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Abstract—High-dimensional data appear in many applications of data mining, machine learning, and bioinformatics. Feature reduction

is commonly applied as a preprocessing step to overcome the curse of dimensionality. Uncorrelated Linear Discriminant Analysis

(ULDA) was recently proposed for feature reduction. The extracted features via ULDA were shown to be statistically uncorrelated,

which is desirable for many applications. In this paper, an algorithm called ULDA/QR is proposed to simplify the previous

implementation of ULDA. Then, the ULDA/GSVD algorithm is proposed, based on a novel optimization criterion, to address the

singularity problem which occurs in undersampled problems, where the data dimension is larger than the sample size. The criterion

used is the regularized version of the one in ULDA/QR. Surprisingly, our theoretical result shows that the solution to ULDA/GSVD is

independent of the value of the regularization parameter. Experimental results on various types of data sets are reported to show the

effectiveness of the proposed algorithm and to compare it with other commonly used feature reduction algorithms.

Index Terms—Feature reduction, uncorrelated linear discriminant analysis, QR-decomposition, generalized singular value

decomposition.

Ç

1 INTRODUCTION

FEATURE reduction is important in many applications of
data mining, machine learning, and bioinformatics

because of the so-called curse of dimensionality [6], [10],
[14]. Many methods have been proposed for feature
reduction, such as Principal Component Analysis (PCA)
[19] and Linear Discriminant Analysis (LDA) [10]. LDA
aims to find optimal discriminant features by maximizing
the ratio of the between-class distance to the within-class
distance of a given data set under supervised learning
conditions. It has been successfully employed in many
applications including information retrieval [2], [4], face
recognition [1], [25], [26], and microarray data analysis [7].
Its simplest implementation, the so-called classical LDA,
applies an eigen-decomposition on the scatter matrices, but
fails when the scatter matrices are singular, as is the case for
undersampled data. This is known as the singularity or
undersampled problem [20].

Uncorrelated features1 are desirable in many applications
because they contain minimum redundancy. Motivated by
extracting feature vectors having uncorrelated features,

uncorrelated LDA (ULDA) was recently proposed in [17],
[18]. However, the proposed algorithm in [17] involves a
sequence of generalized eigenvalue problems, which is
computationally expensive for large and high-dimensional
data sets. Like classical LDA, it does not address the
singularity problem either. We thus call it classical ULDA.
More details can be found in Section 3.

Classical LDA and classical ULDA were introduced
from different perspectives, but it has been found that
there is a close relationship between classical LDA and
classical ULDA [18]. More precisely, under the assumption
that the eigenvalue problem in classical LDA has no
multiple eigenvalues, it was shown that classical ULDA is
equivalent to classical LDA [18]. In this paper, we will
show that the equivalence between these two still holds
without the above assumption. Based on this equivalence,
ULDA/QR is proposed to simplify the ULDA implemen-
tation in [17]. Here, ULDA/QR denotes ULDA based on
QR-decomposition [11].

Classical LDA and classical ULDA do not address the
singularity problem, hence it is difficult to apply them to
undersampled data. Such high-dimensional, undersampled
problems frequently occur in many applications including
information retrieval [15], face recognition [25], and micro-
array analysis [7]. Several schemes have been proposed to
address the singularity problem in classical LDA in the past,
including pseudoinverse-based LDA [29], the subspace-
based method [25], regularization [9], and the method based
on the Generalized Singular Value Decomposition, called
LDA/GSVD [15], [16]. Pseudoinverse-based LDA applies
the pseudoinverse [11] to deal with the singularity problem.
The subspace-based method applies the Karhunen-Loeve
(KL) expansion, also known as Principal Component
Analysis (PCA) [19], before LDA. Its limitation is that some
useful information may be lost in the KL expansion.
Regularized LDA overcomes the singularity problem by
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1. Two variables x and y are said to be uncorrelated, if their covariance is
zero, i.e., covðx; yÞ ¼ 0.
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increasing the magnitude of the diagonal elements of the
scatter matrices (usually by adding a scaled identity
matrix). The difficulty in using regularized LDA for feature
reduction is the choice of the amount of perturbation. A
small perturbation is desirable to preserve the original
matrix structure, while a large perturbation is more
effective in dealing with the singularity problem.

There is much less work on addressing the singularity
problem in classical ULDA than on classical LDA. In the
subspace ULDA presented in [17], a subspace-based
method was applied (PCA is applied to the between-class
scatter matrix). We address the singularity problem in
ULDA, in the second part of this paper, by introducing a
novel optimization criterion that combines the key ingre-
dients of ULDA/QR and regularized LDA. The criterion is
the perturbed version of the criterion used in ULDA/QR.
Based on this criterion and the Generalized Singular Value
Decomposition (GSVD) [21], we propose a novel feature
reduction algorithm, called ULDA/GSVD. ULDA/GSVD
solves the singularity problem directly, thus avoiding the
information loss that occurs in the subspace method. Since
the GSVD computation can be expensive for large and high-
dimensional data sets, an efficient algorithm for ULDA/
GSVD is also proposed. The difference between ULDA/
GSVD and the traditional regularized LDA is that the
optimal discriminant feature vectors via ULDA/GSVD are
independent of the value of regularization parameter. This
is quite a surprising result and the proof and the details are
given in Section 5.

With the K-Nearest-Neighbor (K-NN) classifier, we
evaluate the effectiveness of ULDA/GSVD and compare it
with several other commonly used feature reduction algo-
rithms, including Orthogonal Centroid Method (OCM) [22],
PCA [19], and subspace ULDA [17], on various types of data
sets, including text documents, chemical analysis of wine,
face images, and microarray gene expression data. The
experimental results show that the ULDA/GSVD algorithm
is competitive with the other feature reduction algorithms
(i.e., PCA, OCM, and subspace ULDA) and Support Vector
Machines (SVM) [27]. Results also show that ULDA/GSVD is
stable under different K-NN classifiers.

The rest of the paper is organized as follows: Sections 2
and 3 give brief reviews on classical LDA and classical
ULDA, respectively. The ULDA/QR algorithm is presented
in Section 4. Section 5 proposes the ULDA/GSVD algo-
rithm, based on a novel criterion that is the regularized
version of the criterion used in ULDA/QR. We prove
theoretically that the solution to ULDA/GSVD is indepen-

dent of the value of regularization applied. Experimental

results are presented in Section 6. We conclude in Section 7.

For convenience, the important notations used in this paper

are listed in Table 1.

2 CLASSICAL LINEAR DISCRIMINANT ANALYSIS

Given a data matrix A ¼ ðaijÞ 2 IRN�n, where each column

corresponds to a data point and each row corresponds to a

particular feature, we consider finding a linear transforma-

tion G 2 IRN�‘ (‘ < N) that maps each column ai, for

1 � i � n, of A in the N-dimensional space to a vector yi in

the ‘-dimensional space as follows:

G : ai 2 IRN ! yi ¼ GTai 2 IR‘:

The resulting data matrix Z ¼ GTA 2 IR‘�n contains ‘ rows,

i.e., there are ‘ features for each data point in the dimension

reduced (transformed) space. It is also clear that the features

in the dimension reduced space are linear combinations of

the features in the original high-dimensional space, where

the coefficients of the linear combinations depend on the

transformation matrix G. A common way to compute the

transformation matrix G, for clustered data sets, is through

classical LDA. It computes the optimal transformation

matrix G such that the class structure is preserved. More

details are given below.
Assume that there are k classes in the data set. Suppose ci

is the mean vector of the ith class and c is the total mean.

Then, the between-class scatter matrix Sb, the within-class

scatter matrix Sw, and the total scatter matrix S are defined as

follows [10]: Sw ¼ HwH
T
w , Sb ¼ HbH

T
b , and S ¼ HtH

T
t , where

Hw ¼
1ffiffiffi
n
p A1; � � � ; Ak½ �; ð1Þ

Hb ¼
1ffiffiffi
n
p ffiffiffiffiffi

n1
p ðc1 � cÞ; � � � ;

ffiffiffiffiffi
nk
p ðck � cÞ½ �; ð2Þ

Ht ¼
1ffiffiffi
n
p A� ceT

� �
; ð3Þ

Ai is the data matrix of the ith class, ni is the sample size of

the ith class, and e 2 IRn is a vector of ones.
The trace of the two scatter matrices can be computed as

follows:
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traceðSwÞ ¼
1

n

Xk
i¼1

jjAijj2F ;

traceðSbÞ ¼
1

n

Xk
i¼1

nijjci � cjj2;

where jj � jjF denotes the Frobenius norm [11]. Hence,
traceðSwÞ measures the between-class cohesion, and
traceðSbÞ measures the between-class separation. It follows
from the definition that St ¼ Sw þ Sb. In the lower-dimen-
sional space resulting from the linear transformation G, the
within-class scatter and between-class scatter matrices
become

SLw ¼ ðGTHwÞðGTHwÞT ¼ GTSwG;

SLb ¼ ðGTHbÞðGTHbÞT ¼ GTSbG:

An optimal transformation G would maximize traceðSLb Þ
and minimize traceðSLwÞ simultaneously. Classical LDA
aims to compute the optimal G, such that

G ¼ arg max
G

trace GTSwG
� ��1

GTSbG
� �

: ð4Þ

Other optimization criteria, including those based on the
determinant, could also be used instead [6], [10]. The
solution to the optimization problem in (4) can be obtained
by solving an eigenvalue problem on S�1

w Sb [10], provided
that the within-class scatter matrix Sw is nonsingular. Since
the rank of the between-class scatter matrix is bounded
from above by k� 1, there are at most k� 1 discriminant
vectors by classical LDA. A stable way to solve this
eigenvalue problem is to apply SVD on the scatter matrices.
Details can be found in [25].

Classical LDA is equivalent to maximum likelihood
classification assuming normal distribution for each class
with the common covariance matrix. Although relying on
assumptions which do not hold in many applications, LDA
has been proven to be effective. This is mainly due to the fact
that a simple, linear model is more robust against noise, and
most likely will not overfit. Generalization of LDA by fitting
Gaussian mixtures to each class has been studied in [13].

Classical LDA cannot handle singular scatter matrices,
which limits its applicability to low-dimensional data.
Several methods, including pseudoinverse-based LDA
[29], subspace LDA [25], regularized LDA [9], LDA/GSVD
[15], [16], and Penalized LDA [12], were proposed in the
past to deal with the singularity problem. More details can
be found in [20], [28].

In pseudoinverse-based LDA, the pseudoinverse is
applied to avoid the singularity problem, which is
equivalent to approximating the solution using a least-
squares method. In subspace LDA, an intermediate dimen-
sion reduction algorithm, such as PCA, is applied to reduce
the dimension of the original data, before classical LDA is
applied. A limitation of this approach is that the optimal
value of the reduced dimension for the intermediate
dimension reduction algorithm is difficult to determine. In
regularized LDA, a positive constant � is added to the
diagonal elements of Sw, as Sw þ �IN , where IN is an
identity matrix. The matrix Sw þ �IN is positive definite, for
any � > 0, hence nonsingular. A limitation of this approach

is that the optimal value of the parameter � is difficult to
determine. Cross validation is commonly applied to
estimate the optimal �.

3 UNCORRELATED LINEAR DISCRIMINANT

ANALYSIS (ULDA)

ULDA aims to find the optimal discriminant vectors that are
S-orthogonal.2 Specifically, suppose r vectors �1; �2; � � � ; �r
are obtained, then the ðrþ 1Þth vector �rþ1 is found to
maximize the Fisher criterion function [17]:

fð�Þ ¼ �TSb�

�TSw�
;

subject to the constraints: �Trþ1S�i ¼ 0, for i ¼ 1; � � � ; r.
The algorithm in [17] finds �i successively as follows:

The jth discriminant vector �j of ULDA is the eigenvector
corresponding to the maximum eigenvalue of the following
generalized eigenvalue problem: UjSb�j ¼ �jSw�j, where

U1 ¼ IN;
Dj ¼ ½�1; � � � ; �j�1�T ðj > 1Þ;
Uj ¼ IN � SDT

j ðDjSS
�1
w SDT

j Þ
�1DjSS

�1
w ðj > 1Þ;

and IN is the identity matrix.
Assume that f�igdi¼1 are the d optimal discriminant

vectors for the above ULDA formulation. Then, the
original data matrix A is transformed into Z ¼ GTA,
where G ¼ ½�1; � � � ; �d�. The ith feature component of Z is
zi ¼ �Ti A, and the covariance between zi and zj is

Covðzi; zjÞ ¼ Eðzi � EziÞðzj � EzjÞ
¼ �Ti fEðA� EAÞðA� EAÞ

Tg�j
¼ �Ti S�j:

ð5Þ

Hence, their correlation coefficient is

CorðZi; ZjÞ ¼
�Ti S�jffiffiffiffiffiffiffiffiffiffiffiffiffi

�Ti S�i
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Tj S�j

q : ð6Þ

Since the discriminant vectors of ULDA are S-orthogonal,
i.e., �Ti S�j ¼ 0, for i 6¼ j, we have CorðZi; ZjÞ ¼ 0, for i 6¼ j.
That is, the feature vectors transformed by ULDA are
mutually uncorrelated. This is a desirable property for
feature reduction. More details on the role of uncorrelated
attributes can be found in [17]. The limitation of the above
ULDA algorithm is the expensive computation of the
d generalized eigenvalue problems, where d is number of
optimal discriminant vectors of ULDA.

In the literature for LDA, Foley-Sammon Linear Dis-
criminant Analysis (FSLDA), which was proposed by Foley
and Sammon for two-class problems [8], has also received
attention. It was then extended to the multiclass problems
by Duchene and Leclerq [5]. Both ULDA and FSLDA use
the same Fisher criterion function. The main difference is
that the optimal discriminant vectors generated by ULDA
are S-orthogonal to each other, while the optimal discrimi-
nant vectors by FSLDA are orthogonal to each other.
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4 THE ULDA/QR ALGORITHM

In this section, we first show the equivalence relationship
between classical ULDA and a variant of classical LDA,
which holds regardless of the distribution of the eigenva-
lues of S�1

w Sb. This result enhances the one in [18] where
the equivalence between these two is based on the
assumption that there are no multiple eigenvalues for
S�1
w Sb (note that both results assume that the within-class

scatter matrix Sw is nonsingular). Based on this equiva-
lence relationship, we propose ULDA/QR to simplify the
ULDA implementation in [17].

Consider a variant of classical LDA in (4) as follows:

G ¼ arg max
GTSG¼I‘

F ðGÞ; ð7Þ

where

F ðGÞ ¼ trace GTSwG
� ��1

GTSbG
� �

: ð8Þ

The use of the total scatter S in discriminant analysis has
been discussed in [3]. Note that the ULDA algorithm
discussed in the previous section finds the discriminant
vectors in G successively. However, in the new formulation
above, we compute all discriminant vectors simultaneously.
S-orthogonality is enforced as a constraint. Our main result
in this section, summarized in Theorem 2, shows that these
two formulations for ULDA are equivalent.

The main technique for solving the optimization problem
in (7) is the simultaneous diagonalization of the within-class
and between-class scatter matrices. It is well-known that,
for a symmetric positive definite matrix Sw and a symmetric
matrix Sb, there exists a nonsingular matrix X such that

XTSwX ¼ IN; ð9Þ

XTSbX ¼ � ¼ diagð�1; � � � ; �NÞ; ð10Þ

where �1 � � � � � �N [11]. The matrix X can be computed
efficiently based on the QR-decomposition as follows: Let
HT
w ¼ QR be the QR-decomposition of HT

w , where Hw is
defined in (1), Q 2 IRn�N has orthonormal columns and R 2
IRN�N is upper triangular and nonsingular. Then, Sw ¼
HwH

T
w ¼ RTR and ðR�1ÞTSwR�1 ¼ IN . That is, R�1 diag-

onalizes the within-class scatter matrix Sw. Next, consider
the matrix

ðR�1ÞTSbR�1 ¼ HT
b R
�1

� �T
HT
b R
�1

� �
� Y TY ;

where Y ¼ HT
b R
�1.

Let Y ¼ U�V T be the SVD of Y , where U 2 IRn�q,
� ¼ diagð�1; � � � ; �qÞ 2 IRq�q, V 2 IRN�q, �1 � � � � � �q, and
q ¼ rankðHbÞ. It is easy to check that X ¼ R�1V diagonalizes
both Sw and Sb and satisfies the conditions in (9) and (10).

It can be shown that the matrix consisting of the first
q columns of X computed above (with normalization)
solves the optimization problem in (7), where q is the rank
of the matrix Sb, as stated in the following theorem:

Theorem 1. Let the matrix X be defined as in (9) and (10), and

q ¼ rankðSbÞ. Let G	 ¼ ~x1; � � � ; ~xq
� �

, where ~xi ¼ 1ffiffiffiffiffiffiffiffi
1þ�i
p xi, xi

is the ith column of the matrix X, and �is are defined in

(10). Then, G	 solves the optimization problem in (7).

Proof. It is clear that the constraint in (7) is satisfied for

G ¼ G	. Next, we only need to show that the maximum

of F ðGÞ is obtained at G	. By (9) and (10), we have

GTSwG ¼ GTX�T ðXTSwXÞX�1G ¼ ~G ~GT ;

GTSbG ¼ GTX�T ðXTSbXÞX�1G ¼ ~G� ~GT ;

where ~G ¼ X�1Gð ÞT . Hence,

F ðGÞ ¼ trace ~G ~GT
� ��1 ~G� ~GT

� �� �
:

Let ~GT ¼ QR be the QR-decomposition of ~GT 2 IRN�‘

(note that ~GT has full column rank), where Q 2 IRN�‘ has

orthonormal columns and R is nonsingular. Using the

fact that traceðABÞ ¼ traceðBAÞ, for any matrices A and

B, we have

F ðGÞ ¼ trace RTR
� ��1

RTQT�QR
� �� �

¼ trace QT�Q
� �

� �1 þ � � � þ �q;

where the inequality becomes an equality for

Q ¼ I‘
0

	 

or G ¼ X I‘

0

	 

R;

when the reduced dimension ‘ ¼ q. Note that R is an

arbitrary upper triangular and nonsingular matrix.

Hence, G	 corresponds to the case when R is set to be

R ¼ diag
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �1

p ; � � � ; 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �q

p
 !

:

ut

We are now ready to present our main result for this

section:

Theorem 2. Let ~xi be defined as in Theorem 1. Then, f~xigqi¼1

forms a set of optimal discriminant vectors for ULDA.

Proof. By induction. It is trivial to check that

~x1 ¼ arg max� fð�Þ, i.e., �1 ¼ ~x1. Next, assume �i ¼ ~xi,

for i ¼ 1; � � � ; r. We show in the following that

�rþ1 ¼ ~xrþ1.

By the definition, �rþ1 ¼ arg max� fð�Þ, subject to

�Trþ1S�i ¼ 0; for i ¼ 1; � � � ; r. Let �rþ1 ¼
PN

i¼1 �i~xi, since

f~xigNi¼1 forms a base for IRN . By the constraints

�Trþ1S�i ¼ 0, for i ¼ 1; � � � ; r, we have �i ¼ 0, for

i ¼ 1; � � � ; r, hence �rþ1 ¼
PN

i¼rþ1 �i~xi. It follows from

(9) and (10) that

fð�rþ1Þ ¼
PN

i¼rþ1 �i~x
T
i

� �
Sb
PN

i¼rþ1 �i~xi

� �
PN

i¼rþ1 �i~x
T
i

� �
Sw

PN
i¼rþ1 �i~xi

� �

¼
PN

i¼rþ1 �
2
i �iPN

i¼rþ1 �
2
i

�
PN

i¼rþ1 �
2
i �rþ1Pm

i¼rþ1 �
2
i

¼ �rþ1;

where the inequality becomes an equality if �i ¼ 0, for

i ¼ rþ 2; � � � ; N . Hence, ~xrþ1 can be chosen as the ðrþ
1Þth discriminant vector of ULDA, i.e., �rþ1 ¼ ~xrþ1. tu
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An efficient algorithm for computing f~xigqi¼1 through
QR-decomposition is presented below as Algorithm 1.

Algorithm 1: The ULDA/QR Algorithm

Input: Data matrix A.

Output: Discriminant vectors ~xis of ULDA.

1. Construct matrices Hw and Hb as in (1) and (2).

2. Compute the QR-decomposition of HT
w as HT

w ¼ QR,

where Q 2 IRn�N and R 2 IRN�N .
3. Form the matrix Y  HT

b R
�1.

4. Compute the SVD of Y as Y ¼ U�V T , where U 2 IRn�q,

� ¼ diagð�1; � � � ; �qÞ 2 IRq�q, V 2 IRN�q, �1 � � � � � �q,
and q ¼ rankðHbÞ.

5. ½x1; � � � ; xq�  R�1V .

6. �i  �2
i , for i ¼ 1; � � � ; q.

7. ~xi  1ffiffiffiffiffiffiffiffi
1þ�i
p xi, for i ¼ 1; � � � ; q.

5 THE ULDA/GSVD ALGORITHM

In the previous section, a variant of the classical LDA
criterion was presented in (7). It was shown that the
solution to the optimization problem in (7) forms optimal
discriminant vectors for classical ULDA. Thus, it provides
an efficient way for computing the optimal discriminant
vectors for ULDA. However, the algorithm assumes the
nonsingularity of Sw, which limits its applicability to low-
dimensional data. In [17], a subspace-based method is
presented to overcome the singularity problem, where the
ULDA algorithm is preceded by PCA. However, the PCA
stage may lose some useful information. In this section, we
propose a new feature reduction algorithm, called ULDA/
GSVD. The new criterion underlying ULDA/GSVD is
motivated by the criterion in (7) and the regularized LDA.
The new optimization problem for ULDA/GSVD is defined
as follows:

G� ¼ arg max
GTSG¼I‘

F�ðGÞ; ð11Þ

where F�ðGÞ ¼ trace ðGTSwGþ �I‘Þ�1GTSbG
� �

. Note that

matrix GTSwGþ �I‘ is guaranteed to be nonsingular for

� > 0.
Recall that a limitation of regularized LDA is that the

optimal value of the perturbation� is difficult to determine. A
key difference between ULDA/GSVD and regularized LDA
is that the optimal solution to ULDA/GSVD is independent
of the regularization parameter, i.e., G�1

¼ G�2
, for any

�1; �2 > 0. The main result of this section is summarized in
the following theorem:

Theorem 3. Let G	�, for any � > 0, be the optimal solution to the
optimization problem in (11). Then, the following equality
holds:

G	�1
¼ G	�2

; for any �1; �2 > 0: ð12Þ

To prove Theorem 3, we first show how to compute G	�,
for any � > 0. Recall that when the within-class scatter
matrix is nonsingular, the optimal transformation can be
computed by finding the matrix X, which simultaneously
diagonalizes the scatter matrices. For this, the Generalized
Singular Value Decomposition (GSVD) can be applied, even

when both matrices are singular. A simple algorithm to

compute GSVD can be found in [15], where the algorithm is

based on [21].
The computation of G	�, for any � > 0, is based on the

following two lemmas:

Lemma 1. Let Sw, Sb, and S be defined as in Section 2, and let

t ¼ rankðSÞ. Then, there exists a nonsingular matrix

X 2 IRN�N , such that

XTSbX ¼ D1 ¼ diagð�2
1; � � � ; �2

t ; 0; � � � ; 0Þ; ð13Þ

XTSwX ¼ D2 ¼ diagð�2
1 ; � � � ; �2

t ; 0; � � � ; 0Þ; ð14Þ

where

1 � �1 � � � � � �q > 0 ¼ �qþ1 ¼ � � � ¼ �t;
0 � �1 � � � � � �t � 1;

D1 þD2 ¼
It 0

0 0

	 

;

and q ¼ rankðSbÞ.
Proof. Let

K ¼ HT
b

HT
w

� �
;

which is an ðnþ kÞ �N matrix. By the Generalized

Singular Value Decomposition [21], there exist orthogo-

nal matrices U 2 IRk�k, V 2 IRn�n, and a nonsingular

matrix X 2 IRN�N , such that

U 0
0 V

� �T
KX ¼ �1 0

�2 0

� �
; ð15Þ

where

�T
1 �1 ¼ diagð�2

1; � � � ; �2
t Þ; �T

2 �2 ¼ diagð�2
1 ; � � � ; �2

t Þ;
1 � �1 � � � � � �q > 0 ¼ �qþ1 ¼ � � � ¼ �t;
0 � �1 � � � � � �t � 1;

�2
i þ �2

i ¼ 1, for i ¼ 1; � � � ; t, and q ¼ rankðHbÞ ¼ rankðSbÞ.
Hence, HT

b X ¼ U �1 0½ �, and HT
wX ¼ V �2 0½ �. It

follows that

XTSbX ¼ XTHbH
T
b X ¼

�T
1 �1 0
0 0

� �
¼ D1;

XTSwX ¼ XTHwH
T
wX ¼

�T
2 �2 0
0 0

� �
¼ D2;

where D1 þD2 ¼
It 0
0 0

	 

. tu

Lemma 2. Define a trace optimization problem as follows:

G ¼ arg max
GTG¼I‘

trace GTWG
� ��1

GTBG
� �

; ð16Þ

where W ¼ diagðw1; � � � ; wuÞ 2 IRu�u is a diagonal matrix
with 0 < w1 � � � � � wu, and B ¼ diagðb1; � � � ; buÞ 2 IRu�u

is also diagonal with b1 � � � � � bq > 0 ¼ bqþ1 ¼ � � � ¼ bu.
Then, G? ¼ Iq; 0

� �T
solves the optimization problem in (16)

with ‘ ¼ q.
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Proof. It is clear that the constraint in the optimization in
(16) is satisfied for G? with ‘ ¼ q. Next, we show that G?

solves the following optimization problem:

G ¼ arg max
G

trace GTWG
� ��1

GTBG
� �

: ð17Þ

It is well-known that the solution can be obtained by
solving the eigenvalue problem on W�1B since W is
nonsingular. Note thatW�1B is diagonal and only the first
q diagonal entries are nonzero. Hence, ei, for i ¼ 1; � � � ; q, is
the eigenvector of W�1B corresponding to the ith largest
eigenvalue, where ei ¼ 0; � � � ; 1; 0 � � � ; 0ð ÞT and the one
appears at the ith entry. Therefore, G? ¼ Iq; 0

� �T
solves

the optimization in (17). tu
With Lemma 1 and Lemma 2, we can compute G	�, for

any � > 0, as follows:

Theorem 4. Let the matrix X be defined as in Lemma 1, and let
q ¼ rankðSbÞ. Then,

G	� ¼ X
Iq
0

	 


solves the optimization problem in (11) with ‘ ¼ q.
Proof. By Lemma 1, XTSbX ¼ D1, XTSwX ¼ D2, where the

two diagonal matrices D1 and D2 satisfy

D1 þD2 ¼
It 0
0 0

	 

:

It is easy to check that

ðG	�Þ
TSG	� ¼ Iq; 0

� �
XT ðSb þ SwÞX

Iq

0

	 


¼ Iq; 0
� �

ðD1 þD2Þ
Iq

0

	 

¼ Iq;

i.e., the constraint in the optimization problem in (11) is
satisfied. Next, we show that G	� minimizes F�ðGÞ. Since

GTSbG ¼ GT ðX�1ÞT ðXTSbXÞX�1G ¼ ~GD1
~GT ;

GTSwG ¼ GT ðX�1ÞT ðXTSwXÞX�1G ¼ ~GD2
~GT ;

where ~G ¼ ðX�1GÞT , F�ðGÞ can then be rewritten as

F�ðGÞ ¼ trace ~GD2
~GT þ �I‘

� ��1 ~GD1
~GT

� �
: ð18Þ

Let ~G ¼ GT
1 ; GT

2

� �
be a partition of ~G, such that

GT
1 2 IR‘�t and GT

2 2 IR‘�ðN�tÞ. By the constraint that

GTSG ¼ I‘, we have

I‘ ¼ GTSG ¼ GT ðSw þ SbÞG ¼ GTSbGþGTSwG

¼ ~GD1
~GT þ ~GD2

~GT ¼ ~GðD1 þD2Þ ~GT ¼ GT
1G1:

Hence, F�ðGÞ in (18) can be rewritten as

F�ðGÞ ¼ trace GT
1 Dt

2 þ �I‘
� �

G1

� ��1
GT

1D
t
1G1

� �
;

where Dt
1 and Dt

2 are the tth leading submatrices of D1

and D2, respectively. It is clear that F�ðGÞ is independent
of G2. Hence, we can simplify set G2 ¼ 0. Denote
� ¼ Dt

2 þ �It
� �

, which is a nonsingular and diagonal
matrix. It follows that

F�ðGÞ ¼ trace GT
1 �G1

� ��1
GT

1D
t
1G1

� �
:

The result then follows from Lemma 2, with W ¼ � and
B ¼ Dt

1. tu
Theorem 4 implies that the optimal solution G?

� to the
optimization problem in (11) only depends on X, which is
determined by Hw and Hb, hence it is independent of �.
That is, G	�1

¼ G	�2
, for any �1; �2 > 0. This completes the

proof of the main result of this section, which is summar-
ized in Theorem 3.

The computation of the optimal transformation G	 is
summarized in Algorithm 2.

Algorithm 2: The ULDA/GSVD Algorithm

Input: Data matrix A

Output: Optimal transformation matrix G	

1. Form Hb and Hw as in (2) and (1).
2. Compute GSVD on the matrix pair ðHT

b ;H
T
wÞ to obtain the

matrix X, as in Lemma 1.

3. q rankðHbÞ.
4. G	  ½X1; � � � ; Xq�.

5.1 Efficient Computation of Diagonalizing Matrix X

In Lemma 1, a nonsingular matrix X is computed by
applying GSVD, which may be expensive, especially for
large matrices. A key property of X which leads to the
optimal solutionG	 is that it diagonalizes the scatter matrices
simultaneously. In this section, we present an efficient
algorithm for computing the diagonalizing matrixXwithout
the GSVD computation.

Let Ht ¼ U�V T be the SVD of Ht, where Ht is defined in
(3), U 2 IRN�N and V 2 IRn�n are orthogonal, and � 2 IRN�n

is diagonal. Then,

S ¼ HtH
T
t ¼ U�V TV�TUT ¼ U��TUT :

That is, the eigen-decomposition of S can be obtained by
computing the SVD of Ht. Let U ¼ ðU1; U2Þ be the partition
of U , such that U1 2 IRN�t and U2 2 IRN�ðN�tÞ, where
t ¼ rankðSÞ. Let ��T ¼ diag �2

t ; 0
� �

, where �t 2 IRt�t is
diagonal and nonsingular. Since S ¼ Sb þ Sw, the null
space, U2, of St also lies in the null space of Sb and Sw,
that is, UT

2 SbU2 ¼ 0 and UT
2 SwU2 ¼ 0. Hence,

�2
t ¼ UT

1 SbU1 þ UT
1 SwU1 ð19Þ

and

It ¼ ��1
t UT

1 SbU1��1
t þ ��1

t UT
1 SwU1��1

t : ð20Þ

Recall from (2) that Sb ¼ HbH
T
b . Denote B ¼ ��1

t UT
1 Hb and

let B ¼ P ~�QT be the SVD of B, where P and Q are
orthogonal and ~� is diagonal. Then,

��1
t UT

1 SbU1��1
t ¼ P ~�~�TPT ¼ P�bP

T ;

where �b ¼ ~�~�T ¼ diagð�1; � � � ; �tÞ,

�1 � � � � � �q > 0 ¼ �qþ1 ¼ � � � ¼ �t;

and q ¼ rankðSbÞ. It can be verified that the matrix X below
diagonalizes the three scatter matrices simultaneously:

X ¼ U ��1
t P 0
0 I

	 

: ð21Þ
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The pseudocode for the computation of X is given in

Algorithm 3.

Algorithm 3: Efficient computation of diagonalizing

matrix X

Input: data matrix A

Output: matrix X

1. Form matrices Hb and Ht as in (2) and (3).

2. Compute SVD of Ht as Ht ¼ U1�tV
T

1 .

4. B �tU
T
1 Hb.

5. Compute SVD of B as B ¼ P ~�QT ; q rankðBÞ.

6. X  U
��1
t P 0
0 I

	 

.

5.2 Relationship between ULDA/GSVD and
ULDA/QR

In this section, we show that ULDA/GSVD is equivalent to

ULDA/QR when the within-class scatter matrix Sw is

nonsingular. Therefore, ULDA/QR can be considered as a

special case of ULDA/GSVD when Sw is nonsingular. Note

that ULDA/GSVD is more general in the sense that it is

applicable regardless of the singularity of Sw.
Recall that ULDA/QR involves the matrix X, which

satisfies

XTSwX ¼ IN;
XTSbX ¼ � ¼ diagð�1; � � � ; �NÞ;

where �1 � � � � � �N .
The final transformation matrix G	 ¼ ~x1; � � � ; ~xq

� �
, where

~xi ¼ 1ffiffiffiffiffiffiffiffi
1þ�i
p xi, xi is the ith column of the matrix X. It follows

that

ðG	ÞTSG	 ¼ Iq; ð22Þ

ðG	ÞTSbG	 ¼ diag
�1

1þ �1
; � � � ; �q

1þ �q

	 

: ð23Þ

Since fðxÞ ¼ x=ð1þ xÞ is an increasing function, we have

�1

1þ �1
� � � � � �q

1þ �q
:

Thus, the transformation matrix G	 from ULDA/QR

satisfies the conditions in Lemma 1 for ULDA/GSVD. That

is, ULDA/GSVD is equivalent to ULDA/QR, when the

within-class scatter matrix Sw is nonsingular. Note that

ULDA/QR is not applicable when Sw is singular. ULDA/

GSVD can thus be considered as an extension of ULDA/QR

for a singular within-class scatter matrix. In the following

experimental studies, we focus on the ULDA/GSVD

algorithm.
We close this section by showing the classification

property of ULDA/GSVD and ULDA/QR:

Theorem 5. Let G be the optimal transformation matrix for

ULDA/GSVD. Then, for any test point h, the following

equality holds:

arg min
j
ðh� cjÞTSþðh� cjÞ
n o

¼ arg min
j
jjGT ðh� cjÞjj2
n o

:

Proof. Let Xi be the ith column of X. Note that G consists of
the first q columns of X, and q ¼ rankðSbÞ. From (13) and
(14), we have

Sþ ¼ XðD1 þD2ÞXT ¼ GGT þ
Xt
i¼qþ1

XiX
T
i :

From (13), XT
i SbXi ¼ 0, for i ¼ q þ 1; � � � ; t. Hence,

ðcjÞTXi ¼ cXi, for all j ¼ 1; � � � ; k. It follows that

ðh� cjÞTSþðh� cjÞ ¼ jjGT ðh� cjÞjj2þXt
i¼qþ1

ðh� cÞTXiX
T
i ðh� cÞ:

ð24Þ

The main result follows, since the second term on the
right-hand side of (24) is independent of j. tu
When S is nonsingular, the classification in ULDA/QR

uses the Mahalanobis distance measure as follows:

Corollary 1. Assume S is nonsingular. Let G be the optimal
transformation matrix for ULDA/QR. Then, for any test point
h, the following equality holds:

arg min
j
ðh� cjÞTS�1ðh� cjÞ
n o

¼ arg min
j
jjGT ðh� cjÞjj2
n o

:

Corollary 1 shows that the classification in ULDA/QR is
based on the Mahalanobis distance measure, while Theo-
rem 5 shows that the classification in ULDA/GSVD is based
on the modified Mahalanobis distance measure.

6 EXPERIMENTS

We evaluate the effectiveness of the ULDA/GSVD algo-
rithm in this section. Section 6.1 describes our test data sets.
Section 6.2 examines the effect of the number of reduced
dimensions on the classification performance of ULDA/
GSVD. In Section 6.3, we compare ULDA/GSVD with PCA,
OCM, and subspace ULDA, as well as SVM, in terms of
classification accuracy. The K-Nearest-Neighbor (K-NN)
algorithm with different values of K is used as the classifier.

6.1 Data Sets

We used two data sets: Spambase and Wine from the UCI
Machine Learning Repository.3 We used a subset of the
original Spambase data set, which consists of spam and
nonspam emails. Most of the features indicate whether a
particular word or character occurred frequently in the
e-mail. The Wine data set is the result of a chemical analysis
of wines grown in the same region in Italy but derived from
three different cultivars. The features correspond to the
quantities of 13 different constituents found in each of the
three types of wines. For these two data sets, the data
dimension (N) is much smaller than the sample size (n). We
also used six other data sets: GCM, ALL, tr41, re1, PIX, and
ORL, where the data dimension is much larger than the
sample size. In this case, ULDA/QR is not applicable, since
all scatter matrices are singular, while ULDA/GSVD is still
applicable. GCM [23], [30] and ALL [31] are microarray
gene expression data sets; tr41 is a document data set
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derived from the TREC-5, TREC-6, and TREC-7 collections;4

re1 is another document data set derived from Reuters-21578
text categorization test collection Distribution 1.0;5 and
ORL6 and PIX 7 are two face image data sets.

Table 2 summarizes the statistics of our test data sets.

6.2 Effect of the Number of Reduced Dimensions on
ULDA/GSVD

In this experiment, we study the effect of the number of
reduced dimensions on the classification performance of
ULDA/GSVD. The number of reduced dimensions ranges
from 1 to 20. The classification results on the GCM and ALL
data sets are shown in Fig. 1, where the horizontal axis is
the number of reduced dimensions and the vertical axis is
the classification accuracy. We can observe that the
accuracy tends to increase when the number of reduced
dimensions increases, until q ¼ rankðHbÞ (13 for GCM and 5
for ALL) is reached. Similar trends have been observed
from other data sets, and the results are not presented. In
the following experiment, we set the reduced dimension of
ULDA/GSVD to be the rank of Hb.

6.3 Comparison of Classification Accuracy

In this experiment, we applied ULDA/GSVD to the eight
data sets from Table 2 and compared with OCM, PCA, and
subspace ULDA in terms of classification accuracy. The
results are summarized in Table 3. The number of principal
components used in PCA and Subspace ULDA is deter-
mined through cross-validation, and may be different for
different data sets.

For data sets, including Spambase, Wine, GCM, and
ALL, the training and test sets given in the original data sets
are used for computing the accuracy. For the other four data
sets, including tr41, re1, PIX, and ORL, where the training
and test sets are not given, we performed our study by
repeated random splitting into training and test sets exactly
as in [7]. The data was partitioned randomly into a training
set consisting of two-thirds of the whole set and a test set
consisting of one-third of the whole set. To reduce the
variability, the splitting was repeated 50 times and the
resulting accuracies were averaged. The standard deviation
for each data set was also reported.

The main observations from Table 3 include: 1) ULDA/
GSVD is competitive with the other three algorithms for all
data sets in terms of classification. Subspace ULDA per-
forms well for most data sets. However, subspace ULDA
applies cross-validation for determining the optimal set of
principal components in the PCA step, which can be
expensive, especially for large data sets. Besides, the
variance of the results for the other three methods is
generally larger than that of ULDA/GSVD. This implies
that ULDA/GSVD provides a more consistent result.
2) ULDA/GSVD is extremely stable under different K-NN
classifiers for all data sets, whereas the performance of
OCM and PCA degrades for many cases, as the number, K,
of nearest neighbors increases. Subspace ULDA is also
stable under different K-NN classifiers for most data sets.
3) PCA does not perform well in many cases. This is likely
related to the fact that PCA is unsupervised and does not
use the class label information, while the other three
algorithms fully utilize the class label information. OCM
performs well for the two document data sets and the two
face image data sets, while it performs poorly for the other
data sets. Both PCA and OCM perform poorly in Spambase
and Wine, in comparison with ULDA/GSVD and subspace
ULDA.

We have also done some preliminary studies in comparing
ULDA/GSVD with linear SVM. 1NN is used to compute the
accuracy for ULDA/GSVD. The main result is summarized in
Fig. 2, where the x-axis denotes the eight data sets, and the
y-axis denotes the classification accuracy. For tr41, re1, PIX,
and ORL, the mean accuracy for 50 different runs are
reported. Overall, ULDA/GSVD and linear SVM are compar-
able in terms of classification.

7 CONCLUSION

Uncorrelated features with minimum redundancy are
highly desirable in feature reduction. In this paper, we
present a theoretical and empirical study on uncorrelated
Linear Discriminant Analysis (ULDA). We first present the
theoretical result on the equivalence relationship between
classical ULDA and classical LDA, which leads to a fast
implementation of ULDA, ULDA/QR. Then, we propose
ULDA/GSVD, based on a novel optimization criterion, that
can successfully overcome the singularity problem in
classical ULDA. The criterion used in ULDA/GSVD is the
perturbed version of the one from ULDA/QR, while the
solution to ULDA/GSVD is shown to be independent of the
amount of perturbation applied, thus avoiding the limita-
tion in regularized LDA. Experimental results on various
types of data show the superiority of ULDA/GSVD over
other competing algorithms including PCA, OCM, and
subspace ULDA.

Experimental results show that ULDA/GSVD is extre-

mely stable under different K-NN classifiers for all data

sets. We plan to carry out detailed theoretical analysis on

this in the future. The current work focuses on linear

discriminant analysis, which applies a linear decision

boundary. Discriminant analysis can also be studied in a

nonlinear fashion—so-called kernel discriminant analysis—

by using the kernel trick [24]. This is desirable if the data

YE ET AL.: FEATURE REDUCTION VIA GENERALIZED UNCORRELATED LINEAR DISCRIMINANT ANALYSIS 1319

4. http://trec.nist.gov.
5. http://www.research.att.com/~lewis.
6. http://www.uk.research.att.com/facedatabase.html.
7. http://peipa.essex.ac.uk/ipa/pix/faces/manchester/test-hard/.

TABLE 2
Statistics for the Test Data Sets

(“—” means that the natural splitting of the data set into training and test
set is not available. For Spambase, Wine, GCM, and ALL, the original
training and test sets are given, while for tr41, re1, PIX, and ORL, the
original splitting is not provided.)



has weak linear separability. We plan to extend the current

work to deal with the nonlinearity in the future.
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