialization strategy selects K random seeds but
assignments follow an order of the seeds. The Kaufman method
(Kaufman & Rousseeuw, 2005) successively picks K representative
instances by choosing the center as the first one. According to the
study in Peña et al. (1999), Random and Kaufman methods outper-
form the other two methods, and the Kaufman method is faster
than Random method. However, due to the stochastic nature of
the large data used in the work of discovering motifs, Zhong
et al. used the Forgy method as a traditional K-means in Zhong
et al. (2005). Throughout this paper, the K-means with random
initial seeds refers to the Forgy initialization strategy. Previously,
Han and Baker (1983) utilized a K-means clustering with a random
initial seeds to find protein motifs. Subsequently, Zhong et al.
(2005) introduced an improved K-means algorithm that greedily
chooses suitable initial centers so that final partition can reveal
more protein motifs with structural similarity. However, the good
initial centers are selected from the resulting clusters obtained
through previous K-means. Also this method requires two
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additional user inputs, a threshold for structural similarity hs, and a
minimum distance between cluster centers md. That is, after a
number of K-means, they select initial points having both pro-
duced the clusters whose structural similarity are higher than hs
and whose distance between already selected initial points in the
previous run is farther than md. All the selected initial points are
applied to the final K-means clustering algorithm. Although the
Improved-K-means method was able to obtain more valuable clus-
ters with higher structural homology (over 60%) than a traditional
K-means algorithm, this method actually supervised and led the
results with manual selection of the cluster centers.

For further improvements, Chen et al. utilized granular comput-
ing introduced in Chen and Johnson (2009), Chen et al. (2008), Lin
(2000), Yao (2001) and combined improved K-means or greedy
K-means to develop the FIK model (Chen et al., 2006) and the
FGK model (Chen et al., 2006; Chen & Johnson, 2009; Chen et al.,
2008), respectively. Fuzzy-Improved-K-means (FIK) model (Chen
et al., 2006) and Fuzzy-Greedy-K-means (FGK) model (Chen &
Johnson, 2009; Chen et al., 2008, 2006) are granular based learning
models used for the same task but for a larger data set than that of
the improved K-means (Zhong et al., 2005). FIK and FGK both used
Fuzzy C-means (FCM) algorithm for granular computing. FCM is a
soft clustering algorithm which allows a data point to belong to
one or more clusters (Dunn, 1973; Bezdek, 1981). FIK and FGK
model divided the original data set into smaller subsets with
FCM and slightly modified the improved K-means (Zhong et al.,
2005) to each subset. While improved K-means selected initial
seeds sequentially, FIK collects all ‘candidate’ initial seeds from
all of the preliminary K-means, then selects the ones which fre-
quently appear and are reasonably distant from the other seeds.
With FGK, the selection is more greedy by selecting the high qual-
ity of clusters first. However, although FIK and FGK models pro-
duced better results than the improved K-means, they are still
manipulating the results by plugging good initial points into a final
K-means.

3. New approaches

The previous models discussed in Section 2 used K-means clus-
tering algorithms with various initialization strategies. Instead of
the K-means methods, we propose a different clustering algorithm
called sparse nonnegative matrix factorization (SNMF). We will first
review an original NMF algorithm and introduce an SNMF algo-
rithm which is used for clustering by enforcing sparseness on
one of the factor matrices. Then our method will be described in
the subsequent sections.

3.1. Nonnegative matrix factorization

Nonnegative matrix factorization (NMF), which was first intro-
duced as a positive matrix factorization (PMF) by Paatero and
Tapper (1994), is a matrix analysis that has attracted much atten-
tion during the past decade. Besides NMF, there are several matrix
factorization methods used in many applications, including princi-
pal component analysis (PCA) and vector quantization (VQ). All of
those matrix factorization methods represent the data by using
vectors and form a data matrix to decompose it into two factor
matrices. Ross and Zemel (2006) noted that when data are repre-
sented as vectors, parts of the data are interpreted with subsets
of the bases that take on values in a coordinated fashion. Although
other factorization methods are related to this interpretation in
general, only NMF has a sparse and part-based localization
property (Lee & Seung, 1997; Lee & Seung, 1999), but under special
conditions (Donoho & Stodden, 2004). NMF is considered for high
dimensional data where each entry has a nonnegative value, and
it provides a lower rank approximation formed by factors whose
entities are also nonnegative. NMF was successfully applied to ana-
lyzing face images (Lee & Seung, 1999; Li, Hou, Zhang, & Cheng,
2001), text corpus (Pauca, Piper, & Plemmons, 2006), and many
other tasks in computational biology (Devarajan, 2008).

Given an m � n data matrix A, nonnegative factors such as W, H
are commonly computed by solving

min
W ;H

1
2
kA�WHk2

F s:t: W P 0; H P 0; ð1Þ

where W is the m � k bases matrix, H is the k � n coefficient matrix,
and k is usually much smaller than min (m,n). The interpretation of
factored matrices, W and H, depend on the domain of application.
For instance, if the data matrix A denotes microarry data, the rows
correspond to expression levels of genes and the columns corre-
spond to samples representing distinct tissues, experiments, or time
points. Thus, A(i, j) describes the ith gene expression level for the jth
sample. If the microarry data matrix A is factored into W and H
using NMF, each column of W defines a metagene and each column
of H represents the metagene expression pattern of the correspond-
ing sample. In this case, the metagenes of W summarize gene
behaviors across samples, while the patterns of H summarize the
behavior of samples across genes. On the other hand, when cluster-
ing data samples, each basis of W can represent a prototype of each
cluster and each column of H is the relevance of the data sample
corresponding to each prototype.

The nonnegativity of W and H provides a pleasing interpretation
of the factorization. Each object is explained by an additive linear
combination of intrinsic ‘parts’ of the data (Lee & Seung, 1999).
This property of NMF gives an intuitive meaning and physical
interpretation, especially for large-scale data, while the orthogonal
components with arbitrary signs in PCA lack their conceptual inter-
pretation. In face image applications with SNMF (Lee & Seung,
1999), the column vectors of W represent each component of the
face, that is, nose, eyes, cheeks, etc. In addition to the natural inter-
pretability as a dimension reduction method, NMF has shown
favorable performance for clustering tasks. For text clustering,
Xu, Liu, and Gong (2003) reported competitive performance of
NMF compared to other methods in spectral clustering. Brunet,
Tamayo, Golub, and Mesirov (2004) used NMF on cancer microarry
data and demonstrated its ability to detect cancer classes.

3.2. Sparse nonnegative matrix factorization

Generally, NMF provides sparse and part-based representations,
but this may not always be the case. Li et al. (2001) and Hoyer
(2002) presented part-based but holistic (non-local) representa-
tions produced by NMF. These results exemplify that nonnegative-
ness is an insufficient condition to produce sparse representations.
Therefore, many studies (Li et al., 2001; Hoyer, 2002; Hoyer, 2004;
Gao & Church, 2005) focused on enforcing sparseness explicitly on
W, H or both. Kim and Park (2007), Kim and Park (2008) proposed a
sparse NMF (SNMF) using a refined formulation with an additional
penalty term and proposed an efficient algorithm. SNMF was fur-
ther studied by Kim and Park (2008), where they demonstrated
that SNMF gives more consistent clustering results than K-means
algorithm.

In this paper, we use SNMF with sparseness enforced on the
right factor H used by H. Kim and Park in Kim and Park (2007) to
cluster protein profile segments. We note that they (Kim & Park,
2007, 2008) also provided the SNMF with sparseness enforced on
the left factor W (SNMF/L), but SNMF/L is useful for representing
part-based bases.

Sparse Nonnegative Matrix Factorization
Given a nonnegative matrix A, find nonnegative matrix factors

W and H such that;
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min
W ;H

1
2
kA�WHk2

F þ gkWk2
F þ b

Xm

j¼1

kHð:; jÞk2
1

( )
ð2Þ

subject to W P 0;H P 0:

where k:k2
F is the square of the Frobenius norm, k:k2

1 of the L1 norm,
and H(:,j) is the jth column of matrix H. Regularization using
L1-norm promotes sparse solutions on the factor H. Two parame-
ters, g and b, are involved, where g suppress the Frobenius norm
of W, and b regulates balances between the sparseness of matrix
H and the accuracy of the factors. In practice, the parameters are
adjusted empirically as they are affected by the data size and the
number of clusters. Alternating nonnegativity constrained least
squares algorithm using the active set method (Kim & Park, 2007)
was used to obtain W and H.

In the SNMF application for clustering protein profile data, we
represent each protein segment as an m-dimension vector. By
arranging n number of data to column-wise, we form an m � n data
matrix A. After deciding the number of clustering k, we use
alternating nonnegativity constrained least square algorithm, and
factor A into W and H factor matrices. Then each column of H is
k-dimensional vector, ith entry representing the relevance of ith
cluster of the corresponding sample. Each data is then assigned
to the cluster of maximum relevance. Detail description of data
representation and experiment steps with SNMF is illustrated in
Section 4.
3.3. Granular computing and Fuzzy C-means clustering

Chen et al. (2006), Chen et al. (2006) proposed a granular com-
puting model (Lin, 2000; Yao, 2001) by utilizing Fuzzy C-means
(FCM) clustering algorithm as described in Section 2. Granular
computing involves the processing of complex information gran-
ules arising in the process of data abstraction and the derivation
of knowledge from the data. FCM (Dunn, 1973; Bezdek, 1981),
known as a common method for granular computing, is a cluster-
Fig. 1. The top image is the coefficient matrix when k = 3 and bottom image is the coeffic
is the data point. For a specific data shown as a red vertical box, the assignment of the top
The bottom coefficient matrix has more than 7 non-zero values holding around 10% of
ing algorithm that allows a data point to belong to more than one
cluster. Therefore, FCM is used as a preprocessing step as it splits
the data with softer constraints. FCM clusters N data points, xi’s,
into C clusters by minimizing the following objective function:

Jm ¼
XN

i¼1

XC

j¼1

um
ij kxi � cjk2

; ð3Þ

where m is the fuzzification factor and uij is the degree of participa-
tion of xi into the cluster j with a center cj. Then the number of clus-
ters for each information granule divided by FCM is computed as

Ck ¼
nkPm
i¼1ni

� total number of clusters; ð4Þ

where Ck is the number of clusters and nk is the number of members
for the kth information granule.

FIK (Chen et al., 2006) and FGK (Chen et al., 2006) models
applied FCM with empirically chosen fuzzification factor and the
number of clusters, then applied K-means to each information
granule with manually chosen initial points. They highlighted that
not only the manual selection of initial points, but also the FCM
process itself improved the final results due to its pre-filtering
work as shown in Table 2.

In the present work, we apply the SNMF method instead of
variant K-means algorithms, because a sparse coefficient matrix
can assign each data to one of the clusters. Therefore less number
of clusters can produce more desirable results with SNMF. If the
number of clusters is numerous, then many of the relevant factors
hold similar weights, thereby obstructing proper assignments.
Fig. 1 shows one example of obscure assignment by comparing
with the case of k = 3 and that of k = 45. The bottom image of
Fig. 1 visualizes the H factor with 45 rows. One data shown within
a red box has 45 weights, but not one value is promising enough to
assign the data to a particular set. The top image of Fig. 1 only has 3
rows and the second value is prominent enough to cluster the data
of red box into the second set. Hence, the granular computing with
ient matrix when k = 45. The y-axis represents the number of clusters and the x-axis
matrix is clearer than the bottom matrix, as the second row clearly beats the others.

the weight each, making a proper assignment difficult.



Table 1
Chou–Fasman parameter.

Symbol and name of Amino Acid P (a) P (b) P (t) f (i) f (i + 1) f (i + 2) f (i + 3)

A: Alanine 142 83 66 0.66 0.076 0.035 0.058
R: Arginine 8 93 95 0.07 0.106 0.099 0.085
D: Aspartic Acid 101 54 146 0.147 0.110 0.179 0.081
N: Asparagine 67 89 156 0.161 0.083 0.191 0.091
C: Cysteine 70 119 119 0.149 0.050 0.117 0.128
E: Glutamic Acid 151 37 74 0.056 0.06 0.077 0.064
Q: Glutamine 111 110 98 0.074 0.098 0.037 0.098
G: Glycine 57 75 156 0.102 0.085 0.19 0.152
H: Histidine 100 87 95 0.14 0.047 0.093 0.054
I: Isoleucine 108 160 47 0.043 0.034 0.013 0.056
L: Leucine 121 130 59 0.061 0.025 0.036 0.07
K: Lysine 114 74 101 0.055 0.115 0.072 0.095
M: Methionine 145 105 60 0.068 0.082 0.014 0.055
F: Phenylalanine 113 138 60 0.059 0.041 0.065 0.065
P: Proline 57 55 152 0.102 0.301 0.034 0.068
S: Serine 77 75 143 0.12 0.139 0.125 0.106
T: Threonine 83 119 96 0.086 0.108 0.065 0.079
W: Tryptophan 108 137 96 0.077 0.013 0.064 0.167
Y: Tyrosine 69 147 114 0.082 0.065 0.114 0.125
V: Valine 106 170 50 0.062 0.048 0.028 0.053

The first column is the name of twenty amino acids with its corresponding one-letter code in parentheses. The next three columns represent the propensities of each amino
acid for a-helices (P(a)), b-sheets (P(b)) or turns (P(t)). The rest of the parameters f(i + j)’s are the tendencies of the j + 1th position of a hairpin turn, which are generally used to
predict a bend.
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FCM is a crucial step for clustering with SNMF. Instead of one FCM
to divide the data set, we applied FCM hierarchically to avoid data
overfitting. We carefully picked the proper fuzzification factor
through experiments and strictly enforced the amount of data
overlapping for this double FCM process. As a result, we improved
the final results in terms of the structural homology and reduced
the overall spatial and temporal complexities as well.

3.4. Chou–Fasman parameters

K-means algorithm is known to considerably depend on initial
centroids, which can lead to a local optimal solution rather than
the global optimal one. Therefore, Zhong et al. (2005), and Chen
et al. (2006), Chen et al. (2006), Chen et al. (2008), Chen and John-
son (2009) chose ‘favorable’ initial points to plug into a K-means
and increased the number of clusters with high structural similar-
ity. However, the selection of good initial points involve knowing
the results in advance. That is, a number of executions of K-means
algorithm preceded and the resulting clusters are evaluated with
its secondary structure similarity. The selection of favorable initial
points from the ‘good’ clusters is then followed. This process is
actually a supervised learning method which is undesirable for
clustering.

Therefore, we use SNMF to cluster the data set without super-
vising the procedure. SNMF is proved to be more consistent than
K-means in the study (Kim & Park, 2008), meaning that with any
initial points the results tend to converge closely to a global
optimal point. In the experiment, we actually observed that the
primary sequence groupings is much better with SNMF than
K-means with initial random seeds. Computationally, however,
the resemblance of primary sequence does not guarantee the sim-
ilarity of secondary structure in a cluster. To infer the clusters of
high structural homology from its primary sequence, we used
Chou–Fasman parameters to add a statistical relationship between
primary sequence and secondary structure into the data set. Chou–
Fasman parameters shown in Table 1 were first introduced by
Chou and Fasman (1974), Chou and Fasman (1978). Each amino
acid is assigned conformational parameters, P(a),P(b) and P(t),
which represent the tendency of each amino acid to alpha helices,
beta sheets and beta turns, respectively. The parameters were
determined by observing a set of sample protein sequences of
known secondary structure. The additional parameters of f(i),
f(i + 1), f(i + 2) and f(i + 3) correspond to the frequency with which
each amino acid was examined in the first, second, third or fourth
position of a hairpin turn. For additional structural information, we
compute the tendency of secondary structures based on the fre-
quencies of amino-acid residues at each location, with the three
conformational parameters of P(a),P(b) and P(t). For example, if a
location at a protein segment consists of 20% of Alanine and 80%
of Cysteine, then the relevant secondary structure for the location
is 28% of alpha helices, 37% of beta sheets and 35% of beta turns.
The statistical structural information is included into the data set
to perform SNMF. Details are described in Section 4.1.

4. Experiments

This paper uses the same data in Chen et al. (2006), Chen et al.
(2006), Chen et al. (2008), Chen and Johnson (2009), which ex-
tended the data used in Zhong et al. (2005). We utilize their mea-
surement and design a new measurement to evaluate clustering
results. By reviewing detailed description of data representation
and their measurement of previous studies of Zhong et al. (2005),
Chen et al. (2006), Chen et al. (2006), Chen et al. (2008), Chen
and Johnson (2009), we design a new measurement which can
evaluate the quality of overall clusters.

4.1. Data set and data representation

A total of 2,710 protein sequences, none of which shares more
than a 25% sequence identity, from Protein Sequence Culling Server
(Wang & Dunbrack, 2003) are used in this work. By sliding a win-
dow of size 9 through each sequence, we collect more than 560,000
sequence segments. Each segment is represented as the frequency
profile constructed from HSSP (Sander & Schneider, 1991), based
on the aligned sequences from protein data bank (PDB). The sec-
ondary structure of each segment, which will be used to evaluate
the results, is also obtained by DSSP (Kabsh & Sander, 1979).
Hence, as shown in Fig. 2, each primary sequence segment of
length 9 forms a 20 � 9 matrix, where each location has the
frequencies of 20 amino acid residues in the vertical direction.

In this study, we apply FCM algorithms to primary sequences,
then we add secondary structure statistics inferred by



Fig. 2. A number of protein sequences in a protein family obtained from PDB server are aligned on the left. According to the frequencies of twenty amino acids represented as
one-letter codes, the proteins are expressed as a profile data on the right figure. Sliding a window of length 9, the 20 � 9 matrix shown inside the red box represents one
protein segment data format.
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Chou–Fasman parameters to the original data format before apply-
ing SNMF. The additional data structure is computed as follows. Let
S to be the statistically inferred secondary structure of a 3 � 9
matrix format with a length of 9 and three types of secondary
structure for the helices, beta sheets and beta turns. Let O be the
original sequential data shown in Fig. 2, with a 20 � 9 matrix for-
mat. Since O(i, j) represents the frequency of the ith amino acid at
the jth location, we want S(i, j) to stand for the probability of the
ith second structure at the jth location. We obtain a 3 � 20 matrix
for the Chou–Fasman parameter C, where C(i, j) is the percentage of
ith structure for jth amino-acid. Then S is computed as

S ¼ C � O: ð5Þ

The final data format for SNMF is the combination of the primary
sequence, O, and the computed secondary information, S, forming
a 23 � 9 matrix. That is, each position includes the frequencies of
H, E, and C in addition to the frequencies of 20 amino-acid residues.

Finally, each data is unfolded into 23 � 9 = 207 dimensional
vector and n number of data are formed into 207 � n data matrix
A for SNMF. The sparse factor H now directs an assignment of each
data sample to one of k clusters.

4.2. Evaluating clustering algorithms

We emphasize that this is an unsupervised learning task, mean-
ing that no prior information about data grouping is given. Hence,
after we cluster the data set into similar protein groups, we need
biological measurements to evaluate the clusters to discover qual-
ifying motifs. Zhong et al. (2005) suggested a measure of secondary
structure similarities in order to capture close relationships be-
tween protein sequences and their structure, Chen et al. (2006),
Chen et al. (2006) additionally proposed a biochemical measure-
ment, HSSP-BLOSUM62, as well as a computational measurement
of the David–Bouldin Index (DBI) measurement. In this paper, we
use the secondary structure similarity evaluation which is used
in common in the previous studies (Zhong et al., 2005; Chen
et al., 2006; Chen et al., 2006), and additionally introduce a new
evaluation called sDBI which is the DBI measurement for the com-
puted secondary structure.

Secondary Structure Similarity measure
The structural similarity of each cluster is computed as the

following:Pws
i¼1maxðPi;H; Pi;E; Pi;CÞ

ws
; ð6Þ
where ws is a window size and Pi,H is the frequency of the helix at
the ith position of the segments in the cluster. Pi,E, Pi,C are defined
similarly for beta sheets and turns. After a clustering, each cluster
is evaluated with its secondary structure similarity, and clusters
with more than 60% similarity are counted, since proteins exceed-
ing 60% structural homology are considered structurally similar
(Sander & Schneider, 1991; Zhong et al., 2005). A method producing
more clusters with over 60% structural homology will be considered
better method with this measurement.

Structural David–Bouldin Index (sDBI) measure
Besides the biological measurement of secondary structure

similarity, Chen et al. (2006) used a computational evaluation
called David–Bouldin Index (DBI) measure (Davies & Bouldin,
1979), to evaluate the groupings only in terms of their primary
sequence. The DBI measure is a function of intra-cluster (within-
cluster) distance and inter-cluster (between-cluster) distance.
Because a cluster with a relatively larger inter-cluster distance
and a relatively smaller intra-cluster distance is more favorable, a
lower DBI indicates a better data groupings. Eq. (7) computes the
DBI value of a clustering task.

DBI ¼ 1
k

Xk

p¼1

maxp–q
dintraðCpÞ þ dintraðCqÞ

dinterðCp;CqÞ

� �
; ð7Þ

where dintra(Cp) is the average of all pairwise distances between
each member in the cluster Cp and its center, and dinter(Cp,Cq) is
the distance of the centers of two cluster Cp and Cq, and k is the
number of clusters. All the distance is computed in Hamming dis-
tance metric.

However, the DBI of a primary sequence evaluates grouping
behavior only in terms of primary sequence. Before we add statis-
tical structure into original data set, when we evaluated its primary
sequential grouping with DBI, SNMF showed better results than
those of a K-means with random initialization. But, DBI measure-
ment is improper for finding qualifying motifs since good clusters
in terms of primary sequences have little biological significance.
Therefore, we introduce a new measurement which evaluates its
computational clustering results based on the inferred structural
information. We call this new measurement Structural David–
Bouldin Index measure(sDBI). The sDBI follows the same equation
as DBI in Eq. (7). The difference is that each cluster consists of
the inferred secondary structure S instead of the primary sequence
O in Eq. (5). By using sDBI, we can evaluate the overall grouping
qualities not restricted to finding a subset of good clusters.



Table 2
Comparison of various clustering methods.

Methods >60% >70% sDBI

Traditional 25.82 10.44 N/A
Improved-K 31.62 11.50 N/A
FCM 37.14 12.99 N/A
FIK 39.42 13.27 N/A
FGK 42.93 14.39 7.21
FCM + CF + K-means 42.94 13.23 9.07
FCM + SNMF 44.07 12.73 9.85
FCM + CF + SNMF 48.44 16.23 7.05

The first five rows summarize the results of previous methods introduced in Zhong
et al. (2005), Chen et al. (2006), Chen et al. (2006). The rest of methods list the
experiments conducted in this study. The last result is the best result obtained for
both measurements. This result was obtained by using an SNMF which was com-
bined with FCM and Chou–Fasman parameters.
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4.3. Experiment steps

Protein motifs discovery using SNMF method follows the subse-
quent steps. We divide the data set into a number of small size of
subsets using FCM hierarchically, for proper clustering task with
SNMF method. We first split the data set into ten smaller subsets
using FCM, then divide each subset further into much smaller
subsets with another FCM. Although the ‘FCM + SNMF’ model,
shown in Table 2, increases the percentage of structurally signifi-
cant clusters, we utilize the conformational parameters of Chou–
Fasman table to compute the structural relationship with primary
sequence, to improve the results further. Fig. 3 summarizes the
experiment steps conducted in this study. To see the impact of
Chou–Fasman parameters, we applied a K-means with initial
random seeds to the combined data set, and provided the result
as well.
Fig. 3. The above figure summarizes the experiment steps in this study. The original da
with double applications of FCM. For each subset, secondary structure statistics is inferre
to each subset and the result is evaluated using two evaluation criteria, secondary struc
4.4. Clustering results

We summarize the clustering results in Table 2. Each method is
compared with two measurements: the secondary structure simi-
larity and the sDBI. The first column indicates the methods we
used in this study as well as the ones from Zhong et al. (2005),
Chen et al. (2006), Chen et al. (2006). The second column is the per-
centage of clusters which have a secondary structure similarity
exceeding 60%. The next column is the percentage of clusters hav-
ing a structural similarity greater than 70%. For structural similar-
ity, a higher percentage is more favorable. The last column
indicates sDBI value of each method. With sDBI values, lower val-
ues are preferred. The first five methods listed in Table 2 are from
Zhong et al. (2005) and Chen et al. (2006), Chen et al. (2006), and
they are used to compare with our models. We excluded the
results in Chen et al. (2008), Chen and Johnson (2009) since the
studies added further filtering procedure after clustering.

‘Traditional’ is a K-means with random initial seeds and
‘Improved K-means’ is the method studied in Zhong et al. (2005).
‘FCM’ is granular computing combined with a K-means with ran-
dom initial seeds. With FCM, the increased percentage of good
clusters having high secondary structure similarity shows a signif-
icant improvement over a traditional K-means. FIK in the fourth
row in Table 2 illustrates further improvement, and FGK model
produced the best result among all of the previous models. The
sDBI is a new measurement introduced in this paper, and we were
unable to provide sDBI values for previous models except FGK,
since the resulting clusters of other models were unavailable.
Reproduction of the results were also impossible as these results
are obtained through lots of experimental trials with different
settings. As the result with FGK was obtainable from the authors,
we could compute sDBI of FGK result only.
ta set of a primary sequence is divided into smaller subsets (information granules)
d with Chou–Fasman parameters and added to each data set. SNMF is finally applied
ture similarity and sDBI.



Fig. 5. Helix-turn motif.

Fig. 6. Turn-sheet motif.
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The rest of Table 2 lists some of the experiments we conducted
in this study. ‘FCM + SNMF’ shows the result of applying FCM
followed by an SNMF, without the Chou–Fasman parameters. The
structural homology indicates that SNMF provides more qualifying
motifs than other results with structural similarity measurement.
However, it did not beat sDBI value of ‘FGK’ model, requiring an-
other way to improve the clustering result further. Therefore we
incorporated secondary structure information computed with
Chou–Fasman parameters into the data set and were able to see
an improvement on both measurements. To see the influence of
Chou–Fasman parameters on K-means, we applied this incorpo-
rated data to K-means with random initial seeds too, and the
‘FCM + CF + K-means’ model shows further improvement than
FCM, in terms of the structural homology. Since these models are
using random initial seeds, we can expect to have further improve-
ment when using greedy K-means algorithm on this combined
data.

Finally, we further improved both the structural and the com-
putational qualities using the ‘FCM + CF + SNMF’ method (shown
in the last row of Table 2). As summarized in Fig. 3, we divided
the original data set into much smaller information granules by
applying FCM hierarchically, then added secondary structure sta-
tistics inferred by Chou–Fasman parameters and primary se-
quences. Then, we processed SNMF to obtain a sparse coefficient
factor for clustering. As a result, the last model bettered the perfor-
mance of the previous best model, ‘FGK’, for both the structural
similarity and sDBI measurements. In conclusion, the
‘FCM + CF + SNMF’ demonstrates that the combination of extended
data with structure statistics along with SNMF can discover more
structurally meaningful motifs. The result is actually proving that
using SNMF, we can obtain more qualifying motifs with proper
unsupervised clustering method, without manual setting of cluster
centers.
Fig. 7. Sheet-turn motif.
4.5. Sequence motifs

Figs. 4–8 are five different sequence motif examples discovered
in this study. They were created using the Weblogo tool (Crooks,
Hon, Chandonia, & Brenner, 2004). Weblogo is a web-based tool
that generates sequence logos which are graphical depictions of
the sequence patterns within a multiple sequence alignment. We
illustrate some of the motifs found by our method with sequence
logos as they provide a richer and more precise description of se-
quence similarities than consensus sequences or the previous for-
mats used in Zhong et al. (2005), Chen et al. (2006), Chen et al.
(2006). The sequence logos are obtained from the clusters which
have over 60% secondary structural similarity, and more than
1,000 protein segments. The exact number of segments and the
structural homology are given at the top of each motif image.
Fig. 4. Helices motif with conserved A.
The motif pattern is represented starting from the N-terminal
and the letters stacked at each position demonstrate the type of
amino acid which appears with over 8% frequencies in that posi-
tion. The height of symbols indicates the relative frequency. The
letter shown below the x-axis is the representative secondary
structure of that position, where H is for helix, E for sheets and C
for turns. For example, Fig. 4 is a motif of helix-structure with con-
served Alanine (A), and Fig. 6 is a turn-sheet motif and its second
position consists of four amino acid (D,G,E,S) with roughly equal
frequencies.

5. Conclusions and future work

In this paper, sparse nonnegative matrix factorization (SNMF)
combined with granular computing and inclusion of statistical
structure is proposed to discover protein motifs which are univer-
sally conserved across protein family boundaries. Discovering high



Fig. 8. Helix-turn-helix motif.
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quality of protein motifs is very useful in the study of bioinformat-
ics, as the sequence motifs can reveal structural or functional pat-
terns. For example, Chen and Johnson (2009) showed that the
sequence motifs can be used to predict protein local tertiary struc-
ture. Previous models proposed in Zhong et al. (2005), Chen et al.
(2006), Chen et al. (2006), Chen et al. (2008), Chen and Johnson
(2009) involve K-means clustering algorithms with various initial-
ization strategies. However, in the process of initialization, they
used the secondary structure of the data being examined which
should be used only for evaluating the results. Therefore, the pre-
vious models are undesirable as they are actually supervised clus-
tering methods. Instead, we use an SNMF clustering method since
it is more consistent and efficient than K-means algorithms with
manually selected initial points. In addition, we found that the
incorporation of Chou–Fasman parameters plays an important role
for this task. Besides the secondary structure similarity measure-
ment, which is limited to selecting a subset of good clusters, we de-
signed a new measurement, sDBI, which evaluates the overall
grouping qualities based on the inferred secondary structures
and the primary sequences. We also observed that the process with
SNMF is less expensive and more meaningful if the size of each
subset is reduced with Fuzzy C-means preprocessing.

Sparse nonnegative matrix factorization method, however, does
have its limitations. For better clustering results, the number of
clusters should be small. Otherwise, the presence of many nonzero
coefficients holding similar weights make the assignment task ob-
scure. Therefore, an additional dividing process is required, which
in turns increases computational complexities and risks of data
overfitting. As with K-means clustering, the number of clusters
need to be determined as a prior parameter for the SNMF method,
hindering an automated optimization.

Therefore, our future works include the followings. We need to
find a way to decide an optimal number of clusters automatically.
Resolving the problem of assigning data to a cluster when there are
one or more candidates is another area of future interest. It is also
necessary to reduce the computational costs and risks caused by
additional dividing steps. We also want to add other evaluation
methods, such as functional homology, to qualify the discovered
motifs. Finding more biological applications with the protein mo-
tifs discovered through this study would be very important future
study as well.
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