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Abstract Nonnegative matrix factorization (NMF) provides a lower rank approx-
imation of a matrix by a product of two nonnegative factors. NMF has been shown
to produce clustering results that are often superior to those by other methods
such as K-means. In this paper, we provide further interpretation of NMF as a
clustering method and study an extended formulation for graph clustering called
Symmetric NMF (SymNMF). In contrast to NMF that takes a data matrix as an
input, SymNMF takes a nonnegative similarity matrix as an input, and a symmet-
ric nonnegative lower rank approximation is computed. We show that SymNMF
is related to spectral clustering, justify SymNMF as a general graph clustering
method, and discuss the strengths and shortcomings of SymNMF and spectral
clustering. We propose two optimization algorithms for SymNMF and discuss their
convergence properties and computational efficiencies. Our experiments on docu-
ment clustering, image clustering, and image segmentation support SymNMF as
a graph clustering method that captures latent linear and nonlinear relationships
in the data.
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1 Introduction

Dimension reduction and clustering are two of the key tasks in machine learning
and data analytics. Suppose a collection of n data items with m features is rep-
resented in a matrix X ∈ Rm×n. In a low rank approximation, we are given a
desired reduced rank k which is typically much smaller than m and n, and we are
to find C ∈ Rm×k and G ∈ Rn×k such that the difference between X and the
product CGT is minimized as

X ≈ CGT . (1)

This minimization problem can be formulated using various difference or distance
measures. In this paper, we will focus on the Frobenius norm based minimization,
i.e.

min
C,G
‖X − CGT ‖F . (2)

In Nonnegative Matrix Factorization (NMF), nonnegativity is imposed on the
factors C and G, i.e., we are to solve

min
C≥0,G≥0

‖X − CGT ‖2F , (3)

where C ∈ Rm×k
+ , G ∈ Rn×k

+ , and R+ denotes the set of nonnegative real numbers.
The NMF can be defined for any matrix, but it makes more sense to consider NMF
when the matrix X is nonnegative. Throughout this paper, we will assume that
X ∈ Rm×n

+ is nonnegative.
NMF has been shown to be an effective method in numerous applications [29,

35,11,25,20]. In this paper, we will focus on the role of NMF as a clustering method.
Note that NMF is posed as a constrained low rank approximation method, and
accordingly, is a method for dimension reduction. However, dimension reduction
and clustering are closely related. The following interpretation of the results of
the low rank approximation illustrates this point: We consider the columns of C
are the new basis for the reduced k-dimensional space for X, and each column of
GT provides the k-dimensional representation of the corresponding column of X
in the space spanned by the columns of C.

In the case of singular value decomposition (SVD), the columns of C are or-
dered in a way that the first column is the most dominant vector (the leading
left singular vector) that captures the largest variation in the data, and the next
column is the second most dominant vector and orthogonal to the leading singular
vector, etc. Therefore, the columns of C do not “equally” represent the column
space spanned by the data matrix X. In addition, the two factors C and GT can
have negative elements, and thus it will be difficult to interpret the i-th column
of GT as a “proportion distribution” with which the i-th data item has the com-
ponent in the corresponding basis vector in C. On the other hand, the columns of
C in NMF cannot have negative signs, and accordingly cannot “cancel out” some
directions that the more dominant columns of C may represent. Accordingly, the
columns of C more or less “equally” represent the data set and each column in the
factor GT can be viewed as a distribution with which the i-th data item has the
component in the corresponding column of C. Since we can use GT to derive an
assignment of the n data points into k groups, clustering can be viewed as a special
type of dimension reduction. The NMF gives a soft clustering result as explained
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above but we can also interpret the result as a hard clustering by assigning the
i-th data point to the j-th cluster when the largest element among all components
of the i-th column of GT lies in the j-th position. For example, when NMF is
applied to document clustering, the basis vectors in C represent k topics, and the
coefficients in the i-th column of GT indicate the degrees of membership for xi,
the i-th document. NMF is well-known for the interpretability of the latent space
it finds [38].

Another way to illustrate the cabability of NMF as a clustering method is
by observing its relationship to the objective function of the classical K-means
clustering, which is arguably the most commonly used clustering method:

min
n∑

i=1

‖xi − cgi‖
2
2, (4)

where x1, · · · , xn are the columns of X, c1, · · · , ck are the k centroids, and gi = j
when the i-th data point is assigned to the j-th cluster (1 ≤ j ≤ k). Consider
K-means formulated as a dimension reduction problem [30]:

min
G∈{0,1}n×k,G1k=1n

‖X − CGT ‖2F , (5)

where 1k ∈ Rk×1,1n ∈ Rn×1 are column vectors whose elements are all 1’s. In
the formulation (5), columns of C are the cluster centroids, and the single nonzero
element in each column of GT indicates the clustering assignment.

NMF as a clustering method has been proved to be superior to K-means on
many types of data, including documents [64], images [8], and microarray data [27].
Although K-means and NMF have the same objective function ‖X−CGT ‖2F with
different constraints, i.e., G ∈ {0, 1}n×k, G1k = 1n in the case of K-means, and
C ≥ 0 and G ≥ 0 in the case of NMF, each has its best performance on differ-
ent kinds of data sets. In order to apply NMF to the appropriate data sets, we
must know the limitation of its capability in clustering. Most clustering methods
have a clearly defined objective function to optimize such as (5) and (3). How-
ever, clustering is difficult to formulate mathematically in order to discover the
hidden pattern [33]. Each clustering method has its own conditions under which
it performs well. For example, K-means assumes that data points in each cluster
follow a spherical Gaussian distribution [18]. In contrast, the NMF formulation (3)
provides a better low-rank approximation of the data matrix X than the K-means
formulation (5).

If k ≤ rank(X), since rank(X) ≤ nonnegative-rank(X) [4] and the low rank
approximation by NMF gives a smaller objective function value when the columns
of C (the cluster representatives) are linearly independent, it is for the best inter-
est of NMF to produce linearly independent cluster representatives. This explains
our earlier discovery that NMF performs well when different clusters correspond
to linearly independent vectors [34]. The following artificial example illustrates
this point. See Fig. 1, where the two cluster centers are along the same direction
therefore the two centroid vectors are linearly dependent. While NMF still ap-
proximates all the data points well in this example, no two linearly independent
vectors in a two-dimensional space can represent the two clusters shown in Fig. 1.
Since K-means and NMF have different conditions under which each of them does
clustering well, they may generate very different clustering results in practice. We
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Fig. 1: An example with two ground-truth clusters, with different clustering results.
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are motivated by Fig. 1 to mention that the assumption of spherical K-means is
that data points in each cluster follow a von Mises-Fisher distribution [3], which
is similar to the assumption of NMF.

Therefore, NMF, originally a dimension reduction method, is not always a pre-
ferred clustering method. The success of NMF as a clustering method depends on
the underlying data set, and its most success has been around document clus-
tering [64, 54, 57, 41, 30, 17]. In a document data set, data points are often rep-
resented as unit-length vectors [49] and embedded in a linear subspace. For a
term-document matrix X, a basis vector cj is interpreted as the term distribution
of a single topic. As long as the term distributions of k topics are linearly indepen-
dent, which are usually the case, NMF can extract the ground-truth clusters well.
However, NMF has not been as successful in image clustering. For image data, it
was shown that a collection of images tends to form multiple 1-dimensional non-
linear manifolds [47], one manifold for each cluster. This does not satisfy NMF’s
assumption on cluster structures, and therefore NMF may not identify correct
clusters.

In this paper, we study a more general formulation for clustering based on
NMF, called Symmetric NMF (SymNMF), where an n× n nonnegative and sym-
metric matrix A is given as an input instead of a nonnegative data matrix X. The
matrix A contains pairwise similarity values of a similarity graph, and is approx-
imated by a lower rank matrix HHT instead of the product of two lower rank
matrices CGT . High-dimensional data such as documents and images are often
embedded in a low-dimensional space, and the embedding can be extracted from
their graph representation. We will demonstrate that SymNMF can be used for
graph embedding and clustering and often performs better than spectral methods
in terms of multiple evaluation measures for clustering.

The rest of this paper is organized as follows. In Section 2, we review previ-
ous work on nonnegative factorization of a symmetric matrix and introduce the
novelty of the directions proposed in this paper. In Section 3, we present our new
interpretation of SymNMF as a clustering method. In Section 4, we show the dif-
ference between SymNMF and spectral clustering in terms of their dependence
on the spectrum. In Sections 5 & 6, we propose two algorithms for SymNMF: A
Newton-like algorithm and an alternating nonnegative least squares (ANLS) al-
gorithm, and discuss their efficiency and convergence properties. In Section 7, we
report experiment results on document and image clustering that illustrate that
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SymNMF is a competitive method for graph clustering. In Section 8, we apply
SymNMF to image segmentation and show the unique properties of the obtained
segments. In Section 9, we discuss future research directions.

2 Related Work

In Symmetric NMF (SymNMF), we look for the solution H ∈ Rn×k
+ ,

min
H≥0

f(H) = ‖A−HHT ‖2F , (6)

given A ∈ Rn×n
+ with AT = A and k. The integer k is typically much smaller than

n. In our graph clustering setting, A is called a similarity matrix: The (i, j)-th
entry of A is the similarity value between the i-th and j-th nodes in a similarity
graph, or the similarity value between the i-th and j-th data items.

The above formulation has been studied in a number of previous papers. Ding
et al. [15] transformed the formulation of NMF (3) to a symmetric approximation
‖A−HHT ‖2F where A is a positive semi-definite matrix, and showed that it has the
same form as the objective function of spectral clustering. Li et al. [41] used this
formulation for semi-supervised clustering where the similarity matrix was modi-
fied with prior information. Zass and Shashua [69] converted a completely positive
matrix [5] to a symmetric doubly stochastic matrix A and used the formulation (6)
to find a nonnegative H for probabilistic clustering. They also gave a reason why
the nonnegativity constraint on H was more important than the orthogonality
constraint in spectral clustering. He et al. [23] approximated a completely positive
matrix directly using the formulation (6) with parallel update algorithms. In all
of the above work, A was assumed to be a positive semi-definite matrix. Other
related work that imposed additional constraints on H includes [2, 66,65].

The SymNMF formulation has also been applied to non-overlapping and over-
lapping community detection in real networks [62, 46, 52, 72, 71]. For example,
Nepusz [52] proposed a formulation similar to (6) with sum-to-one constraints to
detect soft community memberships; Zhang [72] proposed a binary factorization
model for overlapping communities and discussed the pros and cons of hard/soft
assignments to communities. The adjacency matrix A involved in community de-
tection is often an indefinite matrix.

Catral et al. [9] studied whether WHT is symmetric and W = H, when W
and H are the global optimum for the problem minW,H≥0 ‖A −WHT ‖2F where
A is nonnegative and symmetric. Ho [24] in his thesis related SymNMF to the
exact symmetric NMF problem A = HHT . Both of their theories were developed
outside the context of graph clustering, and their topics are beyond the scope of
this paper. Ho [24] also proposed a 2n-block coordinate descent algorithm for (6).
Compared to our two-block coordinate descent framework described in Section 6,
Ho’s approach introduced a dense n×n matrix which destroys the sparsity pattern
in A and is not scalable.

Almost all the work mentioned above employed multiplicative update algo-
rithms to optimize their objective functions with nonnegativity constraints. How-
ever, this type of algorithms does not have the property that every limit point is
a stationary point [22, 42], and accordingly their solutions are not guaranteed to
be local minima. In fact, the results of multiplicative update algorithms (e.g. [16])
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only satisfy part of the KKT condition, but do not satisfy all the components
of the KKT condition, for example, the sign of the gradient vector. In the three
papers [52, 71, 24] that used gradient descent methods for optimization that did
reach stationary point solutions, they performed the experiments only on graphs
with up to thousands of nodes.

In this paper, we study the formulation (6) from different angles:

1. We focus on a more general case where A is a symmetric indefinite matrix and
represents a general graph. Examples of such an indefinite matrix include a
similarity matrix for high-dimensional data formed by the self-tuning method
[70] as well as the pixel similarity matrix in image segmentation [58]. Real
networks have additional structures such as the scale-free properties [61], and
we will not include them in this work.

2. We focus on hard clustering and will give an intuitive interpretation of Sym-
NMF as a graph clustering method. Hard clustering offers more explicit mem-
bership and easier visualization than soft clustering [72]. Unlike [15], we empha-
size the difference between SymNMF and spectral clustering instead of their
resemblance.

3. We propose two optimization algorithms that converge to stationary point
solutions for SymNMF, namely Newton-like algorithm and ANLS algorithm.
We also show that the new ANLS algorithm scales better to large data sets.

4. In addition to experiments on document and image clustering, we apply Sym-
NMF to image segmentation using 200 images in the Berkeley Segmentation
Data Set [1]. To the best of our knowledge, our work represents the first at-
tempt for a thorough evaluation of nonnegativity-based methods for image
segmentation.

Overall, we conduct a comprehensive study of SymNMF in this paper, covering
from foundational justification for SymNMF for clustering, convergent and scalable
algorithms, to real-life applications for text and image clustering as well as image
segmentation. The Newton-like algorithm and some of the analysis of spectral
clustering was first proposed in our previous work [34]. We include them in this
paper for completeness.

3 Interpretation of SymNMF as a Graph Clustering Method

Just as the nonnegativity constraint in NMF makes it interpretable as a clustering
method, the nonnegativity constraint H ≥ 0 in (6) also gives a natural partitioning
as well as interpretation of SymNMF. Now we provide an intuitive explanation of
why this formulation is expected to extract cluster structures.

Fig. 2 shows an illustrative example of SymNMF, where we have rearranged the
rows and columns of A without loss of generality. If a similarity matrix has cluster
structures embedded in it, several diagonal blocks (two diagonal blocks in Fig. 2)
with large similarity values will appear. In order to approximate this similarity
matrix with low-rank matrices and simultaneously extract cluster structures, we
can approximate these diagonal blocks separately because each diagonal block in-
dicates one cluster. As shown in Fig. 2, it is straightforward to use an outer product
hhT to approximate a diagonal block. Because h is a nonnegative vector, it serves
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Fig. 2: An illustration of SymNMF formulation minH≥0 ‖A−HHT ‖2F . Each cell
is a matrix entry. Colored region has larger values than white region. Here n = 7
and k = 2.

≈ + = ×
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Fig. 3: An illustration of min ‖A − HHT ‖2F or minHHT=I ‖A − HHT ‖2F . Each
cell is a matrix entry. Colored region has larger magnitudes than white region.
Magenta cells indicate positive entries, green indicating negative. Here n = 7 and
k = 2.
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A H
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as a cluster membership indicator: Larger values in h indicate stronger member-
ships to the cluster corresponding to the diagonal block. When multiple such outer
products are added up together, they approximate the original similarity matrix,
and each column of H represents one cluster. Due to the nonnegativity constraints
in SymNMF, only “additive”, or “non-subtractive”, summation of rank-1 matrices
is allowed to approximate both diagonal and off-diagonal blocks.

On the contrary, Fig. 3 illustrates the result of low-rank approximation of A
without nonnegativity constraints. In this case, when using multiple hhT outer
products to approximate A, cancellations of positive and negative numbers are
allowed. Without nonnegativity enforced on h’s, the diagonal blocks need not be
approximated separately by each term hhT . The elements in a vector h can have
any sign (+, 0,−) and magnitude, though the summation of all hhT terms, i.e.
HHT , can approximate the large diagonal blocks and small off-diagonal blocks
well. Thus, h cannot serve as a cluster membership indicator. In this case, the
rows of the low-rank matrix H contain both positive and negative numbers and
can be used for graph embedding. In order to obtain hard clusters, we need to
post-process the embedded data points such as applying K-means clustering. This
reasoning is analogous to the contrast between NMF and SVD (singular value
decomposition) [38].

SymNMF is flexible in terms of choosing similarities between data points. We
can choose any similarity measure that describes the cluster structure well. In
fact, the formulation of NMF (3) can be related to SymNMF when A = XTX in
(6) [15]. This means that NMF implicitly chooses inner products as the similarity
measure, which is not always suitable to distinguish different clusters.
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Table 1: Algorithmic steps of spectral clustering and SymNMF clustering.

Spectral clustering SymNMF

Objective minĤT Ĥ=I ‖A− ĤĤT ‖2F minH≥0 ‖A−HHT ‖2F
Step 1

Obtain the global optimal Ĥn×k by Obtain a solution H
computing k leading eigenvectors of A using an optimization algorithm

Step 2 Scale each row of Ĥ (no need to scale rows of H)

Step 3
Apply a clustering algorithm to the The largest entry in each row of H

the rows of Ĥ, a k-dimensional embedding indicates the clustering assignments

4 SymNMF and Spectral Clustering

4.1 Objective Functions

Spectral clustering represents a large class of graph clustering methods that rely
on eigenvector computation [10,58,53]. Now we will show that spectral clustering
and SymNMF are closely related in terms of the graph clustering objective but
fundamentally different in optimizing this objective.

Many graph clustering objectives can be reduced to a trace maximization form
[13,36]:

max trace(H̃TAH̃), (7)

where H̃ ∈ Rn×k (to be distinguished from H in the SymNMF formulation) satis-
fies H̃T H̃ = I, H̃ ≥ 0, and each row of H̃ contains one positive entry and at most
one positive entry due to H̃T H̃ = I. Clustering assignments can be drawn from
H̃ accordingly.

Under the constraints on H̃T H̃ = I, H̃ ≥ 0, we have [15]:

max trace(H̃TAH̃)

⇔ min trace(ATA)− 2trace(H̃TAH̃) + trace(I)

⇔ min trace[(A− H̃H̃T )T (A− H̃H̃T )]

⇔ min ‖A− H̃H̃T ‖2F .

This objective function is the same as (6), except that the constraints on the
low-rank matrices H and H̃ are different. The constraint on H̃ makes the graph
clustering problem NP-hard [58], therefore a practical method relaxes the con-
straint to obtain a tractable formulation. In this respect, spectral clustering and
SymNMF can be seen as two different ways of relaxation: While spectral clus-
tering retains the constraint H̃T H̃ = I, SymNMF retains H̃ ≥ 0 instead. These
two choices lead to different algorithms for optimizing the same graph clustering
objective (7), which are shown in Table 1.

4.2 Spectral Clustering and the Spectrum

Normalized cut is a widely-used objective for spectral clustering [58]. Now we
describe some scenarios where optimizing this objective may have difficulty in
identifying correct clusters while SymNMF could be potentially better.

Although spectral clustering is a well-established framework for graph clus-
tering, its success relies only on the properties of the leading eigenvalues and
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Fig. 4: Three leading eigenvectors of the similarity matrix in (8) when λ̃3(A1) >
max(λ̃1(A2), λ̃1(A3)). Here we assume that all the block diagonal matrices
A1, A2, A3 have size 3× 3. Colored region has nonzero values.
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eigenvectors of the similarity matrix A. It was pointed out in [60, 53] that the
k-dimensional subspace spanned by the leading k eigenvectors of A is stable only
when |λk(A)−λk+1(A)| is sufficiently large, where λi(A) is the i-th largest eigen-
value of A. Now we show that spectral clustering could fail when this condition is
not satisfied but the cluster structure may be perfectly represented in the block-
diagonal structure of A. Suppose A is composed of k = 3 diagonal blocks, corre-
sponding to three clusters:

A =

A1 0 0
0 A2 0
0 0 A3

 . (8)

If we construct A as in the normalized cut, then each of the diagonal blocks
A1, A2, A3 has a leading eigenvalue 1. We further assume that λ2(Ai) < 1 for all
i = 1, 2, 3 in exact arithmetic. Thus, the three leading eigenvectors of A corre-
spond to the diagonal blocks A1, A2, A3 respectively. However, when λ2(A1) and
λ3(A1) are so close to 1 that it cannot be distinguished from λ1(A1) in finite
precision arithmetic, it is possible that the computed eigenvalues λ̃j(Ai) satisfy
λ̃1(A1) > λ̃2(A1) > λ̃3(A1) > max(λ̃1(A2), λ̃1(A3)). In this case, three subgroups
are identified within the first cluster; the second and the third clusters cannot be
identified, as shown in Fig. 4 where all the data points in the second and third clus-
ters are mapped to (0, 0, 0). Therefore, eigenvectors computed in a finite precision
cannot always capture the correct low-dimensional graph embedding.

Now we demonstrate the above scenario using a concrete graph clustering ex-
ample. Fig. 5 shows (a) the original data points; (b) the embedding generated by
spectral clustering; and (c-d) plots of the similarity matrix A. Suppose the scat-
tered points form the first cluster, and the two tightly-clustered groups correspond
to the second and third clusters. We employ the widely-used Gaussian kernel [45]
and normalized similarity values [58]:

eij = exp

(
−‖xi − xj‖

2
2

σ2

)
,

Aij = eijd
−1/2
i d

−1/2
j ,

(9)

where xi’s are the two-dimensional data points, di =
∑n

s=1 eis (1 ≤ i ≤ n), and σ
is a parameter set to 0.05 based on the scale of data points. In spectral clustering,
the rows of the leading eigenvectors determine a mapping of the original data
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Fig. 5: A graph clustering example with three clusters (original data from [70]).
(a) Data points in the original space. For illustration’s purpose, we use two-
dimensional data points; however, the Gaussian kernel (9) maps them into a high-
dimensional space. (b) 3-dimensional embedding of the data points as rows of
three leading eigenvectors. (c) Block-diagonal structure of A. (d) Block-diagonal
structure of the submatrix of A corresponding to the two tightly-clustered groups
in (a). Note that the data points in both (a) and (b) are marked with ground-truth
labels.

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Graph 2: Original

 

 

Cluster1

Cluster2

Cluster3

(b)

−0.5

0

0.5

1 0
0.5

1

0

0.5

1

Graph 2: New Representation in Eigenvectors

(c)

 

 

50 100 150 200 250 300

50

100

150

200

250

300 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d)

 

 

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

0

0.005

0.01

0.015

0.02

Table 2: Leading eigenvalues of the similarity matrix based on Fig. 5 with σ = 0.05.

1st 1.000000000000001
2nd 1.000000000000000
3rd 1.000000000000000
4th 0.999999999998909

points, shown in Fig. 5b. In this example, the original data points are mapped to
three unique points in a new space. However, the three points in the new space do
not correspond to the three clusters in Fig. 5a. In fact, out of the 303 data points
in total, 290 data points are mapped to a single point in the new space.

Let us examine the leading eigenvalues, shown in Table 2, where the fourth
largest eigenvalue of A is very close to the third largest eigenvalue. This means that
the second largest eigenvalue of a cluster, say λ2(A1), would be easily identified
as one of λ1(A1), λ1(A2), and λ1(A3). The mapping of the original data points
shown in Fig. 5b implies that the computed three largest eigenvalues come from
the first cluster. This example is a noisier case of the scenario in Fig. 4.

On the contrary, we can see from Fig. 5c and 5d that the block-diagonal struc-
ture of A is clear, though the within-cluster similarity values are not on the same
scale. Fig. 6 shows the comparison of clustering results of spectral clustering and
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Fig. 6: Clustering results for the example in Fig. 5: (a) Spectral clustering. (b)
SymNMF.
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SymNMF in this case. SymNMF is able to separate the two tightly-clustered
groups more accurately.

4.3 A Condition on SymNMF

How does the spectrum of A possibly influence SymNMF? We have seen that the
solution of SymNMF relies on the block-diagonal structure of A, thus it does not
suffer from the situations in Section 4.2 where the eigengap between the k-th and
(k+1)-th eigenvalues is small. We will also see in later sections that algorithms for
SymNMF do not depend on eigenvector computation. However, we do emphasize
a condition that SymNMF must satisfy in order to make the formulation (6)
valid. This condition is related to the spectrum of A, specifically the number of
nonnegative eigenvalues of A. Note that A is only assumed to be symmetric and
nonnegative, and is not necessarily positive semi-definite, therefore may have both
positive and negative eigenvalues. On the other hand, in the approximation ‖A−
HHT ‖F , HHT is always positive semi-definite and has rank at most k, therefore
HHT would not be a good approximation if A has fewer than k nonnegative
eigenvalues. We assume that A has at least k nonnegative eigenvalues when the
given size of H is n× k.

This condition on A could be expensive to check. Here, by a simple argument,
we claim that it is practically reasonable to assume that this condition is satisfied
given a similarity matrix. Again, we use the similarity matrix A in (8) as an ex-
ample. Suppose we know the actual number of clusters is three, and therefore H
has size n× 3. Because A is nonnegative, each of A1, A2, A3 has at least one non-
negative eigenvalue according to Perron-Frobenius theorem [4], and A has at least
three nonnegative eigenvalues. In a real data set, A may become much noisier with
small entries in the off-diagonal blocks of A. The eigenvalues are not dramatically
changed by a small perturbation of A according to matrix perturbation theory [60],
hence A would also have at least k nonnegative eigenvalues if its noiseless version
does. In practice, the number of positive eigenvalues of A is usually much larger
than that of negative eigenvalues, which is verified in our experiments.
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Algorithm 1 Framework of the Newton-like algorithm for SymNMF:
minH≥0 f(x) = ‖A−HHT ‖2F

1: Input: number of data points n, number of clusters k, n× n similarity matrix
A, reduction factor 0 < β < 1, acceptance parameter 0 < σ < 1, and tolerance
parameter 0 < µ << 1

2: Initialize x, x(0) ← x
3: repeat
4: Compute scaling matrix S
5: Step size α = 1
6: while true do
7: xnew = [x− αS∇f(x)]+

8: if f(xnew)− f(x) ≤ σ∇f(x)T (xnew − x) then
9: break

10: end if
11: α← βα
12: end while
13: x← xnew
14: until ‖∇P f(x)‖ ≤ µ‖∇P f(x(0))‖
15: Output: x

5 A Newton-like Algorithm for SymNMF

In this section, we will present an optimization algorithm to compute SymNMF
where A is nonnegative and symmetric. The objective function in (6) is a fourth-
order non-convex function with respect to the entries of H, and has multiple local
minima. For this type of problem, it is difficult to find a global minimum; thus a
good convergence property we can expect is that every limit point is a stationary
point [7]. We could directly apply standard gradient search algorithms, which lead
to stationary point solutions; however, they suffer from either slow convergence or
expensive computation cost.

5.1 Algorithm Framework

First, we introduce our notations for clarity. Let H = [h1, · · · , hk] ∈ Rn×k
+ . A

vector x of length nk is used to represent the vectorization of H by column, i.e.
x = vec(H) = [hT1 , · · · , hTk ]T ∈ Rnk×1

+ . For simplicity, functions applied on x have

the same notation as functions applied on H, i.e. f(x) ≡ f(H). [·]+ denotes the
projection to the nonnegative orthant, i.e. replacing any negative element of a
vector to be 0. Superscripts denote iteration indices, e.g. x(t) = vec(H(t)) is the
iterate of x in the t-th iteration. For a vector v, vi denotes its i-th element. For
a matrix M , Mij denotes its (i, j)-th entry; and M[i][j] denotes its (i, j)-th n× n
block, assuming that both the numbers of rows and columns of M are multiples
of n. M � 0 refers to positive definiteness of M . We define the projected gradient
∇P f(x) at x as [43]:(

∇P f(x)
)
i

=

{
(∇f(x))i , if xi > 0;

[(∇f(x))i]
+, if xi = 0.

(10)
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Table 3: Comparison of PGD and PNewton for solving minH≥0 ‖A − HHT ‖2F ,

H ∈ Rn×k
+ .

Projected gradient Projected Newton
descent (PGD) (PNewton)

Scaling matrix S(t) = Ink×nk S(t) =
(
∇2
Ef(x(t))

)−1

Convergence Linear (zigzagging) Quadratic
Complexity O(n2k) / iteration O(n3k3) / iteration

Algorithm 1 describes a framework of gradient search algorithms applied to
SymNMF, based on which we developed our Newton-like algorithm. This descrip-
tion does not specify iteration indices, but updates x in-place. The framework uses
the “scaled” negative gradient direction as search direction. Except the scalar pa-
rameters β, σ, µ, the nk × nk scaling matrix S(t) is the only unspecified quantity.
Table 3 lists two choices of S(t) that lead to different gradient search algorithms:
projected gradient descent (PGD) [43] and projected Newton (PNewton) [7].

PGD sets S(t) = I throughout all the iterations. It is known as one of steepest
descent methods, and does not scale the gradient using any second-order infor-
mation. This strategy often suffers from the well-known zigzagging behavior, thus
has slow convergence rate [7]. On the other hand, PNewton exploits second-order
information provided by the Hessian ∇2f(x(t)) as much as possible. PNewton sets
S(t) to be the inverse of a reduced Hessian at x(t). The reduced Hessian with
respect to index set R is defined as:

(∇2
Rf(x))ij =

{
δij , if i ∈ R or j ∈ R;(
∇2f(x)

)
ij
, otherwise,

(11)

where δij is the Kronecker delta. Both the gradient and the Hessian of f(x) can
be computed analytically:

∇f(x) = vec(4(HHT −A)H),

(∇2f(x))[i][j] = 4
(
δij(HHT −A) + hjh

T
i + (hTi hj)In×n

)
.

We introduce the definition of an index set E that helps to prove the convergence
of Algorithm 1 [7]:

E = {i|0 ≤ xi ≤ ε, (∇f(x))i > 0}, (12)

where ε depends on x and is usually small (0 < ε < 0.01) [26]. In PNewton, S(t)

is formed based on the reduced Hessian ∇2
Ef(x(t)) with respect to E . However,

because the computation of the scaled gradient S(t)∇f(x(t)) involves the Cholesky
factorization of the reduced Hessian, PNewton has a very large computational
complexity of O(n3k3), which is prohibitive. Therefore, we propose a Newton-like
algorithm that exploits second-order information in an inexpensive way.

5.2 Improving the Scaling Matrix

The choice of the scaling matrix S(t) is essential to an algorithm that can be
derived from the framework described in Algorithm 1. We propose two improve-
ments on the choice of S(t), yielding new algorithms for SymNMF. Our focus
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is to efficiently collect partial second-order information but meanwhile still effec-
tively guide the scaling of the gradient direction. Thus, these improvements seek
a tradeoff between convergence rate and computational complexity, with the goal
of accelerating SymNMF algorithms as an overall outcome.

Our design of new algorithms must guarantee the convergence. Since the algo-
rithm framework still follows Algorithm 1, we would like to know what property of
the scaling matrix S(t) is essential in the proof of the convergence result of PGD
and PNewton. This property is described by the following lemma:

Definition 1 A scaling matrix S is diagonal with respect to an index set R, if
Sij = 0,∀i ∈ R and j 6= i. [6]

Lemma 1 Let S be a positive definite matrix which is diagonal with respect to E. If
x ≥ 0 is not a stationary point, there exists ᾱ > 0 such that f

(
[x− αS∇f(x)]+

)
<

f(x), ∀0 < α < ᾱ. (modified from [6])

Lemma 1 states the requirement on S(t), which is satisfied by the choices of S(t) in
both PGD and PNewton. It guides our development of new ways to choose S(t).

5.2.1 Improvement 1: Fewer Hessian Evaluations

A common method for reducing computation cost related to S(t) is to periodically
update S(t) or evaluate S(t) only at the 1st iteration (chord method) [26]. However,
this method cannot be directly used in the framework of Algorithm 1, because S(t)

is not necessarily diagonal with respect to E(t) if E(t) 6= E(1), and the requirement
for convergence is violated.

Our way to delay the update of S(t) is to evaluate S(t) only when E(t) changes.
More precisely,

S(t) =


S(t−1), if E(t) = E(t−1);(
∇2
Ef(x(t))

)−1
, if E(t) 6= E(t−1)

and ∇2
Ef(x(t)) � 0;

Ink×nk, otherwise.

(13)

Note that because f(x) is non-convex, we have to set S(t) = I when ∇2
Ef(x(t)) is

not positive definite, which can be checked during its Cholesky factorization. We
expect that this improvement can reduce the number of Hessian evaluations and
Cholesky factorizations.

5.2.2 Improvement 2: Cheaper Hessian Evaluations

The second improvement in choosing S(t) is inspired by the recently proposed
coordinate gradient descent (CGD) method for solving covariance selection [68].
When CGD is directly applied to SymNMF, it updates one column of H in each
iteration while the other columns are fixed, and the search direction is typically
determined by solving a quadratic programming problem. The CGD method in-
troduces additional overhead when determining the search direction; however, it
implies a possibility of using second-order information without evaluating the en-
tire Hessian.
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Inspired by the incremental update framework of CGD, we propose to choose
S(t) to be a block-diagonal matrix in our batch update framework in Algorithm
1. Specifically,

S
(t)
[i][j] =


0, if i 6= j;(
∇2
Ef(x(t))[i][j]

)−1
, if i = j

and ∇2
Ef(x(t))[i][j] � 0;

In×n, otherwise.

(14)

Intuitively speaking, the i-th n×n diagonal block of S(t) corresponds to variables in
the i-th column of H, and S(t) only involves second-order information within each
column of H. This choice of S(t) has two advantages over the choice in PNewton
algorithm: First, the computational complexity in each iteration is O(n3k), much
lower than the complexity of PNewton if k is not too small. Second, we can exploit
partial second-order information even though the n diagonal blocks of ∇2

Ef(x(t))
are not all positive definite, whereas PNewton requires the positive definiteness of
all the n diagonal blocks as a necessary condition.

Our final strategy for solving SymNMF (6) is to combine Improvement 1 and
Improvement 2. Note that the requirement on S(t) described in Lemma 1 is satis-
fied in both of the improvements, and also in their combination. Thus, convergence
is guaranteed in all of these variations.

6 An ANLS Algorithm for SymNMF

In this section, we propose another optimization algorithm for SymNMF that con-
verges to stationary points, a necessary condition for local minima. The algorithm
is based on an alternative formulation of SymNMF, where it becomes straight-
forward to use the two-block coordinate descent framework that has been shown
efficient for standard NMF [43,28,31,32,29].

6.1 Two-block Coordinate Descent Framework

We first briefly review the two-block coordinate descent framework [43, 28, 32, 29]
for standard NMF problems shown in (3):

min
C≥0,G≥0

‖X − CGT ‖2F ,

which has our desired convergence property that every limit point is a stationary
point. Separating the unknowns in C and G in the NMF formulation (3) into two
blocks, we obtain the following subproblems:

1. Fix G and solve minC≥0 ‖GCT −XT ‖2F .
2. Fix C and solve minG≥0 ‖CGT −X‖2F .
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Each subproblem is a nonnegative least squares problem with multiple right-hand
sides (NLS for short), and many efficient procedures have been developed to solve
NLS, e.g. active-set method [37,28], block pivoting [31,32], PGD [43], etc. The key
requirement in this framework is to obtain the optimal solution in each subproblem
(see more discussions in [28]). This way, the original NMF formulation (3) has been
reduced to an alternating NLS problem (ANLS for short).

6.2 A Nonsymmetric Formulation for SymNMF

In SymNMF, it is difficult to separate the nk unknowns in a straightforward way
as in NMF, because the two factors H and HT contain the same set of unknowns.
We propose to re-formulate SymNMF in the context of NMF [24]:

min
W,H≥0

g(W,H) = ‖A−WHT ‖2F + α‖W −H‖2F , (15)

where A still represents the n × n similarity matrix, W,H are two low-rank fac-
tors of size n × k, and α > 0 is a scalar parameter for the tradeoff between the
approximation error and the difference of W and H. Here we force the separation
of unknowns by associating the two factors with two different matrices. If α has
a large enough value, the solutions of W and H will be close enough so that the
clustering results will not be affected whether W or H are used as the clustering
assignment matrix.

The nonsymmetric formulation can be easily cast into the two-block coordinate
descent framework after some restructuring. In particular, we have the following
subproblems for (15):

min
W≥0

∥∥∥∥[ H√
αIk

]
WT −

[
A√
αHT

]∥∥∥∥
F

, (16)

min
H≥0

∥∥∥∥[ W√
αIk

]
HT −

[
A√
αWT

]∥∥∥∥
F

, (17)

where 1k ∈ Rk×1 is a column vector whose elements are all 1’s, and Ik is the
k × k identity matrix. Note that we have assumed A = AT . Solving subproblems
(16) and (17) in an alternate fashion will lead to a stationary point solution, as
long as an optimal solution is returned for every NLS subproblem encountered.
We simplify and summarize this algorithm in Algorithm 2.

If W and H are expected to indicate more distinct cluster structures, sparsity
constraints on the rows of W and H can also be incorporated into the nonsym-
metric formulation easily, by adding L1 regularization terms [27,28]:

min
W,H≥0

g̃(W,H) = ‖A−WHT ‖2F +α‖W −H‖2F +β
n∑

i=1

‖wi‖21 +β
n∑

i=1

‖hi‖21, (18)

where α, β > 0 are regularization parameters, wi, hi are the i-th rows of W,H
respectively, and ‖ · ‖1 denotes vector 1-norm. Consequently, the two subproblems
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Algorithm 2 Framework of the ANLS algorithm for SymNMF: minW,H≥0 ‖A−
WHT ‖2F + α‖W −H‖2F

1: Input: number of data points n, number of clusters k, n× n similarity matrix
A, regularization parameter α > 0, and tolerance parameter 0 < µ << 1

2: Initialize H
3: repeat
4: W ← H

5: Solve an NLS problem: H ← arg minH≥0

∥∥∥∥[ W√
αIk

]
HT −

[
A√
αWT

]∥∥∥∥
F

6: until ‖∇P g(W,H)‖F ≤ µ‖∇P g(W (0), H(0))‖F
7: Output: H

for (18) in the two-block coordinate descent framework are:

min
W≥0

∥∥∥∥∥∥
 H√

αIk√
β1T

k

WT −

 A√
αHT

0

∥∥∥∥∥∥
F

, (19)

min
H≥0

∥∥∥∥∥∥
 W√

αIk√
β1T

k

HT −

 A√
αWT

0

∥∥∥∥∥∥
F

. (20)

We can even use just one L1 regularization term in (18), that is, β
∑n

i=1 ‖wi‖21 or
β
∑n

i=1 ‖hi‖
2
1, since W and H are sufficiently close; however, using one or two L1

regularization terms does not make much difference computationally.

6.3 Implementation

Now we describe an efficient implementation of the ANLS algorithm for Sym-
NMF. Our algorithm reduces to solving the NLS problem in line 5 of Algorithm
2. Consider a form of NLS with simplified notation: minG≥0 ‖CGT − X‖2F . In
many algorithms for NLS, the majority of time cost comes from the computation
of CTC and XTC. For example, in the active-set method [28] and block pivoting
method [31,32], we need to form the normal equation:

CTCGT = CTX.

In PGD [43], we need to compute the gradient:

∇G = 2G(CTC)− 2XTC.

For more details of these algorithms for NLS, please refer to the original papers [28,
31,32,43]. Our strategy to solve the NLS problem in Algorithm 2 is to precompute
CTC and XTC:

CTC = WTW + αIk, XTC = ATW + αW

without forming X =

[
A√
αWT

]
directly. Though this change sounds trivial, it

is very costly to form X directly when A is large and sparse, especially when A
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is stored in the “compressed sparse column” format such as in Matlab and the
Python scipy package. In our experiments, we observed that our strategy had
considerable time savings in the iterative Algorithm 2.

For choosing the parameter α, we can gradually increase α from 1 to a very
large number, for example, by setting α← 1.01α. We can stop increasing α when
‖W −H‖F /‖H‖F is negligible (say, < 10−8).

Theoretically, both the Newton-like algorithm and the ANLS algorithm are
valid algorithms for SymNMF for any nonnegative and symmetric matrix A. In
practice, however, when a similarity matrix A is very sparse and the efficiencies
of these two algorithms become very different. The Newton-like algorithm does
not take into account the structure of SymNMF formulation (6), and a sparse
input matrix A cannot contribute to speeding up the algorithm because of the
formation of the dense matrix HHT in intermediate steps. On the contrary, in the
ANLS algorithm, many algorithms for the NLS subproblem [43,28,31,32] can often
benefit from the sparsity of similarity matrix A automatically. This benefit comes
from sparse-dense matrix multiplication inside these algorithms such as AH as well
as the absence of large dense matrices such as HHT . Therefore, we recommend
using the ANLS algorithm for a sparse input matrix A.

7 Experiments on Document and Image Clustering

In this section, we show the performances of SymNMF on a number of text and
image data sets, and compare SymNMF with the standard forms and variations of
NMF, spectral clustering, and K-means. The SymNMF formulation is a noncon-
vex minimization problem. If we apply Newton-like algorithm or ANLS algorithm
which is described in Section 5 and Section 6 to SymNMF, then it can find a
local minimal solution but may not find a global one. Hence we need a global
optimization method. Our proposed global optimization method for experiments
on document and image clustering is based on a multistart global optimization al-
gorithm [55,56,44] that combines random sampling with a local search procedure.
That is, we choose 20 initial points uniformly within the nonnegative orthant
and a local search procedure is applied to every initial point for improving it.
We use Newton-like algorithm and ANLS algorithm for our local search method.
Throughout the experiments, we use Matlab 7.9 (R2009b) with an Intel Xeon
X5550 quad-core processor and 24GB memory.

7.1 Data Preparation

We construct a sparse graph for each data set. Using sparse graphs makes large-
scale clustering possible in terms of efficiency. We take the following three steps
to form the similarity matrix:

1. Construct a complete graph. The edge weights between graph nodes are defined
according to the type of data set.
– For text data, all the document vectors are normalized to have unit 2-norm.

The edge weight is the cosine similarity between two document vectors:

eij = xTi xj , (i 6= j). (21)
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– For image data, the self-tuning method [70] is used:

eij = exp

(
−‖xi − xj‖

2
2

σiσj

)
, (i 6= j), (22)

where each data point has a local scale σi, as opposed to a global scale σ in
(9). σi is set to be the Euclidean distance between xi and its k̂-th neighbor.
We use k̂ = 7 as suggested in [70].

Note that we enforce self-edge weights eii = 0 (1 ≤ i ≤ n) in all cases [53].
2. Sparsify the graph. We only keep the edges that connect a node to its q nearest

neighbors. More precisely, let

N(i) = {j|xj is one of the q nearest neighbors of xi, j 6= i}. (23)

Edge weights in the sparse graph are defined as:

êij =

{
eij , if i ∈ N(j) or j ∈ N(i);

0, otherwise.
(24)

We choose q = blog2 nc+ 1 as suggested in [45].
3. Form the similarity matrix. We compute the normalized similarity values as in

the normalized cut [53]:

Aij = êijd
−1/2
i d

−1/2
j , (25)

where di =
∑n

s=1 êis (1 ≤ i ≤ n).

Note that the similarity matrix A constructed as above is symmetric, nonneg-
ative, and usually indefinite.

7.2 Data Sets

Document clustering was conducted on the following labeled corpuses: 1. TDT21

contains 10,212 news articles from various sources (e.g. NYT, CNN, VOA) in 1998.
2. Reuters2 contains 21,578 news articles from the Reuters newswire in 1987.
3. From the newly-released Reuters news collection RCV13 [40] that contains
over 800,000 articles in 1996-1997, we selected the training set containing 23,149
articles. Labels are assigned according to a topic hierarchy, and we only considered
leaf topics as valid labels. 4. The research paper collection NIPS14-164 contains
420 NIPS papers in 2001-2003 [21], which are associated with labels indicating the
technical area (algorithms, learning theory, vision science, etc). For all these data
sets, documents with multiple labels are discarded in our experiments. In addition,
clusters representing different topics are highly unbalanced in size. We selected the
largest 20, 20, 40, 9 clusters from these data sets respectively. While TDT2 and
the two Reuters data sets were well maintained, the NIPS data set was extracted
from PS and PDF files, resulting in very noisy texts, which can be seen from the

1 http://projects.ldc.upenn.edu/TDT2/
2 http://www.daviddlewis.com/resources/testcollections/reuters21578/
3 http://jmlr.csail.mit.edu/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm
4 http://robotics.stanford.edu/~gal/data.html
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Table 4: Data sets used in experiments.

Data set Dimension # Data points # Clusters
TDT2 26,618 8,741 20

Reuters 12,998 8,095 20
RCV1 20,338 15,168 40

NIPS14-16 17,583 420 9
COIL-20 64× 64 1,440 20

ORL 69× 84 400 40
Extended YaleB 56× 64 2,414 38
PIE-expression 64× 64 232 68

list of terms available online4. For example, its vocabulary includes many symbols
frequently used in formulas which are not semantically meaningful.

Image clustering was conducted on object and face recognition data sets: 1.
COIL-205 contains gray-scale images of 20 objects, rescaled to 64× 64 size. The
viewpoints are equally spaced in the entire 360o range, resulting in 72 images
for each object. 2. ORL6 contains 400 face images of 40 persons with different
facial expressions and slightly-varing pose. 3. From Extended YaleB7 face data
set (with the original YaleB data included) [39], we selected 2,414 frontal face
images of 38 persons, with different illumination conditions. 4. From PIE8 face
data set [59], we selected 232 frontal face images of 68 persons, with different facial
expressions. Compared to other variations in PIE data set such as illumination and
lighting conditions, different facial expressions represent more variations in faces
and the images are embedded in multiple manifolds [47]; moreover, only 3 ∼ 4
images are available for each person, which makes clustering more challenging.
Though ORL and the selected subset of PIE are not large-scale, they share the
same characteristics: High variations within each class, with a handful of images
per class. For all the image data sets, the identity information of the objects or
faces is used as ground-truth labels. The statistics of the processed document and
image data sets are summarized in Table 4.

7.3 Algorithms for Comparison

We experimented with a large variety of clustering algorithms for a comprehensive
comparison. The algorithms in our experiment can be divided into four categories:

1. K-means variants (All these K-means variants include a batch-update phase
and an additional online-update phase in each run [18]. We use both phases.)
– Standard K-means (KM): The input matrix is constructed as follows. For

text data, each column of the tf-idf matrix X [49] is scaled to have unit
2-norm; in addition, X is transformed into its normalized-cut weighted
version XD−1/2 [64], where D is defined in Section 3 with eij = xTi xj . For
image data, each column of X is scaled to the [0, 1] interval.

5 http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
6 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
7 http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
8 http://www.ri.cmu.edu/research_project_detail.html?project_id=418&menu_id=261
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– Spherical K-means (SKM): Unlike standard K-means that uses Euclidean
distance as the dissimilarity measure, spherical K-means uses 1−cos(xi, xj);
therefore any scaling of columns of X does not take effect. Spherical K-
means was proposed for document clustering, where cosine similarity is
often a better measure than Euclidean distance [14]. As mentioned in Sec-
tion 1, we believe that spherical K-means has a closer relationship to NMF
than standard K-means.

– Kernel K-means (KKM): Kernel K-means is a graph clustering method
based on K-means. We use the weighted kernel K-means algorithm de-
scribed in [36,13] that minimizes the normalized cut objective. Because K
is generally indefinite, the condition for convergence is violated. We termi-
nate the algorithm as soon as the objective function value stops decreasing.

2. NMF variants
– NMF: We use the ANLS algorithm with block pivoting method for NMF

[31,32]. The same input matrix as in standard K-means is used. The hard
clustering result is indicated by the largest entry in each row of H.

– GNMF: Cai et al. [8] proposed Graph-regularized NMF (GNMF) by adding
a graph-theoretic penalty term to (3) that takes neighboring relationship
into account, so that the resulting method is better at clustering on mani-
folds. We use the algorithm and the parameters suggested in [8]. The input
matrix is constructed in the same way as in standard K-means. However,
the neighboring relationship based on the sparse graph is generated using
the original data matrix, i.e. without the scaling of each xi. The cluster-
ing result is obtained by treating the rows of H as graph embedding and
applying spherical K-means to the embedded points.

3. Spectral clustering variants
– NJW algorithm (SpNJW): This refers to the algorithm proposed in Ng et

al. [53]. The rows of the k leading eigenvectors of A, where each row is
normalized to have unit 2-norm, are used as the graph embedding of data
points. Standard K-means is used in the final step to obtain clustering
results, which is initialized by randomly choosing k samples as centroids.

– YS algorithm (SpYS): This refers to the algorithm proposed in Yu and Shi
[67]. The clustering results are obtained by finding the optimal orthogonal
transformation of H̃ = D−1/2H into a partition matrix [67], where columns
of H are the k leading eigenvectors of A.

4. SymNMF: We observed that the Newton-like algorithm for SymNMF gives
better clustering quality on image data (more details in Section 7.5). On text
data, however, the Newton-like algorithm is not efficient enough due to large
problem sizes, and only the ANLS algorithm is applicable. When reporting
the results, we use the general name “SymNMF” to refer to the algorithm of
choice.

For the Newton-like algorithm (Algorithm 1), we use parameters β = 0.1, σ =
0.1. We also empirically observe that choosing ε in (12) to be a fixed value 10−16

makes the Newton-like algorithm faster while having little influence on the clus-
tering quality. For the ANLS algorithm, we solve the formulation (15), i.e. without
sparsity constraints on W,H (Algorithm 2). We empirically observe that it is suffi-
cient to use a fixed parameter α = 1 in (15) to obtain a negligible ‖W−H‖F /‖H‖F .
Note that the choice of a large enough value of α should be aligned with the scale
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Table 5: Average clustering accuracy for document and image data sets. For each
data set, the highest accuracy and any other accuracy within the range of 0.01
from the highest accuracy are marked bold. The average metrics over all the data
sets are marked italic.

KM SKM KKM NMF GNMF SpNJW SpYS SymNMF
TDT2 0.6711 0.6755 0.6837 0.8505 0.7955 0.7499 0.9050 0.8934
Reuters 0.4111 0.3332 0.3489 0.3731 0.4460 0.3114 0.4986 0.5094
RCV1 0.3111 0.3888 0.3831 0.3797 0.3592 0.2723 0.2743 0.2718

NIPS14-16 0.4602 0.4774 0.4908 0.4918 0.4908 0.4987 0.5026 0.5086
COIL-20 0.6184 0.5611 0.2881 0.6312 0.6304 0.6845 0.7899 0.7258
ORL 0.6499 0.6500 0.6858 0.7020 0.7282 0.7127 0.7752 0.7798

Extended YaleB 0.0944 0.0841 0.1692 0.1926 0.2109 0.1862 0.2254 0.2307
PIE-expression 0.7358 0.7420 0.7575 0.7912 0.8235 0.7966 0.7375 0.7517

ALL 0.4940 0.4890 0.4759 0.5515 0.5606 0.5265 0.5886 0.5839

Table 6: Maximum clustering accuracy for document and image data sets. For
each data set, the highest accuracy and any other accuracy within the range of
0.01 from the highest accuracy are marked bold. The average metrics over all the
data sets are marked italic.

KM SKM KKM NMF GNMF SpNJW SpYS SymNMF
TDT2 0.7878 0.7531 0.7502 0.8761 0.8439 0.8046 0.9060 0.9059
Reuters 0.5001 0.3047 0.3828 0.3839 0.4053 0.3096 0.4985 0.4957
RCV1 0.3392 0.3956 0.3844 0.3762 0.3682 0.2695 0.2743 0.2771

NIPS14-16 0.5071 0.4833 0.5048 0.5000 0.4786 0.4952 0.5024 0.5048
COIL-20 0.6917 0.6125 0.3569 0.6653 0.6590 0.7347 0.7986 0.7847
ORL 0.6675 0.6500 0.7125 0.7200 0.7225 0.7700 0.7725 0.7900

Extended YaleB 0.0903 0.0816 0.1785 0.1980 0.2171 0.1864 0.2299 0.2307
PIE-expression 0.7759 0.7586 0.7629 0.7845 0.8190 0.8060 0.7888 0.7543

ALL 0.5450 0.5049 0.5041 0.5630 0.5642 0.5470 0.5964 0.5929

of the similarity values in A. In our experiments, the matrix A contains normalized
similarity values (25), thus the maximum possible value in A is 1, and most of the
entries of A are smaller than 1. Finally, in both of our algorithms, the tolerance
parameter µ in the stopping criteria is set to 10−4 and the maximum iteration
count is set to 10,000 so that the outputs are stationary points.

For each data set, we run each algorithm 20 times with different random ini-
tializations and the known number of clusters k as input. Algorithms in the same
category have the same initializations. In other words, the multistart global op-
timization method is applied with the described method in each category as for
a local search procedure. Although the data sets are labeled, the labels are used
only when evaluating the clustering quality, not by the clustering algorithms.

7.4 Clustering Quality

We use clustering accuracy, the percentage of correctly clustered items given by
the maximum bipartite matching, to evaluate the clustering quality (see more
details in [64]). The average and maximum clustering accuracy over the 20 runs
are shown in Table 5 and Table 6, respectively. The maximum clustering accuracy
for an algorithm is determined by the solution with the smallest objective function
value among the 20 runs. We have the following observations:
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1. SpYS and SymNMF achieves the highest clustering quality more frequently
than other methods. Note that SpYS was proposed as a more principled way to
obtain hard clustering than SpNJW, from the k leading eigenvectors of A [67].
Conceptually, both SpYS and SymNMF facilitate interpretation of the low-
rank matrix that is used to approximate the graph similarity matrix, so that we
can obtain hard clustering results directly from the low-rank matrix. However,
comparing Table 5 and Table 6, we observe that by employing the multistart
global optimization method and picking the solution with the smallest objective
function value, SpYS achieves higher accuracy than the average for 4 out of
8 data sets, while SymNMF and SpNJW achieve higher accuracy than the
average for 5 data sets, implying that the objective functions in SymNMF
and SpNJW are slightly better proxies for the clustering problem than that in
SpYS.

2. GNMF in our experiments does not show as dramatic improvement over Sp-
NJW as the results reported in [8] where only maximum clustering accuracy
was reported. One possible reason is that in [8], full graphs with cosine simi-
larity are used, whereas we use sparse graphs and different similarity measures
for better scalability and clustering quality (Section 7.1).

3. The K-means variants give exceedingly high accuracy on the RCV1 data set.
We need more study to have a good explanation of their performances, for ex-
ample, in what cases cosine dissimilarity is a better choice of distance measure
than Euclidean distance. Note that RCV1 is the only data set where spheri-
cal K-means has the highest accuracy, and also the only data set where NMF
performs better than almost all the other low-rank approximation methods
(GNMF, SpNJW, SpYS, SymNMF). This consistency corroborated with our
observation that spherical K-means has a closer relationship to NMF than
standard K-means, and seems to explain why spherical K-means is often used
as an initialization strategy for NMF [63].

7.5 Convergence and Efficiency of SymNMF Algorithms

We mentioned in Section 7.3 that the ANLS algorithm for SymNMF handles large
data sets more efficiently, and the Newton-like algorithm achieves higher clustering
accuracy. Here we discuss this tradeoff between efficiency and quality. The differ-
ent properties exhibited by the two algorithms can be attributed to their different
convergence behaviors, though both algorithms converge to stationary point solu-
tions. In Fig. 7, we use COIL-20 data set to study their convergence by plotting
the objective function f(H) and the projected gradient ‖∇P f(H)‖F throughout
the iterations. As we could expect, f(H) is non-inreasing in both algorithms; on
the contrary, ‖∇P f(H)‖F is not guaranteed to drop in every iteration but is used
to check stationarity.

The Newton-like algorithm shows a divergent behavior in the initial stage of
iterations, because the formulation (6) is nonconvex and the search step degrades
to a steepest descent direction. However, when the intermediate iterate becomes
close to a local minimum, the Hessian matrix becomes positive definite and the
second-order information begins to help guide the search. Thus after this point,
the algorithm converges very quickly to an accurate stationary point. In contrast,
the ANLS algorithm shows a quick drop in both ‖∇P f(H)‖F and f(H) when
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Fig. 7: Convergence behaviors of SymNMF algorithms, generated from a single
run on COIL-20 data set with the same initialization.
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Table 7: Clustering accuracy and timing of the Newton-like and ANLS algorithms
for SymNMF. Experiments are conducted on image data sets with parameter
µ = 10−4 and the reported measures are averaged over 20 random runs.

Newton-like algorithm ANLS algorithm
Accuracy Time (s) Accuracy Time (s)

COIL-20 0.7258 53.91 0.7195 8.77
ORL 0.7798 4.30 0.7713 1.97

Extended YaleB 0.2307 163.6 0.2296 23.47
PIE-expression 0.7517 13.48 0.6836 4.43

the algorithm starts. However, near the final stage, it converges slowly to the
appointed stationarity level. Overall, the Newton-like algorithm produces more
accurate solutions and better clustering quality; however, it is overall less efficient
than the ANLS algorithm due to heavier computational cost per iteration. We
compare their clustering quality and timing performance in Table 7, with µ = 10−4

in the stopping criterion in both algorithms.

8 Image Segmentation Experiments

In this section, we explore the application of SymNMF to image segmentation.
Image segmentation methods have been heavily relying on spectral clustering [48,
50, 19, 12, 1]. We will demonstrate that SymNMF produces segmentation results
that are closer to human-marked boundaries compared to spectral clustering. To
the best of our knowledge, this is the first systematic evaluation of SymNMF
applied to image segmentation.

8.1 Overview

Image segmentation is an important task in computer vision that organizes an
image into a non-overlapping set of closed regions. It can be viewed as a graph
clustering problem: The input is a nonnegative and symmetric matrix that contains
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Fig. 8: Examples of the original images and Pb images from BSDS500. Pixels with
brighter color in the Pb images have higher probability to be on the boundary.

(a) Original (b) Spectral-Embed (c) Spectral-NJW (d) SymNMF-Embed (e) SymNMF-Clust

similarity values between pairs of pixels; the output is a clustering of pixels where
each cluster corresponds to a region.

In the graph represented by a pixel similarity matrix A, a pixel is only con-
nected to the pixels within some neighborhood. Thus, the input matrix A is typi-
cally a sparse matrix. The similarity value between two neighboring pixels can be
computed based on brightness, color, and texture cues [48,50]. The similarity value
characterizes the discontinuity along the line connecting the two pixels and can be
trained by a logistic model using human-marked boundaries as ground-truth [19].

Spectral clustering is one of the most common methods that solve the graph
clustering problem in image segmentation. As we explained in Sections 3 and 4,
because eigenvectors contain both positive and negative numbers in general, they
cannot be used as cluster indicators directly. A variety of methods have been pro-
posed to post-process the graph embedding – the continuous-valued eigenvectors –
to obtain closed regions. In contrast, the low-rank matrix H in the solution of Sym-
NMF can not only be used as graph embedding, but also derive graph clustering
results directly.

In the current paper, our focus is the gain in segmentation quality by replacing
spectral clustering with SymNMF. We follow the steps in an early paper [19] to
construct the similarity matrix as well as post-process the graph embedding when
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the produced low-rank matrix is viewed as graph embedding. The post-processing
steps are:

1. Run K-means on the embedded points to generate an oversegmentation of an
image. The oversegmentations are called superpixels and denoted as o1, · · · , oK ,
where K is an integer larger than the rank k of the low-rank matrix.

2. Build a contracted graph on the superpixels and represent it by a K × K
similarity matrix W . The edge weight between the I-th and J-th superpixels
(1 ≤ I, J ≤ K) is defined as:

WIJ =
∑
i∈oI

∑
j∈oJ

Aij . (26)

3. Recursively split the contracted graph to produce a hierarchy of regions [48].

We note that the baseline segmentation algorithm [19] used in our compari-
son between spectral clustering and SymNMF is not the best algorithm to date
(for example, see [1]). However, we chose this baseline algorithm in order to sim-
plify the experiment setting and make the comparison more visible. In our current
workflow, both spectral and SymNMF use the same similarity matrix as an input;
the resulting low-rank matrices are interpreted as either graph embedding to pro-
duce a hierarchy of regions or graph clustering to produce a flat partitioning of
an image into regions. With more recent segmentation algorithms such as [1], the
low-rank matrices would be interpreted in a more sophisticated way so that we
do not know which component of the segmentation algorithm contributes to the
gain in segmentation quality. We expect that the comparison result shown in this
section will carry on to other segmentation algorithms.

8.2 Data and Software

We use the Berkeley Segmentation Data Set 5009 (BSDS500) [1] and choose the
200 color images used in [19]. The size of the original images is 481 × 321. We
resized the images to 240× 160 to be consistent with the experiments in [50,19].

We compute the pixel similarity matrices and post-process the embedded
points using the Berkeley Segmentation Engine10. We use the default settings:
The number of eigenvectors in spectral clustering k (and also the lower rank in
SymNMF) is set to 16; the number of oversegmentations K is set to 51. The
neighborhood of a pixel is modified from default to a round disk centered at the
pixel with radius of 20 pixels. The resulting similarity matrix has size n×n where
n = 38400 and 44 million nonzeros. The same similarity matrix is given as an
input to both spectral clustering and SymNMF.

8.3 Evaluation Methods

The evaluation of segmentation results is based on the evaluation of boundary
detection. In the experiments on document and image clustering, solving Sym-
NMF and interpreting the low-rank result matrix as a cluster indicator yield a

9 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.
html
10 http://www.cs.berkeley.edu/~fowlkes/BSE/
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hard clustering of items. In order to evaluate SymNMF in the context of image
segmentation and compare its performance with that of spectral clustering, we in-
troduce our way to transform the hard clustering results to soft boundaries. First,
we generate a probability of boundary (Pb) image from multiple segmentations of
an image. Second, we evaluate the Pb image against human-marked boundaries.

– We consider the following four ways to obtain multiple segmentations:
1. Spectral-Embed: Compute the eigenvectors associated with the 16 largest

eigenvalues and treat them as a graph embedding. Generate a hierarchy of
regions following the procedures in Section 8.1. Each level of the hierarchy
determines a segmentation of the image.

2. SymNMF-Embed: Solve SymNMF with k = 16 and treat the rows of H as a
graph embedding. Generate a hierarchy of regions following the procedures
in Section 8.1. Each level of the hierarchy determines a segmentation of the
image.

3. Spectral-NJW: For each k = 2, 3, · · · , 16, compute the eigenvectors asso-
ciated with the k largest eigenvalues, denoted as a matrix Ĥ ∈ Rn×k.
Apply K-means to the rows of each matrix Ĥ, and the clustering result
corresponds to a segmentation.

4. SymNMF-Clust: Solve SymNMF with k = 2, 3, · · · , 16 and treat each matrix
H as a cluster indicator. For each k, the clustering result corresponds to a
segmentation.

Spectral-Embed and SymNMF-Embed produces 50 segmentations for each im-
age. Spectral-NJW and SymNMF-Clust produces 15 segmentations for each im-
age. The Pb value of a pixel is defined as the proportion of times the pixel
lies on the boundary determined by the regions in a segmentation. Note that
Spectral-NJW and SymNMF-Clust do not enforce hierarchies in their segmen-
tations. Among these four ways of post-processing, only Spectral-Embed was
used for evaluation against human-marked boundaries in existing work.

– The data set includes a couple of human-marked boundaries for each image
for evaluation. The Pb image has values in the [0, 1] interval. We can produce
a binary boundary image using a threshold value t (0 < t < 1). Then the
precision P is calculated as the fraction of true boundary pixels among all the
detected boundary pixels; the recall R is calculated as the fraction of detected
boundary pixels among all the true boundary pixels. The F-measure is defined
as 2PR/(P+R). We can draw a precision-recall curve using a series of threshold
values (see more details in [51]). The best F-measure on this curve is regarded
as a summary performance metric.

8.4 Results

We show the precision-recall curves for Spectral-Embed, SymNMF-Embed, Spectral-NJW,
and SymNMF-Clust in Fig. 9. Using the best F-measure as the summary metric,
both SymNMF versions have better segmentation quality than either of the spec-
tral clustering methods.

SymNMF-Embed is much better than Spectral-Embed in the high-recall low-
precision area, with the highest recall approaching 0.8.

SymNMF-Clust is much better than Spectral-Embed in the high-precision low-
recall area, and consistently better than Spectral-Embed along the curve. When
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Fig. 9: Precision-recall curves for image segmentation.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Recall

P
re

c
is

io
n

Precision−recall curves

 

 

[F=0.5772] Spectral−Embed @(0.524,0.643) t=0.55
[F=0.6000] SymNMF−Embed @(0.570,0.634) t=0.67

[F=0.5836] Spectral−NJW @(0.496, 0.709) t=0.16
[F=0.5942] SymNMF−Clust @(0.510,0.711) t=0.16

Fig. 10: Illustration of different graph embeddings produced by spectral clustering
and SymNMF for the third color image in Fig. 8. (a) The rows of the first three
eigenvectors Ĥ ∈ Rn×3 are plotted. (b) The rows of H ∈ Rn×3

+ in the result of
SymNMF with k = 3 are plotted. Each dot corresponds to a pixel.
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the threshold value t is close to 1, we can be much more confident about the
detected regions using SymNMF-Clust than using Spectral-Embed.

SymNMF-Clust is only marginally better than Spectral-NJW, but is consistently
better along the precision-recall curve.

Fig. 8 shows several exemplar images from the BSDS500 data set. The seg-
mentation results are consistent with our findings in the precision-recall curve. We
notice that Spectral-Embed often subdivides a large flat area with uniform colors
into multiple regions (grass, sky, etc.). This is a well-known problem of image seg-
mentation methods that rely on K-means to post-process the eigenvectors, and the
reason is that the embedded points for the pixels in those areas vary smoothly [1].
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On the contrary, SymNMF-Clust often leaves those areas intact, which implies that
the low-rank matrix generated by SymNMF is a better cluster indicator. Fig. 10
shows the pixels plotted in the lower dimensional space produced by spectral clus-
tering and SymNMF for a single image, which seems to support our reasoning
above. We also notice that SymNMF-Clust tends to identify a few very small re-
gions that correspond to noise in an image. This means that setting k larger than
needed will not degrade its segmentation quality. If we remove the regions whose
areas are smaller than some threshold, we will see that many of the remaining
regions correspond to meaningful objects.

In summary, we can use SymNMF-Clust to detect salient objects and use SymNMF-Embed
to discover more detailed segments.

9 Conclusion

In this paper, we studied Symmetric NMF (SymNMF): minH≥0 ‖A−HHT ‖2F as
a graph clustering method that is suitable for clustering data points embedded
in linear and nonlinear manifolds. Our method extends the applicability of NMF
to more general cases, where data relationship is not described by distances in
vector space but by similarity values in a latent space. Unlike previous work on
SymNMF that imposed various additional constraints on the matrix H, we showed
that with nonnegativity constraints only, H can be well interpreted as a cluster
indicator matrix. We justified SymNMF to be a valid graph clustering method by
showing that it originates from the same formulation as spectral clustering but
relaxes the constraint on H differently. While spectral clustering methods require
post-processing the eigenvector-based data representation to obtain hard clusters,
SymNMF does not depend on the spectrum and finds cluster memberships directly
from H. Compared to previous work on the extension of NMF to a positive semi-
definite and nonnegative matrix, our approach only assumes that A is symmetric
and nonnegative.

We developed two algorithms for SymNMF, a Newton-like algorithm and an
ANLS-based algorithm, which should be used in different cases for best practices
but both guaranteed to converge to stationary point solutions. We discussed the
tradeoff between clustering quality and efficiency when choosing an algorithm for
SymNMF. On one hand, the Newton-like algorithm often produces more accurate
solutions and higher-quality clustering results, but is more appropriate when the
problem size n is small, e.g. n < 3000. On the other hand, the ANLS algorithm
is especially efficient for a sparse input matrix A and is scalable to very large
data sets, e.g. n ≈ 106. For large-scale clustering, we have to construct a sparse
similarity matrix instead of a dense one. For example, with n = 105 data points,
it is difficult to store a dense similarity matrix (∼ 75 GB) into the main memory
of a contemporary machine.

We have shown the promise of SymNMF in document clustering and image
clustering. We also conducted a comprehensive evaluation of SymNMF for image
segmentation on 200 natural images. Overall, we developed a general framework
in this paper, one with minimal constraints and flexible enough for extension. One
limitation of our formulation is that an indefinite matrix A could be approximated
by a positive semi-definite matrix HHT . Its effect requires further study; however,
we have not seen evidences that the clustering performance degraded due to this
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limitation. The proposed algorithms can be easily parallelized, for example, in
the Newton-like algorithm, the evaluation and Cholesky factorization of different
diagonal blocks of the Hessian can run in parallel; and in the ANLS algorithm,
the nonnegative least squares problem with different right-hand sides can be made
parallel as well.
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