
Understanding Performance, Power and Energy
Behavior in Asymmetric Multiprocessors

Nagesh B Lakshminarayana Hyesoon Kim
School of Computer Science

Georgia Institute of Technology
{nageshbl, hyesoon}@cc.gatech.edu

Abstract—Multiprocessor architectures are becoming pop-
ular in both desktop and mobile processors. Among multipro-
cessor architectures, asymmetric architectures show promise
in saving energy and power. However, the performance and
energy consumption behavior of asymmetric multiprocessors
with desktop-oriented multithreaded applications has notbeen
studied widely.

In this study, we measure performance and power consump-
tion in asymmetric and symmetric multiprocessors using real
8 and 16 processor systems to understand the relationships
between thread interactions and performance/power behavior.
We find that when the workload is asymmetric, using an
asymmetric multiprocessor can save energy, but for most of
the symmetric workloads, using a symmetric multiprocessor
(with the highest clock frequency) consumes less energy.

I. INTRODUCTION

Asymmetric multiprocessor architectures have been pro-
posed to be power efficient multiprocessor architectures [3],
[13], [1], [15]. Research has shown that these architec-
tures provide power-performance effective platforms for
both throughput-oriented applications and applications that
would benefit from having high performance processors.

Unfortunately, the performance and energy behavior of
multithreaded applications in asymmetric architectures has
not been studied widely. Balakrishnan et al. [2] evaluated
the performance of applications in an asymmetric multipro-
cessor (AMP). However, in their work, they only showed
performance effects in an AMP. Grant and Afsahi [11]
studied power-performance efficiency but they only focused
on scientific applications.

In this study, we evaluate the performance and power con-
sumption behavior of multithreaded applications in an AMP.
We emphasize on understanding thread interactions since
many modern applications have many locks and barriers.
To understand the overall power consumption behavior, we
measure the power consumption of two systems (8 proces-
sors and 16 processors). We measure the power consump-
tion of whole systems rather than the power consumption
of only processors, since performance and energy trade-offs
should consider the entire system including DRAM memory
and disk.

We use PARSEC [4], the recently released multithreaded
benchmark suite for desktops, for our evaluations. We also
design several microbenchmarks to understand thread inter-

actions better. Furthermore, we modify the Linux scheduler
to evaluate asymmetry aware scheduling algorithms on an
AMP.

Our experiments yield three major conclusions. First,
when threads do not interact intensively and when all
threads have similar amounts of work, a symmetric mul-
tiprocessor (SMP) with fast processors (i.e., the highest
clock frequency) consumes the least amount of energy.
Second, when thread interactions increase, an SMP with
slow processors or an AMP could provide the best energy
savings. Third, when the workload is strongly asymmetric
(i.e., each thread in the workload has different amount
of work), an AMP consumes the least amount of energy.
Hence, depending on the thread characteristics in mul-
tithreaded applications, a different machine configuration
would provide the best energy savings.

The contributions of our paper are

1) To our knowledge, this is the first work that evaluates
performance and the overall system power consump-
tion behavior in an AMP for multithreaded desktop
applications.

2) We thoroughly evaluate thread interaction behavior to
study performance and energy trade-offs in an AMP.

3) We propose a new, simple, but effective job schedul-
ing algorithm for an AMP and show that it provides
the best energy savings for asymmetric workloads.

II. M ETHODOLOGY

A. Evaluation System

We use two systems as shown in Table I to measure
performance and energy consumption.1 Applications run-
ning on machine-I have 8 threads and applications run-
ning on machine-II have 16 threads. We useSpeedStep
technology [12] withcpufreq governors to emulate
an AMP. Table II describes three machine configurations.
Machine-I runs RHEL 5 Desktop (Linux Kernel 2.6.18),
while Machine-II runs RHEL 4 WS (Linux Kernel 2.6.9).

1Since machine-I and machine-II show similar trends, we mainly report
results from machine-II except in Section VI.

TABLE I
THE SYSTEM CONFIGURATIONS

Machine-I 2 socket 1.87 GHz Quad-core Intel Xeon;
(Dell Precision 490) 4MB L2-cache, 8GB RAM, 40GB HDD, Quadro NVS 285

Machine-II 4 socket 2 GHz Quad-core AMD Opteron 8350;
2MB L3-cache, 32GB RAM, 1TB HDD, Tesla C-870

TABLE II
THREE DIFFERENT MACHINE CONFIGURATIONS FOR MACHINE-II

All-fast All 16 processors are running at 2GHz
All-slow All 16 processors are running at 1GHz
Half-half 8 processors are running at 2GHz; 8 processors are running at1GHz

B. Benchmarks

We use PARSEC [4], and an ITK [16] application
(a medical image processing application) for our eval-
uations. We use the native input set for the PARSEC
benchmarks. We also design microbenchmarks,matrix
multiplication, globalSum and parallel-for
applications to understand thread behavior more accurately.
The PARSEC and ITK benchmarks are compiled with gcc
4.1.2 [9] with-O3 -fprefetch-loop-arrays flags.

C. Power Measurement

We use Extech 380801 AC/DC Power Analyzer [7] to
measure the overall system power consumption. The power
data is sent to a datalog machine using RS232 every 0.5
seconds.

III. PERFORMANCE ANDENERGY CONSUMPTION

BEHAVIOR OF PARSECBENCHMARKS

We evaluate the PARSEC benchmarks on the three
machine configurations. Based on the results, we classify
the benchmarks into three categories:slow-limited (the
performance of half-half is the same as that of all-slow),
middle-perf (the performance of half-half is between that
of all-slow and all-fast), andunstable(the performance of
an application varies significantly across runs).

Figure 1 explains why there are slow-limited, middle-perf
and unstable applications. In case (a), there is a barrier atthe
end of the program. Therefore, the overall performance of
the application is dominated by the slowest thread. Hence,
such an application will be slow-limited. If sequential
sections of the code dominate the overall execution time
like in case (b), the performance of the application would
be between the performance of all-fast and all-slow (i.e.,
middle-perf). Case (c) explains the unstable case. The
application has several fork-join sections. After threadshave
joined, depending on where the single thread executes, the
performance varies. This causes unstable behavior.

���
���
���

���
���
���

barrier���
���
���

���
���
���

case (a)

A C DB

barrier

case (b) case (c)

Fig. 1. Fork-join cases

Figure 2 shows the performance of the PARSEC bench-
marks in the three machine configurations. The results show
that on average half-half and all-slow increase the execution
time by 43% and by 61% respectively compared to all-fast.
Half-half performs more similarly to all-slow than to all-fast
due to several slow-limited benchmarks. However, half-half
performs similarly to all-fast for some applications such as
canneal anddedup.

100

150

200

250

300

350

E
x
e

cu
ti

o
n

 t
im

e
 (

se
c) All-fast

Half-half

All-slow

0

50

100

E
x
e

cu
ti

o
n

 t
im

e
 (

se
c)

Fig. 2. Experiments in the three machine configurations (PARSEC)

Table III summarizes the categorization of benchmarks
and also shows the number of synchronization primitives
in the PARSEC benchmarks. The data is collected using
Pin [6]. Note that the experiments are done with the 8 thread
configuration. All numbers are totals across all threads.
Numbers for synchronization primitives also include prim-
itives in system libraries.
blackscholes is the typical slow-limited benchmark.

It has only one barrier2 at the end of the application.
Hence, the overall performance is limited by the slowest
thread.facesim and swaptions are also limited by
barriers. Applications that have a large number of locks
or barriers (such asfluidanimate and bodytrack)
show unstable behavior. The remaining applications show
middle-perf behavior.

TABLE III
CHARACTERISTICS OF THEPARSECBENCHMARKS

Application Locks Barriers Cond. variables AMP performance category
blackscholes 39 8 0 slow-limited
bodytrack 6824702 111160 32361 unstable
canneal 34 0 0 middle-perf
dedup 10002625 0 17 middle-perf

facesim 1422579 0 330521 slow-limited
fulidanimate 1153407308 31998 0 unstable

freqmine 39 0 0 middle-perf
streamcluster 1379 633174 1036 middle-perf

swaptions 39 0 0 slow-limited
x264 207692 0 13793 half-half

A. Power Consumption Measurements

Table IV summarizes the average power consumption of
different number of threads for each machine configuration.
We use thematrix multiplication application3 to
measure the average power. A machine in idle state con-
sumes about 10–20% less power than a machine that

2In Table III, blackscholes has 8 barriers. This is because all 8
threads encounter the same barrier at run-time.

3This application computes the product of two 2400X2400 matrices by
dividing the computation among n number of threads.

executes 16 threads. All-slow (16 @ 1 GHz) with 16 threads
consumes 15.7% less power than all-fast (16 @ 2 GHz) with
16 threads.

In this study, we focus on energy consumption rather
than power consumption itself. The amount of energy
consumed is proportional to both execution time and power.
Hence, even though low frequency machine configurations
consume less power than high frequency machine config-
urations, if they increase the execution time significantly,
they would not result in energy savings. For example, if
all-slow (with 16 threads) increases execution time by more
than 15.7% in comparison with all-fast (with 16 threads),
it would consume more energy than all-fast. Note that this
15.7% number is dependent on workloads.

60
80

100
120
140
160
180
200

E
n

e
rg

y
 (

K
J)

All-fast

Half-half

All-slow

0
20
40
60

E
n

e
rg

y
 (

K
J)

Fig. 3. Energy consumption behavior in three machine configurations
(PARSEC)

Figure 3 shows the energy consumption behavior in
three different machine configurations. On average, all-
fast shows the best energy consumption behavior. Half-half
consumes 30% more energy and all-slow consumes 39.5%
more energy compared to all-fast. Since the performance
slowdown is more than the benefit of power savings, both
half-half and all-slow do not results in energy savings.
Only streamcluster shows opposite behavior, wherein
all-slow consumes the least amount of energy. The most
distinguishable characteristic ofstreamcluster is that
it has the most number of barriers (more than 600K barriers)
among all the evaluated benchmarks. We suspect that the
number of barriers also plays an important factor, which
is why we evaluate the effect of barriers more carefully
in the next section. Fordedup, all-fast and half-half
consume similar amounts of energy because the differences
in execution times on the three machine configurations are
small. From the results, we can conclude that on average
using an SMP with fast processors saves energy except for
a few applications. We will investigate more on why there
are some applications that are exceptions in the following
sections.

IV. PERFORMANCE ANDENERGY CONSUMPTION

BEHAVIOR WITH CRITICAL SECTIONS

Multithreaded applications are different from multiple
single threaded applications because of thread interactions.
Locks and barriers are the major sources of thread in-
teractions. Waiting to enter critical sections (acquiringa
lock) and waiting for all the threads to finish (barrier) are
instances of thread interactions. In this section, we analyze

how critical sections and barriers affect performance and
power consumption behavior.

A. Background

Figure 4 shows a scenario of a critical section limited
application [17]. When an application is limited by a critical
section, most of the threads are in the idle state, waiting
to acquire a lock. A lock is implemented usingfutex in
Linux Kernel 2.6 [8]. Using futex, when a thread cannot
acquire a lock, the system puts the thread into the sleep
state. When the thread that had the lock, releases the lock, a
waiting (sleeping) thread is woken up. When a thread wakes
up, the scheduler sends the thread to an idle processor. In
our experiments, we set the number of threads equal to the
number of processors, so a thread is likely to be sent to the
same processor where it was executed before going to the
sleep state.

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

Thread 0

Thread 1

Thread 2

critical section

useful work

waiting to enter a critical section

Fig. 4. Critical section limited application example

B. Critical Section Length Effects

To evaluate the effect of critical sections, we design
a microbenchmark in which we can adjust the length of
critical sections. The application (globalSum) computes
the sum of the elements of a large array using multiple
threads. Each thread computes the sum of a contiguous
block of elements in the array. Each thread, after computing
the sum of a certain number of elements (determined by the
frequency of the critical section), enters a critical section to
update the global sum value. We vary the length of critical
sections from 10%, 15%, 20%, 50% to 75% of the total
execution time.4

Figure 5 shows the average power consumption with
critical sections of different lengths normalized to the aver-
age power of the 16 threadmatrix multiplication
workload for each machine configuration respectively . As
we increase the critical section length, the average power
consumption decreases because many threads are waiting in
the idle state. For example, the 75% critical section work-
load on the 16 @ 2GHz configuration consumes only 85%
of the 16 threadmatrix multiplication workload
at the same machine configuration.

Figure 6 shows the execution time and energy con-
sumption normalized to the 16 @ 1GHz configuration.
The execution time (lower is faster in the execution time
graph) shows a similar trend across all SMPs regardless
of critical section length (i.e., each SMP shows the same
speedup across all the critical section lengths). However,the

4The length of critical section is defined as the sum of the total execution
time spent in the critical section divided by the total sequential program
execution time. The time that spent in the critical section is also measured
using sequential version of the code. We vary the length by inserting extra
computations inside the critical section.

TABLE IV
AVERAGE POWER CONSUMPTION (UNIT W) OF MACHINE-II (X@Y GHZ MEANS X NUMBER OF Y GHZ PROCESSORS)

Machine configuration idle 1 thread 2 threads 4threads 8 threads 16 threads
16 @ 1 GHz (SMP) 480 485.5 488.5 494.5 506.5 531.5

8 @ 1 GHz 8 @ 2 GHz (AMP) 504 509.5 512.5 525 543.5 581
16 @ 1.2 GHz (SMP) 491 496 499.5 507.5 522 552

8 @ 1.2 GHz, 8 @ 2 GHz (AMP)510 515.5 519.5 531 533 592
16 @ 1.4 GHz (SMP) 501 507 510.5 520 537.5 571.5

8 @ 1.4 GHz, 8 @ 2 GHz (AMP)515 521 526.5 538.5 559.5 601
16 @ 1.7 GHz (SMP) 515 521 527.5 537.5 558.5 602.5

8 @ 1.7 GHz, 8 @ 2 GHz (AMP)515 529 533.5 546 570 615.5
16 @ 2 GHz (SMP) 522 536.5 541 555.5 579.5 630.5

0.8

0.85

0.9

0.95

1

10% CS 15% CS 20% CS 50% CS 75% CS

N
o

rm
al

iz
ed

 p
o

w
er

 c
o

n
su

m
p

ti
o

n

16 @ 1 GHz
16 @ 1.2 GHz
16 @ 1.4 GHz
16 @ 1.7 GHz
16 @ 2 GHz

Fig. 5. Average power vs. different critical section length(normalized to
the 16 threadmatrix multiplication workload)

performance of AMPs is very sensitive to the critical section
length. For example, the 8 @ 1.2 GHz, 8 @ 2 GHz machine
configuration in the 10% critical section length benchmark
is 37% slower than all-fast, but in the 75% critical section
length benchmark it is only 10% slower than all-fast. This
is generally true for all AMP configurations except for a
few cases. This is because processors spend more and more
time in the idle state. When we increase the frequency of
entering a critical section, this trend becomes clearer. We
will discuss this effect in the next section.

C. Critical Section Frequency Effects

Not only the length of critical sections, but also how often
a thread enters a critical section impacts performance and
energy consumption. In Figure 7, we vary the frequency of
the critical sections. X-Y means that X% critical section
length and Y frequency. The frequency of critical sections
is varied from f10000 to f10. f10 means that the applica-
tion enters a critical section approximately every million
instructions.5 As the results show, when the critical section
frequency is higher, the execution time differences between
half-half and all-fast are reduced. Consequently, half-half in
both the 75%-f10000 and 75%-f1000 cases consumes less
energy than all-fast.

The results show that if the majority of the execution
time is spent waiting to acquire locks, having some slow
processors does not affect overall performance significantly.
This could be because threads on fast processors execute
a critical section while threads on slow processors are
still doing computation before entering the critical section.

5f1000 enters a critical section 10 times frequently than f100. Sec-
tion IV-B uses f100 for the experiments.

When the threads on the fast processors exit the critical
section, the threads on the slow processors are ready to
enter the critical section. In this case, slow processors do
not increase the execution time significantly. However, all-
slow increases the execution time significantly because even
critical sections execute on slow processors all the time. If
a thread scheduler can intelligently schedule threads that
execute critical sections into fast processors, half-halfwould
perform as fast as all-fast, then it would result in energy
savings.

D. Barrier effects

Figure 8 shows the performance results when we vary the
number of barriers in theglobalSum program. Similar
to the results of critical section experiments, when the
number of barriers is small (1000), half-half performs as
slow as all-slow. This is because the total execution time
is dominated by the slowest thread. However, when the
number of barriers increases, half-half performs similar to
all-fast. When there are many barriers, the waiting time for
barriers becomes a significant portion of the overall execu-
tion time. Again, when threads are waiting for other threads,
having a few slow processors does not reduce performance
significantly. With 1000 barriers, half-half consumes 74%
more energy than all-fast, but with 1M barriers, half-half
consumes only 7.5% more energy. Note that, when the
number of barriers increases, the application also shows
unstable behavior because the operating system interference
increases [2].

0

50

100

150

200

250

300

350

400

450

1000 10000 100000 1000000

of barriers

E
x

e
cu

ti
o

n
 t

im
e

 (
se

c)

16 @ 1 GHz

8 @ 1 GHz, 8 @ 2 GHz

16 @ 2 GHz

Fig. 8. Barrier effects on performance

0.5

0.6

0.7

0.8

0.9

1

N
o

r
m

a
li

z
e

d
 e

x
e

c
u

t
io

n
 t

im
e

16 @ 1 GHz (SMP)

16 @ 1.2 GHz (SMP)

16 @ 1.4 GHz (SMP)

16 @ 1.7GHz (SMP)

0

0.1

0.2

0.3

0.4

0.5

10% 15% 20% 50% 75%

N
o

r
m

a
li

z
e

d
 e

x
e

c
u

t
io

n
 t

im
e

16 @ 2 GHz (SMP)

8 @ 1 GHz, 8 @ 2 GHz (AMP)

8 @ 1.2 GHz, 8 @ 2 GHz (AMP)

8 @ 1.4 GHz, 8 @ 2 GHz (AMP)

8 @ 1.7GHz, 8 @ 2 GHz (AMP)

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

li
ze

d
 e

n
e

rg
y

 c
o

n
su

m
p

ti
o

n

16 @ 1 GHz (SMP)

16 @ 1.2 GHz (SMP)

16 @ 1.4 GHz (SMP)

16 @ 1.7GHz (SMP)

0

0.1

0.2

0.3

0.4

0.5

10% 15% 20% 50% 75%

N
o

rm
a

li
ze

d
 e

n
e

rg
y

 c
o

n
su

m
p

ti
o

n

16 @ 2 GHz (SMP)

8 @ 1 GHz, 8 @ 2 GHz (AMP)

8 @ 1.2 GHz, 8 @ 2 GHz (AMP)

8 @ 1.4 GHz, 8 @ 2 GHz (AMP)

8 @ 1.7GHz, 8 @ 2 GHz (AMP)

Fig. 6. Critical Section length effects on performance and energy (left: execution time, right: energy consumption)

0.6

0.8

1

1.2

n
o

r
m

a
li

z
e

d
 e

x
e

c
u

t
io

n
 t

im
e

16 @ 1 GHz (SMP)

8 @ 1 GHz, 8 @ 2 GHz (AMP)

16 @ 2 GHz (SMP)

0

0.2

0.4

n
o

r
m

a
li

z
e

d
 e

x
e

c
u

t
io

n
 t

im
e

0.6

0.8

1

1.2

n
o

rm
a

li
ze

d
 e

n
e

rg
y

 c
o

n
su

m
p

ti
o

n

16 @ 1 GHz (SMP)

8 @ 1 GHz, 8 @ 2 GHz (AMP)

16 @ 2 GHz (SMP)

0

0.2

0.4

n
o

rm
a

li
ze

d
 e

n
e

rg
y

 c
o

n
su

m
p

ti
o

n

Fig. 7. Critical section frequency effects on performance and energy (left: execution time, right: energy consumption)

V. DYNAMIC SCHEDULING EFFECTS INOPENMP

To improve the performance of an AMP, Balakrishnan
et al. [2] suggested using a dynamic scheduling policy in
OpenMP [18] programs. OpenMP supports several types
of scheduling policies such asstatic, dynamic, and
guided. The default is static scheduling, which statically
divides the number of iterations among threads. In dy-
namic scheduling, each thread is assigned some number
of iterations (chunk sets this number) at the start of
the loop. After that, each thread requests more iterations
after it has completed the work already assigned to it [5].
Guided scheduling is similar to dynamic scheduling ex-
cept that dynamic scheduling uses a constant chunk size
while guided scheduling adjusts the chunk size at run-
time. Guided scheduling has the highest overhead since it
needs to calculate the chunk size at run-time. Dynamic has
medium overhead. Static has the lowest overhead since all
the scheduling is done statically.

TABLE V
PERFORMANCE AND ENERGY CONSUMPTION OFparallel-for

normalized exec. timenormalized energymachine configuration
static/dynamic static/dynamic

16 @ 1 GHz (SMP) 1.00 1.00
16 @ 1.2 GHz (SMP) 0.83 0.87
16 @ 1.4 GHz (SMP) 0.71 0.78
16 @ 1.7 GHz (SMP) 0.59 0.68
16 @ 2 GHz (SMP) 0.50 0.61

8 @ 1 GHz, 8 @ 2 GHz (AMP) 1.00/0.67 1.05/0.73
8 @ 1.2 GHz, 8 @ 2 GHz (AMP) 0.83/0.63 0.90/0.70
8 @ 1.4 GHz, 8 @ 2 GHz (AMP) 0.71/0.59 0.80/0.67
8 @ 1.7 GHz, 8 @ 2 GHz (AMP) 0.59/0.54 0.69/0.63

Table V shows the effects of static and dynamic schedul-
ing6 on theparallel-for application which computes

6We also evaluate the guided scheduling policy but due to the overhead
of the guided scheduling policy, it always increases the execution time
more than 2 times. Hence, we only report the results of the dynamic
scheduling policy.

the square of each element of a large array using the
OpenMPparallel for directive.

The performance of static scheduling is dominated by the
threads on slow processors in an AMP. However, dynamic
scheduling can alleviate load imbalance, so the performance
of the AMP is between all-slow and all-fast. Therefore,
dynamic scheduling can reduce energy consumption signifi-
cantly compared to static scheduling. In case of 8 @ 1.7GHz
and 8 @ 2GHz, dynamic scheduling consumes almost the
same amount of energy as 16 @ 2GHz (all-fast).

Among our evaluated PARSEC benchmarks, only
freqmine can utilize dynamic scheduling. Dynamic
scheduling improves the execution time offreqmine by
13% and reduces energy consumption by 12% compared
to static scheduling in half-half. However, compared to all-
fast, half-half still consumes 13% more energy. The main
reason is that not all parallel code infreqmine can
utilize the benefit of the dynamic scheduling (only loops
can use dynamic scheduling). Hence, when an application
can support dynamic scheduling, an AMP should utilize it,
but we need other mechanisms to make AMPs perform as
well as SMPs.

VI. A N EW JOB SCHEDULING POLICY FOR

ASYMMETRIC WORKLOADS

In the previous sections, all benchmarks have symmetric
workloads (i.e., all child threads have similar amounts of
work).7 When an application has asymmetric workloads,
the performance of the application on an AMP is very
dependent on the operating system’s job scheduling pol-
icy. To evaluate the performance and energy consumption
behavior with asymmetric workloads, we modify the Linux

7We measured the dynamic number of instructions for each thread
in all applications. Most benchmarks have almost the same number of
instructions across all child threads.

kernel scheduler to implement a new, simple, but effective
scheduling algorithm,a longest job to a fast processor
first (LJFPF). The basic algorithm of LJFPF is that when
a thread has a longer task than others (the application
provides the relative task length information), the scheduler
sends the thread to a fast processor. In this experiment, we
modify the applications so that they send the relative task
length information to the kernel using a system call before
a thread is created. It is almost impossible to predict the
exact execution time at compile time. Hence, we estimate
the length of a task based on how many iterations are
assigned to each thread. Since, the division of work for each
thread is done statically, the application knows the number
of iterations for each thread at compile time. Note that the
total number of iterations is all determined at compile time
in all of the evaluated applications in this section. We use
machine-I and all applications have 8 threads.

A. Matrix Multiplication

Figure 9 compares the performance of thematrix
multiplication application in three different machine
configurations (all-fast-I (8 @ 1.87GHz), all-slow-I (8 @
1.6GHz), and half-half-I (4 @ 1.87GHz, 4 @ 1.6GHz)).
LJFPF and round robin (RR) scheduling polices are used
for half-half-I. All-fast-I and all-slow-I use RR.

The matrix multiplication application com-
putes the product matrix of two 2400X2400 matrices by
dividing the computation among 8 threads. X-Y means 4
threads compute X rows each of the product matrix and the
other 4 threads compute Y rows each of the product matrix.

There is apthread join function call at the end of the
matrix multiplication application. Hence, when
the workload is symmetric (300-300), the performance of
half-half-I is slow-limited. However, when the application
has strongly asymmetric characteristics (340-260, 350-250,
360-240), half-half-I with LJFPF actually performs as well
as all-fast-I. In this case, the application is mainly limited
by longer task threads. Longer task threads execute on fast
processors on both all-fast-I and half-half-I, so all-fast-I and
half-half-I show the same performance. Since, half-half-I
consumes less power than all-fast-I, half-half-I consumes
the least amount of energy among all three configurations
for the 340-260, 350-250 and 360-240 cases. Therefore, we
can conclude that for a strongly asymmetric workload, an
AMP with LJFPF can save energy even compared to an
SMP with fast processors.

B. ITK

To test a real application with an asymmetric workload,
we use a modified medical image processing application
(MultiRegistration) from ITK [16]. The main parallel loop
in the ITK benchmark has 50 iterations and the number 50
is statically determined from the algorithm. Since 50 is not
a multiple of 8, ITK is a naturally asymmetric workload.
Each thread executes 7, 7, 7, 7, 6, 6, 5, and 5 iterations

0.9

0.95

1

1.05

1.1

1.15

1.2

300-
300

310-
290

320-
280

330-
270

340-
260

350-
250

360-
240

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

All-fast-I
Half-half-I(LJFPF)
Half-half-I (RR)
All-slow-I

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

300-
300

310-
290

320-
280

330-
270

340-
260

350-
250

360-
240

N
o

rm
al

iz
ed

 e
n

er
g

y
co

n
su

m
p

ti
o

n

All-fast-I
Half-haf-I (LJFPF)
Half-half-I (RR)
All-slow-I

Fig. 9. The performance and energy consumption behavior in thematrix
multiplication application with the LJFPF scheduling policy (top:
execution time, bottom: energy consumption)

of the loop respectively. This division is done at compile
time. Our scheduling algorithm (LJFPF), at run-time, sends
all 7-iteration task threads fast processors and 6 and 5-
iteration task threads to slow processors. Figure 10 shows
the normalized execution time and energy consumption (all
the data is normalized to all-fast-I). The results show that
half-half-I with LJFPF performs as well as all-fast-I, and
it also reduces energy consumption by 3.4% compared
to all-fast-I. Hence, even in a real application like ITK,
when the workload is asymmetric, using an AMP with our
new scheduling policy (LJFPF) results in the best energy
savings.

VII. RELATED WORK

Many researchers have shown that asymmet-
ric/heterogeneous multi-core/multiprocessor architectures
can save power and energy [3], [13], [1], [15]. Since
the focus of our work is evaluation of the behavior of
multithreaded applications in a real system, we only discuss
previous work that also use real heterogeneous/asymmetric
systems.

Balakrishnan et al. [2] studied the performance behavior
of multithreaded applications in an AMP using real systems.
They also observed similar performance behavior on an
AMP as us. We extend their work in two directions. First,
we evaluate how thread interactions can affect performance
and power in more detail. Second, we measure the system
power and energy consumption, not only performance.

Annavaram et al. [1] studied energy per instruction (EPI)
throttling ideas in AMPs. They measured basic power and

0.92

0.94

0.96

0.98

1

1.02

1.04

A
ll-

fa
st

-I

H
al

f-
ha

lf
(L

JF
C

F
)

H
al

f-
ha

lf
(R

R
)

A
ll-

sl
ow

-
IN

o
rm

al
iz

ed
 e

xe
cu

ti
o

n
 t

im
e

0.92

0.94

0.96

0.98

1

1.02

1.04

A
ll-

fa
st

-I

H
al

f-
ha

lf
(L

JF
C

F
)

H
al

f-
ha

lf
(R

R
)

A
ll-

sl
ow

-
I

N
o

rm
al

iz
ed

 e
n

er
g

y
co

n
su

m
p

ti
o

n

Fig. 10. The performance and energy consumption behavior ofthe ITK
benchmark (top: execution time, bottom: energy)

performance data in real systems and used software simu-
lations to predict the benefit of their throttling mechanism.
Their work focused on dynamic voltage/frequency scaling
mechanisms. However, our work focuses on understanding
the effects of thread interactions in an AMP.

Li et al. [14] also measured the performance of AMPs
by changing the clock frequencies. However, their work
focused on proposing thread migration polices in AMPs,
rather than understanding the performance/power behavior
in AMPs.

Both Ge et al. [10] and Grant and Afashi [11] also
used a real system to measure performance and power
consumption behavior in AMPs. Both works presented only
the trade-offs between power and energy consumption in
multithreaded scientific applications whereas we evaluate
thread interaction effects thoroughly.

VIII. C ONCLUSION

In this work, we evaluate the performance and energy
consumption behavior of desktop-oriented multithreaded
applications in AMPs. We also evaluate the effects of criti-
cal sections and barriers thoroughly to understand thread in-
teraction behavior on AMPs. We use real 8 and 16 processor
systems to measure performance and energy consumption.

The conclusions of our experiments are that (1) when
the workload is symmetric, it is usually better to use an
SMP with fast processors than an AMP to reduce both the
execution time and the energy consumption, (2) when an
application has frequent and long critical sections, usingan
AMP could be better than using all fast processors to save
energy, and (3) when the workload is highly asymmetric,
using an AMP provides the lowest energy consumption.

We also propose and evaluate a new, simple scheduling
algorithm for an AMP. The scheduling algorithm simply
sends the longest thread to a fast processor. Using knowl-
edge of the application and processor characteristics, this
simple scheduling algorithm can reduce energy consump-
tion by up to 4% on an AMP compared to the best energy
efficient SMP configuration.

In future work, we will focus on predicting application
characteristics (e.g., the length of a task) without requir-
ing information from the programmer and designing task
scheduling algorithms that use the predicted information for
an AMP to reduce energy consumption.

ACKNOWLEDGMENTS

We thank Min Lee and Sushma Rao for helping us understand
the Linux Kernel. We also thank Richard Vuduc and Onur Mutlu
for insightful discussions and Jaekyu Lee and Sunpyo Hong for
initial settings for the benchmarks. We thank Aemen Lodhi, Sung-
bae Kim and the anonymous reviewers for their comments and
suggestions. This research is supported by gifts from Microsoft
Research.

REFERENCES

[1] M. Annavaram, E. Grochowski, and J. Shen, “Mitigating Amdahl’s
Law through EPI throttling,” inISCA-32, 2005.

[2] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai, “The impact
of performance asymmetry in emerging multicore architectures,” in
ISCA-32, 2005.

[3] A. Baniasadi and A. Moshovos, “Asymmetric-frequency clustering: a
power-aware back-end for high-performance processors,” in ISLPED,
2002.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
benchmark suite: Characterization and architectural implications,”
Princeton University, Tech. Rep. TR-811-08, 2008.

[5] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. Mc-
Donald, Parallel Programming in OpenMP. Morgan Kaufmann,
2000.

[6] C.-K. L. et al., “Pin: Building customized program analysis tools
with dynamic instrumentation,” inPLDI, 2005.

[7] “Extech 380801,” http://www.extech.com/instrument/products/310
399/380801.html, Extech Instruments Corporation.

[8] H. Franke, R. Russell, and M. Kirkwood, “Fuss, futexes and fur-
wocks: Fast userlevel locking in linux,” inOttawa Linux Symposium,
2002.

[9] GCC-4.0, “GNU compiler collection,” http://gcc.gnu.org/.
[10] R. Ge, X. Feng, and K. W. Cameron, “Improvement of power-

performance efficiency for high-end computing,” inIPDPS’05, 2005.
[11] R. Grant and A. Afsahi, “Power-performance efficiency of asym-

metric multiprocessors for multi-threaded scientific applications,” in
IPDPS, 2006.

[12] “Enhanced Intel SpeedStep Technology for the Intel Pentium M
Processor–White Paper,” Intel, March 2004.

[13] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen,
“Single-ISA heterogeneous multi-core architectures: Thepotential
for processor power reduction,” inMICRO-36, 2003.

[14] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn, “Efficient
operating system scheduling for performance-asymmetric multi-core
architecture,” inIn Proceedings of Supercomputing 07, 2007.

[15] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, and E. Ayguad,
“Performance, power efficiency and scalability of asymmetric cluster
chip multiprocessors,” vol. 5, no. 1, 2006.

[16] National Library, “Medicine insight segmentation andregistration
toolkit (ITK),” http://www.itk.org/.

[17] M. A. Suleman, M. K. Qureshi, and Y. N. Patt, “Feedback driven
threading: Power-efficient and high-performance execution of multi-
threaded workloads on cmps,” inASPLOS-XIII, 2008.

[18] “OpenMP,” http://openmp.org/wp/, The OpenMP Architecture Re-
view Board.

