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TOTAL LEAST NORM FORMULATION AND SOLUTION FOR
STRUCTURED PROBLEMS*

J. BEN ROSENt, HAESUN PARKS, AND JOHN GLICK

Abstract. A new formulation and algorithm is described for computing the solution to an
overdetermined linear system, Ax b, with possible errors in .both A and b. This approach preserves
any affine structure of A or [AIb], such as Toeplitz or sparse structure, and minimizes a measure of
error in the discrete Lp norm, where p 1, 2, or x. It can be considered as a generalization of total
least squares and we call it structured total least norm (STLN).

The STLN problem is formulated, the algorithm for its solution is presented and analyzed, and
computational results that illustrate the algorithm convergence and performance on a variety of
structured problems are summarized. For each test problem, the solutions obtained by least squares,
total least squares, and STLN with p-- 1, 2, and were compared. These results confirm that the
STLN algorithm is an effective method for solving problems where A or b has a special structure or
where errors can occur in only some of the elements of A and b.

Key words, data fitting, Hankel structure, least squares, linear prediction, minimization,
overdetermined linear systems, Toeplitz structure, structured total least norm, total least squares,
1-norm, 2-norm, cx)-norm
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1. Formulation of structured total least norm (STLN) problems. An
important data fitting technique developed over the past 15 years is that of total
least squares (TLS) [7], [8]. The TLS method is a generalization of the least squares
method for an overdetermined system of linear equations, Ax b, where A is m n,
with m > n. In the least squares solution it is assumed that the matrix A is known
without error, but that the vector b is subject to error. The vector x is determined
so that lib- Axll 2 min.

TLS allows the possibility of error in the elements of a given (data) matrix A,
so that the modified matrix is given by A + E, where E is an error matrix to be
determined. The TLS problem can then be stated as that of finding E and x, such
that

(1.1) [[E[r[[F min,

where r b- (A -+- E)x, and I1" [IF represents the Frobenius matrix norm.
A complete description of TLS is given in a recent book [14], where many ap-

plications to signal processing, system identification, and system response prediction
are .described. In many of these applications the matrix A has a special structure,
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STRUCTURED TOTAL LEAST NORM PROBLEMS III

such as Toeplitz structure, or is a large, sparse matrix with relatively few nonzero
elements. Furthermore, in some applications, errors occur only in a small number of
the elements of A, so that while A may be dense, the matrix E could be sparse.

The generally used computational method for solving TLS is based on the singular
value decomposition (SVD) of [AIb]. A complete discussion of efficient computational
methods for solving TLS based on SVD is given in Chapter 4 of [14]. For applications
where the matrix A has a special structure, the SVD-based methods may not always
be appropriate, since they do not preserve the special structure. In fact, using the
SVD approach the matrix E will typically be dense, with no special structure, even
when A is Toeplitz or sparse. Thus, even those elements of E that should remain zero
will typically become nonzero. Also in some situations, the use of a norm other than
the Frobenius norm may be preferable. For example, if the data contains outliers, an

L1 norm might be more suitable.

A new approach, to be described, is called STLN, and it addresses these situations.
The STLN formulation allows other norms, in addition to the Frobenius norm, to be
used. In particular, the problem can be formulated so as to minimize the error in
either the L1 norm or the L norm, in addition to the Frobenius norm used in TLS.
Another important advantage of the STLN formulation is that it permits a known
structure of the matrix A and [AIb to be preserved in A + E and [A + E Ib + r],
respectively. Requirements of this kind occur in important applications. For example,
a Toeplitz structure occurs in system identification problems [4], [6] and in frequency
estimation [1], [11]. For other applications, see [1], [4], [14], [17].

The new approach will guarantee that, for example, E will have the same Toeplitz
structure as A, or that only those elements of E which represent possible errors in
A are permitted to be nonzero. In general, it can preserve any given affine structure
in the computed error matrix E. In some earlier papers [3], [13], restrictions of this
type have been imposed by the use of additional constraints on the problem. The
use of the L1 norm for this kind of problem has also been investigated [10], using a
different method than the one presented here. This extension of the TLS solution to
incorporate the algebraic pattern of the errors in A is also studied in [1] and [4] as
"Constrained TLS" and "Structured TLS," respectively, both for the L2 norm only.
In [1], a complex Newton’s method is utilized to solve the problem, whereas in [4],
nonlinear SVD is defined and an algorithm to compute the solution is derived. For
the comparison of these two algorithms, see [15]. The approach in our algorithm is
different from these two and we will present the comparison of these three algorithms
elsewhere.

Our formulation for solving the STLN problem takes full advantage of the special
structure of a given matrix A. In particular, when q(<_ ran) elements of A E ’’ are
subject to error, a vector a E q is used to represent the corresponding elements
of the error matrix E. Note that for a sparse matrix, q ran. Furthermore, if
many elements of E must have the same value, then q is the number of different such
elements. For example, in a Toeplitz matrix, each diagonal consists of elements with
the same value, so q _< m + n- 1.

The vector a and the matrix E are equivalent in the sense that given E, a is
known, and vice versa. The matrix E is specified by those elements of A which may
be subject to error. Each different nonzero element of E corresponds to one of the
ak, k 1,..., q. Also, the residual vector r b- (A + E)x is now a function of a
and x, so r r(a,x). Let D be a (q q) diagonal weighting matrix that accounts
for the repetition of elements of a in the matrix E. Then the STLN problem can be
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112 J.B. ROSEN, H. PARK, AND J. GLICK

stated as follows:

where I1" lip is the vector p-norm, for p 1, 2, or
For p 2, and a suitable choice for D, the problem (1.2) is equivalent to the

TLS problem (1.1), with the additional requirement that the structure of A must be
preserved by .4 + E.

2. 8TLN algorithm. An iterative algorithm for solving the STLN problem will
now be described. To do this, we first explain the relationship between E
and c Nqx 1. Specifically, the vector Ez must be represented in terms of c. This is
accomplished by defining a matrix X Nmxq such that

X =Ex.

The elements of X consist of the elements of x E nl, with suitable repetition,
giving X a special structure. The number of nonzero elements in both E and X will
be equal, so that if E is sparse, X will also be sparse. Furthermore, if the nonzero
elements ak, k 1,..., q, of E are properly ordered, then X will have a similar
structure to E: for example, if E is a Toeplitz matrix, then X will also be a Toeplitz
matrix. The construction of X from E is described in 3.

The minimization required by (1.2) is done by using a linear approximation to
r(a, x). Let Ax represent a small change in x, and AE represent a small change in
the variable elements of E. From (2.1), we have

( XE)x,

where As represents the corresponding small change in the elements of c. Then,
neglecting the second-order terms in IIAa[I and

(2.3) r(a + As, x + Ax) b- (A + E)x XAa (A + E)Ax
r(a, x) XAa (A + E)Ax.

The linearization of (1.2) now becomes

(2.4) min +
A,Ax D 0 Ax D

P

To start the iterative algorithm, the initial values of E 0 and the least norm value
of x xln are used, where xl is given by

(2.5) min lib Axllp.
x

Note that the initial x for p 2 is the solution to the corresponding least squares
problem.

The STLN algorithm is summarized in Algorithm STLN. The computational
method by which Step 2(a) is carried out depends on the value of p. For p 2, the
corresponding least squares problem is solved efficiently by a QR factorization of the
matrix

(2.6) M D 0
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STRUCTURED TOTAL LEAST NORM PROBLEMS 113

ALGORITHM STLN
Input A Structured Total Least Norm problem (1.2), with specified matrices A, D,
vector b, and tolerance
Output Affine structured error matrix E, vector x, and STLN error.
Begin

1. Set E 0, 0/-- 0, compute x from (2.5) and X from x, and set r b- Ax.
2. repeat

(a) minimize +zxx, D 0 Ax
P

(b) Setx:=x+
(c) Construct E from 0/, and X from x. Compute r b- (A + E)x.

until (IIAxII,
End

when A + E has full column rank, since M has full column rank in this case. In some
applications, the right-hand side vector is structured as well. For example, in linear
prediction, either [AIb or [blA follows the Toeplitz or Hankel structure. In 6, we
also show how the STLN algorithm can be modified to handle this situation. For
p 1, or p x, Step 2(a) is solved as a linear program which takes advantage of
the special structure of M (see 5). Since the matrix X has a special structure like
A / E, the matrix M is also highly structured. To make Algorithm STLN efficient, it
will be important to take advantage of the structure of M each time Step 2a is solved.
For example, it is shown in [12] how a fast triangularization of M can be carried out
when A is Toeplitz.

A theoretical justification for the STLN algorithm for p 2 is presented in 4, and
its computational performance is illustrated in 7. In the next section the construction
of the matrix X, given the structure of E, is described.

3. Construction of matrix X. The matrix E is specified by those elements of
A which may be subject to error. Each different nonzero element of E corresponds
to one of the O/k, k 1,..., q, where the vector 0/- 0/1 0/q )T represents q(<_ ran)
elements of A which are subject to error. The order in which the 0/k are numbered
will affect the structure of the matrix X, but for any specified ordering, the structure
of X is uniquely determined.

The construction of X (starting with a zero matrix) is carried out according to
the following rule.

If 0/ is the (i,j)th element of E, then xj is the (i,k)th element of X, where
1,...,m, j 1,...,n, and k 1,...,q.

For example, when

E 0/3 0/2 0/1 x3 x2 Xl 0
with 0/=

0/4 0/3 0/2
we have X

0 X3 X2 X 0/3
0 0/4 0/3 0 0 X3 X2 0/4

where only four diagonals of the Toeplitz matrix E are subject to error. For the sparse
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114 J.B. ROSEN, H. PARK, AND J. GLICK

matrix

0 0/1 0/2 X2 X3 0 0 0 0/1

0 0/3 0 0 0 X2 0 0 0/2

E 0/4 0 0/3 we have X 0 0 X3 X 0 with 0/-- 0/3

0 0 0/5 0 0 0 0 X3 0/4

0/4 0/2 0 0 X2 0 Xl 0 a5

where only nonzero elements of E are subject to error and the elements denoted with
the same 0/i are to be perturbed to have the same values.

It is also useful to define (q x n) matrices Pi, i 1,..., rn, as follows.

If 0/k is the (i,j)th element of E, then the (k,j)th element of P is one. All
elements of Pi not equal to one are zero.

Note that at most one element of any column of Pi is a one, and many columns of Pi
may consist of all zeros. See 7 for some numerical examples.

With these definitions of the matrices X and Pi, it is easy to show that:

(3.1) E and X

xTpT
xTpT

T T

The relation (2.1) follows directly from (3.1).
4. STLN optimality conditions and Newton’s method. We now consider

the two-norm case (p 2) in more detail, since it has special properties that make a
more complete theoretical analysis possible. For p 2, the STLN problem (1.2) can
be stated in terms of minimizing the differentiable function

(4.i)
1 1 2v(a,x) ]lr(0/,x)ll22 +
1T 1 T=-r r +-a D2a,

where r b- (A + E)x.
The first-order optimality conditions for a local optimum of (0/, x) are the van-

ishing of the gradients Va and Vx. Using the relations presented in the previous
section these conditions become

(4.2) VaD --xTr + D20/-- O,
Vxga -(A + E)Tr O.

Now consider the .least-squares solution of the (rn + q) equations in Step 2(a) of
Algorithm STLN. The corresponding normal equations are

(4.3) MTM Ax -Da Vxg9

where the last equality follows directly from (4.2).
When the matrix M has full rank, the matrix MTM is positive definite, and (4.3)

always has a unique solution for (A0/T, ZxT). This vector will be zero if, and only
if, the right-hand side of (4.3) vanishes. This means that convergence of Algorithm
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STRUCTURED TOTAL LEAST NORM PROBLEMS 115

STLN (i.e., (AaT, AxT) 0) is equivalent to satisfying the optimality conditions

We now show that Step 2(a) of Algorithm STLN is essentially Newton’s method
applied to the gradient of a(a,x). To simplify notation, let yT (aT, xT), a(y)
a(a, x), and

x) )"
Let H(y) be the Hessian of 99(y). We wish to find y*, such that V(y*) 0.

An iteration of Newton’s method to do this is given by

H(y)Ay -Va(y),(4.4) y:=y+Ay.

For H(y) positive definite, and an initial y sufficiently close to y,, this Newton’s
method will converge to y* at a second-order rate. See, for example, Theorem 3.1.1
in [5].

To show the relationship between Step 2(a) of Algorithm STLN and (4.4) we
note that the right-hand sides of (4.3) and (4.4) are identical. Furthermore, it can be
shown, using the relations in 3, that

0 P(r))(4.5) H(y) MTM- pT(r 0

where

m

P(r) E r,Pi
i--1

is a matrix with norm 0(llr]]).
Thus Step 2(a) is, in effect, a Gauss-Newton method that uses MTM as a positive

definite approximation to H(y) (see, for example, 6.1 in [5]). Computational experi-
ence with the STLN algorithm (7) demonstrates that this is an effective strategy for
this type of problem.

The differentiable function (a,x) we wish to minimize for p 2 is not a con-
vex function of (a,x). Therefore, there is no guarantee that a point satisfying the
first-order optimality conditions (4.2) is a global minimum. In fact, it could be any
stationary point of a(a,x). In general, the Gauss-Newton method will converge to
the closest local minimum when the residual r(a,x) is sufficiently small [5]-. When
there is no structure imposed on E, the STLN formulation (1.2) is equivalent to the
TLS problem (1.1). In our preliminary test results, we have observed that the solution
produced by the STLN was always the same as that from the TLS, when no structure
is imposed on E. However, there is no theoretical guarantee that Algorithm STLN
will produce the global minimum solution that the TLS via the SVD produces. We
do not propose Algorithm STLN for solving unstructured problems since the compu-
tational complexity will be high due to the large number of elements in a, which will
be ran.

In many applications, the minimum residual is zero or very small when we have
the exact data, and the global minimum value of a will be of the order of the noise in
the matrix A. Therefore, the initial value a 0 is close to the global minimum value
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116 J.B. ROSEN, H. PARK, AND J. GLICK

and convergence to the global minimum can often be expected. Our computational
results confirm this expectation (see 7).

The function being minimized by the STLN (given by (1.2)) for p 1, oc, is not
differentiable, so the Gauss-Newton theory does not apply. Theoretical results on the
convergence of the STLN algorithm for p 1, oc, are not known at this point, but
are the subject of our continuing research.

5. STLN for p =1 and p o. For p 1 or oc, Step 2(a) is solved as a linear
program (LP). To illustrate this, the linear program for p- ec is now summarized.
The formulation for p 1 is similar.

A scalar a representing the maximum norm is introduced, and the corresponding
linear program is then given by

minimize a
Ac,Ax,a

(5.1)
subject to -aem <_ XAa + (A + E)Ax r <_ ae,,

--aeq

_
DAa + Da <_ aeq,

where ek E Nkl is the vector with every element equal to one. Note that a feasible
solution to this problem is easily given (Aa 0, Ax 0, a sufficiently large), and
since a _> 0, an optimal solution always exists. In this form the problem has more
inequality constraints, 2(m + q), than variables, n + q + 1, so it is more efficient to
consider (5.1) as the dual problem, and solve the equivalent primal.

The equivalent primal is

minimize rTy() + aTDy(2) rTy(3) aTDy(4)
y()>_O

0
y(1) 0

[ MT --MT ] y(2)(5.2)
subject to eTm+q eT y(3)

y(a) 1
The optimal solution and basis to (5.2) immediately gives the optimal dual vector
(As, Ax, a). Any available LP package (Simplex or Interior) can be used to solve
(5.2); however, it should be possible to use the special structure of M to solve (5.2)
more efficiently. Another aspect of (5.2) that can be used to advantage is that only
relatively small changes occur in the cost vector coefficients and the matrix M at each
iteration of the STLN algorithm. Therefore the previous basis will often be optimal,
or almost optimal, after the initial LP solution. An additional benefit obtained from
the primal-dual relationship is information about the sensitivity of the STLN solution
to changes in the data. Properly interpreted, the primal variables (elements of the
vectors y(i)) are measures of the change in the value of the minimum norm as a result
of changes in the problem data.

It should also be noted that by the addition of one row and two columns to (5.2)
a specified bound 5 can be imposed, so that

(5.3) JJDJI _< 5.

With this addition, the original STLN problem (1.2), with p x, is modified so that
a is limited to values satisfying (5.3). This restriction may be important in some
applications; for example, if it is known that the errors in A cannot exceed some
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STRUCTURED TOTAL LEAST NORM PROBLEMS 117

specified bounds. For the limiting case of 5 0, the solution to (1.2) and (5.3) will
give the least norm solution (2.5) for p oc, while for sufficiently large 5 it will give
the STLNoc solution to (1.2). For small values of 5, the solutions to (1.2) and (5.3)
may differ significantly from the STLNc solution. Similar bounds can readily be
imposed in the L1 norm case.

6. STLN for structured vector b. In many applications, the structure is im-
posed not only on the data matrix A but also on the right-hand side vector b or even
on [AIb]. For example, in the least squares linear prediction problem, we need to
solve

(6.1) min IIAx bl12
X

where A E ,mn is a Toeplitz matrix with m _> n and the right-hand side vector b
follows the pattern of A, so that either [AIb is Toeplitz in backward prediction or [blA
is Toeplitz in forward prediction. For details on the least squares linear prediction
problem, see [9]. In this section, we show how to modify Algorithm STLN so that it can
treat possible errors in some (or all) elements of b in the same manner as errors in A are
treated. We will discuss the Toeplitz structure in detail since it appears in numerous
applications in signal processing, image processing, and system identification [1], [4],
[9], [15]. The results presented in this section on Toeplitz structure apply to Hankel
structure in a straightforward manner, since Hankel structure can be transformed to
Toeplitz structure via permutations.

We introduce a vector representing possible errors in selected elements of b.
This is similar to a representing errors in A. Suppose different errors can occur in
q2

_
m) elements of b, specifically, in the elements b, j 1,...,q2. The error

vector/ E }q2l represents the error in b, j 1,...,q2. The relation between
and b is given by a matrix P0 ’, so that error in b is the same as P0/. The
matrix P0 consists of only zeros and ones: the element Pj of P0 is one if y is the
error in b; otherwise, it is zero. Note that every column of P0 contains exactly one
nonzero element.

Initially, E, c and are all zero, and the new residual r b-Ax. In general,

P(a, , x) (b + Po) (A + E)x b- (Ax + Xa) + Po r + Po.
In ideal situations, we can impose the requirement that P 0 since P0/ can play the
role of the residual vector r Po b- (A + E)x. However, this may not always
be possible, due to the special structure that is imposed on E and P0/3.

When the structures imposed on E and P03 are such that P can be zero, the
STLN solution that preserves the structure in b can be stated as

(6.2) min DlC
e=0,a,,x D2/ p

for some diagonal matrices D1 and D2. This constrained minimization problem can be
restated in different ways. We use the weighting method for the equality constrained
least squares problems that transforms (6.2) into an unconstrained problem

(6.3) min DlOa,, D2/ p
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118 J.B. ROSEN, H. PARK, AND J. GLICK

ALGORITHM STLNB
Input A Structured Total Least Norm problem (1.2), with specified matrices A, D,
P0, vector b, and tolerance e.
Output Error matrix E and error vector with the given affine structure in

[E P0] vector x, and STLN error.
Begin

1. Choose a large number w.
Set E 0, c 0, 0, compute x from (2.5) and X from x, and set
’=b-Ax.

2. repeat

(a) minimize D1 0 0 A + Dla
Ax,Aa,A 0 D2 0 Ax D2/ p

(b) Set x := x + Ax, a := a + Aa,/3 :=/ + A/.
(c) Construct E from a, and X from x. Compute (b + Po)- (A / E)x.

unti (ll xll, I1  11, II Zll <
End

where w is a large number [2], [16]. It can be shown that for p 2 when w approaches
infinity, the solution for (6.3) converges to the solution for (6.2) when the constraint

0 can be satisfied [2], [8], [16]. Thus, by using a large weight w, we can obtain a
good approximation for the solution for (6.2) by solving the unconstrained problem
(6.3). For possible numerical problems associated with large w, see [2], [16].

The algorithm is summarized in Algorithm STLNB. When there is no structure
imposed on b, we can simply choose 3 E N’I to represent the perturbation on all
the elements of b, and P0 I accordingly. Therefore, Algorithm STLNB can handle
the problems that can be solved by Algorithm STLN, although Algorithm STLN will
be more efficient when there is no structure on b.

For the linear prediction, where [A[b] or [b]A] is Toeplitz and all the diagonals
are subject to error, it is always possible to find a Toeplitz perturbation [E P0/ such
that

b + P03 E Range(A + E).

Therefore, will become zero when the solution is obtained. Also, we can reformulate
(6.2) into (6.3).

We will discuss the backward prediction only since the same results hold with
forward prediction as well. When we need to impose Toeplitz structure on [AIb], Step
2(a) of Algorithm STLNB can be further simplified since perturbation in b can be
represented using the perturbation in A, except for its first component. Specifically,
if E is a Toeplitz matrix with its first column Jan’-"On+m--1]T and its first row
[On" 02 01] i.e.,

E Toeplitz([an... an+m_]T, [a...a2 a]) with a [a a2...a.., an+m-]T,
Po I with /3 [/1 2"’" 3m]T,

then since 3i oi_1, 2,..., m, we have

(6.4)
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STRUCTURED TOTAL LEAST NORM PROBLEMS 119

where

Olx(_l)i0 I(ra_l) x (_i)
01xn

0(m--1)xn
E mx(m+n-i)and (1 0

From (6.4) and

XAa PoA + (A + E)Ax (X Po)Aa + (A + E)Ax A/i

Step 2(a) of Algorithm STLNB is simplified to

minimize
Aa,Ai,Ax

+ Da

where D2 diag(2, 3, n + 1, n + 1, ,3, 2, 1) E (m+n--1)(m+n--1), when all m+
n- 1 diagonals of A are different and subject to error. Then in Step 2(b), 3 is modified
so that 3 a_l for i 2,..., m and/l :=/31 + A/31.

7. Computational results. The STLN algorithm has been implemented in
MATLAB in order to investigate its computational performance. Each program for
a different norm is denoted with the suffix p as STLNp with p 1, 2, oo. The com-
putational testing has included over 200 relatively small problems with m _< 25 and
n < 21. In all cases, A has full rank. These computational tests represent a prelim-
inary study of the effect of structure, initial choice of x, and the magnitude of the
minimum norm on the algorithm’s behavior.

7.1. Convergence of STLN algorithm. The numerical results obtained were
consistent in showing that for each problem the STLN algorithm converged rapidly
to a minimum solution for the problem. Since the function being minimized (as given
by (1.2)) is not convex, there is no guarantee of convergence to a global minimum
(for p-- 2, convergence to a local minimum is discussed in 4). Typically, the STLN
algorithm starts with x as given by (2.5). Other initial values of x were also used
in some cases in order to test the convergence. In every such case, the algorithm
converged to a minimum value that was independent of the initial x. As a further
confirmation, the Hessian matrix H(y), as given by (4.5), was computed when the
algorithm terminated, and was always found to be positive definite.

The convergence rate appears to be independent of problem size (over the range
studied), but does depend on the size of the minimum norm. Specifically, a smaller
minimum norm results in faster convergence. To illustrate the convergence, the results
for two different problems will be summarized. These will be denoted as Problem I
and Problem II which are defined as follows.

Problem I.
rn=6, n=4, q=4.
Matrix A Toeplitz(col, row)

col=[ -3 7 10 -1 0
Matrix E Toeplitz(col, row)

col=[ O O2 O3 O4 0
Two values of b were used:

b(1)=[ -12 25 62 -59
b(2)=[ -12 25 62 -59

0 ]T, row--[ --3 0 0 0 ],

0 ]T, row:[ al 0 0 0 ],

16 100 ]T
9 122 IT.D
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120 J.B. ROSEN, H. PARK, AND J. GLICK

rnorm
Enorrn
Tnorm

X2

X3

X4

TABLE 7.1
Minimum norms and x for Problem I.

b(1)
LS TLS STLN2

8.2310"1 6.14 10-7.0810-2

7.1110-2
0

8.2310-1

4.0292
0.9056
-5.0122
9.5310

4.0292
0.9058
-5.0126
9.5314

2.20x 10-z

1.0910-1

1.1110-1

3.9638
1.0090
-5.1025
9.5596

STLNc
0

7.2410-2

7.24 10-2

3.9652
1.0058
-5.1289
9.5937

rnorm 10 45’
Enorm
Tnorm 10.445

Xl 3.4739
x2 1.7889
x3 -6.3357
x4 11.157

TLS
5.72x10-z

7.72x10-I

7.74xI0-I

3.4650
1.8252
-6.3864
11.221

b(2)

STLN2
5.359 i0-

1.432
1.529
4.3948
0.2927
-5.0594
10.924

STLN(x)
0

1.136
1.136
4.2865
0.0489
-4.994
11.017

Problem II.
m 9, n 6, q 4.
Matrix A Toeplitz(col, row):

col= [3 -1 -6 2 5
row= [3 -6 2 0 8

Matrix E Toeplitz(col, row):
col= [0/3 04 0 0 0
row--[ OZ3 OZ2 C1 0

b--[ 62 62 5 22 -65

0 0

-60 -10

0 0]T,

86 101 T

Note that in Problem I the matrix E has the same nonzero diagonal patterns as
A, whereas in Problem II, E has only four nonzero diagonals. This means that in
Problem II, only those four diagonals of the Toeplitz matrix A + E can change. Also
as shown in Table 7.1, the vector b() is more closely approximated by the columns of
A than is the case for b(2).

To illustrate the structure of the matrices Pi, i 1,..., m, the matrices P1 and
P2 for Problem II are now given:

0 0 1 0 0 0 0 0 0 1 0 0

P1-
0 1 0 0 0 0

and P2-
0 0 1 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0

The following solutions were obtained for these problems:
Least squares (LS),
Total least squares (TLS),
Structured total least norm (STLN), for p 2 and p 1,

The LS and TLS solutions were obtained with MATLAB using the QR decomposition
and the SVD, respectively. The STLN solutions were obtained using Algorithm STLN
given in 2.
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STRUCTURED TOTAL LEAST NORM PROBLEMS 121

For p 2, Step 2(a) of the algorithm computes an LS solution. For p o,
Step 2(a) is essentially the solution of the LP (5.2) in 5. The computed results for
Problem I, using these different approaches, are summarized in Figs. 7.1 and 7.2 and
Table 7.1.

(a) TNerror (b) MaxSS
10 10

x: Problem Ib 1, p=2
o: Problem Ibl, p=inf

10

l0

10
-2

10
-4

10
6

10
-8

10

x: Problem Ib

*: Problem Ib2

+

:3 3 4 5

10

10
-2

10
-4

10
-6

10
-8

10
"10

10
-10

0 8
Iteration Number

*: Problem Ib2, p=2

+Problem
II, p=2

.
4 6

Iteration Number

FIG. 7.1. (a) Convergence of total norm to STLN with p 2. (b) Convergence of step size.

Figure 7.1(a) shows the convergence of the STLN algorithm to the minimum value
of the total norm (TN), as given by (1.2). This minimum value computed from the
STLN algorithm is the STLN. Figure 7.1(a) shows the value of the TNerr at each
iteration of the STLN algorithm, where

TNerr TN- STLN.

The convergence (using p 2) is shown for four different cases: Problem Ibl (Problem
I, with b b(1)), Problem Ib2 (Problem I, with b b(2)), and Problem II with two
different initial values of x. The initial value a 0 was used for all cases. These
results show convergence in three iterations to TNerr _< 5 10-7, for both Problems
Ibl and II, even when the initial TNerr is very large (,100). The large initial value
of TNerr is obtained by using an initial value of x very different from its converged
value. The smaller initial TNerr shown for Problem Ii was obtained by using x xt8
as the initial value, where xts is the LS solution.

Convergence for Problem Ib2 is seen to be significantly slower, with four iterations
needed to obtain TNerr 10-4, from an initial TNerr 103. Essentially the same
convergence rate was obtained for Problem Ib2, starting with an initial TNerr - 10,
obtained with x xt. To avoid complicating the figure, this last case is not included
in Fig. 7.1(a).
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122 J.B. ROSEN, H. PARK, AND J. GLICK

In order to understand these convergence results, it is important to note that
both the STLN and the minimum residual norm are at least ten times greater for
Problem Ib2 than they are for Problem Ibl. These values are given in Table 7.1, to
be discussed shortly.

A closely related aspect of the convergence of the STLN algorithm is given in Fig.
7.1(b), which shows the rate of decrease of the step size with iteration number. For
the purposes of this graph the maximum step size (MaxSS) is defined as

MaxSS mx(llzll, IIzxll},
and is shown as a function of the iteration number. This is a more sensitive measure
of convergence, since small changes in c and x may continue even when TNerr is very
small. This is most likely to occur when the minimum of TN is very flat.

The results for a total of six cases are presented in Fig. 7.1(b). These results
include the four cases shown in Fig. 7.1(a) and, in addition, Problem Ibl, with the
initial value of x xts, and Problem Ibl, using the L norm with an initial value
of x given by (2.5) with p oe. The results shown in Fig. 7.1 are typical of all the
problems solved by the STLN algorithm. For all the problems we tested, the STLN
algorithm converges to the global minimum from the chosen initial value of x, and the
convergence rate is independent of the norm used (note that the data for Problems
Ibl (p 2 and p oe) and II all lie on the lowest curve of Fig. 7.1(b)). The conver-
gence rate is second order for small residual problems, and apparently superlinear for
larger residual problems (compare Problems Ibl and Ib2). The minimum norm for all
problems tested (except Ibm) was similar to that in Ibl and II, and all these problems
converged in, at most, six iterations.

These computational results are consistent with the analysis given in 4. The
dependence of the convergence rate on the residual minimum norm is clearly shown
by reference to Table 7.1, to be discussed below. A more complete understanding of
this dependence requires further investigation, both theoretical and computational.

7.2. Comparison of STLN with LS and TLS. A direct comparison of the
STLN (p 2) solution with the TLS solution, for Problem II, is shown in Fig.
7.2. For this problem the matrix E is Toeplitz, with only four nonzero diagonals.
The computed matrix E is shown for the TLS solution and the STLN solution. As
expected for the TLS solution, all elements of E are nonzero, and it does not have
a Toeplitz structure. That is, the TLS solution allows all elements of the matrix A
to change. This is in contrast to the STLN solution where only the four designated
diagonals are allowed to change, so that A/E preserves the original Toeplitz structure
of A.

Finally, the computed norms for Problems Ibl, Ibm, and the corresponding z
vectors are given in Table 7.1. This table compares the minimum norm solutions
obtained by LS, where E 0; by TLS, where all elements of E can change; and by
the STLN algorithm (for both p 2 and p ee), where only the specified elements
of E can change. For each case, the following three norms are tabulated:

(7.3)
Tnrm-

and

It should be noted that for each problem the Tnorm satisfies the inequality

(7.4) TLS _< STLN2 _< L8.
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ETLS

ESTLN2

--4.5 x 10-3 --7.7 x 10-3 4.0 x 10-6

--1.4 x 10-3 --2.4 X 10-3 1.2 X 10-6

3.7 X 10-3 6.4 X 10-3 --3.3 X 10-6

--1.5 x 10-4 --2.6 X 10-4 1.4 X 10-7

--2.2 x 10-3 --3.8 x 10-3 2.0 x 10-6

--5.5 X 10-3 --9.5 X 10-3 4.9 X i0-6

--6.8 X I0-3 --1.2 X 10-2 6.0 X 10-6

8.0 X 10-4 1.4 10-3

--2.6 x 10-3 --4.5 X 10-3

7.9 x 10-3 9.1 x 10-3 9.1 x 10-3 \
2.4 x 10-3 2.8 x 10-3 2.8 10-3

--6.5 X 10-3 --7.5 X 10-3 --7.5X 10-3

2.7 X 10-4 3.1 X 10-4 3.1 X 10-4

3.9 x 10-3 4.5 X 10-3 4.5 X 10-3

9.6 X 10-3 1.2 X 10-2 1.1 X 10-2

1.2 X 10-2 1.4 X 10-2 1.4 X 10-2

--7.1 x I0-7 --1.4 i0-3 --1.6 10-3 --1.6 10-3

2.3 x I0-6 4.5 10-3 5.2 10-3 5.2 10-3 )
--2.6 x I0-2 -1.6 I0-3 2.0 10-2 0 0 0
6.5 x 10-2 -2.6 x 10-2 -1.6 10-3 2.0 10-2 0 0

0 6.5 x 10-2 -2.6 x 10-2 --1.6 x 10-3 2.0 x 10-2 0
0 0 6.5 x 10-2 -2.6 x 10-2 -1.6 x 10-3 2.0 x 10-2

0 0 0 6.5 x I0-2 -2.6 x I0-2 --1.6 10-3

0 0 0 0 6.5 X 10-2 --2.6 X 10-2

0 0 0 0 0 6.5 x 10-2

0 0 0 0 0 0
0 0 0 0 0 0

FIG. 7.2. E matrices obtained by TLS and STLN2 for Problem II.

This is the expected result, since TLS is unconstrained (all elements of E can change),
STLN is partially constrained (only specified elements of E can change), and LS is
completely constrained (E 0). Also, the minimum residual for Problem Ib2 is at
least ten times greater than it is for Problems Ibz and II, which seems to be the
significant property affecting the convergence rate.

In addition to the computational convergence of the STLN algorithm, the prop-
erties of the solution obtained were investigated. In particular, the vector x and error
matrix E obtained were compared for LS, TLS, and STLNp, for p 1, 2, oo. There
are a number of ways in which this comparison can be made. The comparison used
is based on the assumption that there exists a "correct" structured matrix Ae and
vector be, such that

(7.5) Aexe be

for some "correct" vector xe. In other words, error-flee values exist such that the
overdetermined system has a solution xe, with zero residual. The actual data contains
noise so that a perturbed (but structure preserving) matrix Ap md vector bp are
known. The objective is to get the "best" solution xp to the perturbed system Apx
bp and, to the extent possible, reconstruct the matrix Ae and vector be from the noisy
data. Specifically, the error matrix E and residual vector r are computed so that

(7.6) (A + E)x b r.

This is done by minimizing the appropriate norm of E and r.
The test problems are constructed so that Ae, be, and xe are known. Then random

perturbations are generated to give Ap and bp, so that A and b preserve the same
structure as Ae and be. The matrix E and r, Xp satisfying (7.6) are then computed
via LS, TLS, and STLN.

A comparison of these errors for LS, TLS, and STLN was made for three different
types of structured problems.

1. The matrix A and vector b are unstructured, but errors can occur only in
certain elements.
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124 J.B. ROSEN, H. PARK, AND J. GLICK

TABLE 7.2
Solution accuracy, A and b unstructured, m 20, n 16, q 4.

Method berr Aerr
LS 3.3e-4 6.5e-4
TLS 2.4e-5 6.5e-4
STLN2 2.2e-5 9.7e-5
STLN1 2.4e-5 7.6e-5
STLNc 2.6e-5 1.6e-4

Xerr
1.8e-3
1.8e-3
2.0e-4
2.1e-4
3.4e-4

TABLE 7.3
Solution accuracy, A Toeplitz, b unstructured, m- 11, n- 6, q- 4.

Method berr Aerr Xerr
LS 8.9e-3 1.2e-2 1.5e-2
TLS 5.3e-4 1.2e-2 1.5e-2
STLN2 4.3e-4 5.3e-4 7.3e-4
STLN1 5.5e-4 5.4e-4 3.5e-4
STLNo 5.7e-4 5.2e-4 5.9e-4

TABLE 7.4
Solution accuracy, [AIb Toeplitz, m- 14, n- 4, q- 17.

Method Aerr Xerr
LS 4.4e-3 1.4e-1
TLS 4.0e-3 2.4e-2
STLN2 3.8e-3 3.3e-3
STLN1 2.2e-6 7.2e-6
STLNo 4.7e-3 1.3e-1

2. The matrix A is Toeplitz, with b unstructured.
3. The matrix [AIb is Toeplitz.

To illustrate the comparison obtained with over 200 test problems, a typical
case has been selected for each type of structured problem. These typical cases are
presented in Tables 7.2, 7.3, and 7.4. The following quantities are tabulated to give
the measure of robustness [8]:

bpert Ilbp bcll2/llbcl]2,
Apert --IIAp A IIF/IIA IIF,

berr --IIbp r b=ll2/llb l]2,
Aerr llAp + E- AcllF/I]dcllF,

Table 7.2 gives the comparison for A and b unstructured, with all ,elements of b
and four elements of A perturbed, and m 20, n 16, and q 4. The values of
bpert 2.4e-5 and Apert 6.5e-4 were used. The matrices Ac and Ap are dense,
but E is sparse with only four nonzero elements, for the STLN solutions. The .matrix
E is zero for LS and dense for TLS.

Table 7.3 gives the comparison for A Toeplitz, and b unstructured, with m 11,
n 6, and q 4. The matrices Ac and Ap are both Toeplitz, and E is Toeplitz
with four nonzero diagonals for the STLN solutions. The matrix E is zero for LS and
dense for TLS. The values of bpert 5.2e-4 and Apert 1.2e-2 were used.

Table 7.4 gives the comparison for [AIb Toeplitz, with m 14, n 4, and

D
ow

nl
oa

de
d 

11
/0

7/
17

 to
 1

28
.6

1.
71

.1
39

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



STRUCTURED TOTAL LEAST NORM PROBLEMS 125

q 17. The problem presented was selected to illustrate the performance of the STLN
algorithm with an outlier in the data. In addition to small random perturbations in
each diagonal of [A bl, a much larger error was introduced in one of the diagonals.
The small random perturbations gave Apert 2.1e-6 and the exact data with outlier
only gave Apert 5.1e-3. The berr is included in Aerr for [AIb Toeplitz. The matrix
E is zero for LS and dense for TLS. The most significant result shown in Table 7.4 is
that STLN1 is essentially unaffected by the outlier. Note that the STLNoc solution
is affected most by the outlier.

The results presented in Tables 7.2, 7.3, and 7.4 show that the errors in the STLN1
and STLN2 solutions are significantly less than in the LS and TLS solutions. Similar
results were obtained for all structured problems of these types tested.

8. Conclusions and future work. A new algorithm has been presented for
solving an important class of problems related to TLS. The main new features of this
approach are that it preserves the problem structure, and also permits the minimiza-
tion of error in different norms. Both the theoretical analysis and the computational
results show that the STLN algorithm is an efficient computational method for prob-
lems with a special structure, or where the number of elements with possible error (in
the matrix A) is not too large. The ability to minimize the error in norms other than
the 2-norm is also important, since we believe this will give more robust solutions in
certain cases. When the data are from the complex field, the presented algorithms can
be used in a straightforward way for the 2-norm. For the 1-norm and cx)-norm with
complex data, the STLN problem will require the solution of a nonlinear programming
problem rather than linear programming.

In order to more fully investigate the potential of the STLN formulation and
algorithm for a range of applications, a number of areas need further study. Future
work on STLN will include computational testing of much larger problems arising in
important applications where the matrix A has a special, or sparse structure, and
theoretical and computational analysis of the effect of the magnitude of the minimum
norm on the convergence rate.
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us to this problem and subsequent discussions, and Prof. Philip Gill for a helpful
discussion.
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