Understanding Performance, Power and Energy
Behavior in Asymmetric Multiprocessors

Nagesh B Lakshminarayana Hyesoon Kim
School of Computer Science
Georgia Institute of Technology
{nageshbl, hyesodi@cc.gatech.edu

Abstract—Multiprocessor architectures are becoming pop- actions better. Furthermore, we modify the Linux scheduler
ular in both desktop and mobile processors. Among multipro- to evaluate asymmetry aware scheduling algorithms on an
cessor architectures, asymmetric architectures show proise aAnpp
in saving energy and power. However, the performance and)

energy consumption behavior of asymmetric multiprocessar Our experiments yiel_d three _major_ conclusions. First,
with desktop-oriented multithreaded applications has notbeen when threads do not interact intensively and when all
studied widely. threads have similar amounts of work, a symmetric mul-

t'oLn';hi:sStrl;?%/’e\t,:i rgr?c?ssurﬁqﬁqeerfgémn?nlgzggis?sog\rlgr ‘;Or:‘;“rgng’ tiprocessor (SMP) with fast processors (i.e., the highest
ion in asyl i y ic multi usi

8 and 16 processor systems to understand the relationships gOCk gequﬁncy)h Cor&sgmes the Ie_ast amount OSfNTSerng
between thread interactions and performance/power behaor. econd, when thread interactions increase, an wit
We find that when the workload is asymmetric, using an Slow processors or an AMP could provide the best energy
asymmetric multiprocessor can save energy, but for most of savings. Third, when the workload is strongly asymmetric
thg symmetric workloads, using a symmetric multiprocessor (i.e., each thread in the workload has different amount
(with the highest clock frequency) consumes less energy. of work), an AMP consumes the least amount of energy.
Hence, depending on the thread characteristics in mul-

_ _ _ tithreaded applications, a different machine configuratio
Asymmetric multiprocessor architectures have been preyould provide the best energy savings.

posed to be power efficient multiprocessor architectur]as: [3 The contributions of our paper are

[13], [1], [15]. Research has shown that these architec- o)

tures provide power-performance effective platforms for 1) To our knowledge, this is the first work that evaluates
both throughput-oriented applications and applicatidra t performange gnd the overall system power consump-
would benefit from having high performance processors. tion behavior in an AMP for multithreaded desktop

Unfortunately, the performance and energy behavior of applications. _ _ _

multithreaded applications in asymmetric architecturas h 2) We thoroughly evaluate thread interaction behavior to
not been studied widely. Balakrishnan et al. [2] evaluated Study performance and energy trade-offs in an AMP.
the performance of applications in an asymmetric multipro- 3) We propose a new, simple, but effective job schedul-

I. INTRODUCTION

cessor (AMP). However, in their work, they only showed ing algorithm for an AMP and show that it provides
performance effects in an AMP. Grant and Afsahi [11] the best energy savings for asymmetric workloads.
studied power-performance efficiency but they only focused

on scientific applications. . METHODOLOGY

In this study, we evaluate the performance and power con-
sumption behavior of multithrea_ded applica_tions in.an AIV.IPA' Evaluation System
We emphasize on understanding thread interactions since
many modern applications have many locks and barriers. We use two systems as shown in Table | to measure
To understand the overall power consumption behavior, weerformance and energy consumptfopplications run-
measure the power consumption of two systems (8 procesing on machine-I have 8 threads and applications run-
sors and 16 processors). We measure the power consumng on machine-Il have 16 threads. We uSpeedStep
tion of whole systems rather than the power consumptiotechnology [12] withcpufreq governors to emulate
of only processors, since performance and energy trade-ofin AMP. Table Il describes three machine configurations.
should consider the entire system including DRAM memoryachine-I runs RHEL 5 Desktop (Linux Kernel 2.6.18),
and disk. while Machine-Il runs RHEL 4 WS (Linux Kernel 2.6.9).
We use PARSEC [4], the recently released multithreaded
benchmark suite for desktops, for our evaluations. We alsO1g;jnce machine-I and machine-Il show similar trends, we iyaieport
design several microbenchmarks to understand thread inté#sults from machine-1l except in Section VI.

TABLE |

THE SYSTEM CONFIGURATIONS Figure 2 shows the performance of the PARSEC bench-
(IIMachine-l 2 sor::ket 1.87 GHz Quad-core Intel >(<jeon; 43 marks in the three machine configurations. The results show
Dell Precision 490) 4MB L2-cache, 8GB RAM, 40GB HDD, Quadro NVS 285 : .
VachTel 7 socket 2 GHz Quad-core AMD Opteron 8350; that on average half-half and aII—sI_ow increase the exenuti
2MB L3-cache, 32GB RAM, 1TB HDD, Tesla C-870 | time by 43% and by 61% respectively compared to all-fast.

Half-half performs more similarly to all-slow than to akst

TABLE I due to several slow-limited benchmarks. However, half-hal
THREE DIFFERENT MACHINE CONFIGURATIONS FOR MACHINAHI performs similarly to all-fast for some applications sueh a
All-fast All 16 processors are running at 2GHz

All-slow All 16 processors are running at 1GHz canneal and dedup'

Half-half | 8 processors are running at 2GHz; 8 processors are runnih@ldi

350 o All-fast
300 @ Half-half]

250 B All-slow
200

ﬂﬂ ﬂhm[l ol

B. Benchmarks

We use PARSEC [4], and an ITK [16] application
(a medical image processing application) for our eval-

Execution time (sec)

uations. We use the native input set for the PARSEC S &Q@\&,@‘&&Q &
. . . Y N > O
benchmarks. We also design microbenchmarist r i x &F F S IS
)

mul tiplication, gl obal Sumandparall el -for
applications to understand thread behavior more accyratel Fig. 2. Experiments in the three machine configurations (PER)
The PARSEC and ITK benchmarks are compiled with gcc
4.1.2 [9] with- O3 -f pref et ch-1oop-arrays flags.

Table Ill summarizes the categorization of benchmarks
and also shows the number of synchronization primitives
C. Power Measurement in the PARSEC benchmarks. The data is collected using

We use Extech 380801 AC/DC Power Analyzer [7] toPin [6]. Note that the experiments are done with the 8 thread

measure the overall system power consumption. The pOW%Qnﬂguranon. Al num_ber_s are tqt_als across all thre‘.”‘ds-
mbers for synchronization primitives also include prim-

data is sent to a datalog machine using RS232 every GO,) o
itives in system libraries.

seconds. . . -
bl ackschol es is the typical slow-limited benchmark.
I1l. PERFORMANCE ANDENERGY CONSUMPTION It has only one barriér at the end of the application.
BEHAVIOR OF PARSECBENCHMARKS Hence, the overall performance is limited by the slowest

We evaluate the PARSEC benchmarks on the thrdfréad.facesimand swaptions are also limited by
machine configurations. Based on the results, we classiRTers- Applications that have a large number of locks
the benchmarks into three categoriesiow-limited (the ©OF Parriers (such asl ui dani mat e and bodyt r ack)
performance of half-half is the same as that of all-slow)SNOW unstable behavior. The remaining applications show
middle-perf(the performance of half-half is between thatMiddle-perf behavior.
of all-slow and all-fast), andinstable(the performance of TABLE Il
an application varies significantly across runs). CHARACTERISTICS OF THEPARSEC BENCHMARKS

; - N . Application Locks Barriers| Cond. variable3 AMP performance category
Figure 1 explains why there are slow-limited, middle-perfoiackscholes 39 8 0 slow-imited
and unstable applications. In case (a), there is a barrtheat | bodytrack || 6824702 | 111160] 32361 unstable
. canneal 34 0 0 middle-perf
end of the program. Therefore, the overall performance ¢f—gequp 100026551 0 17 middle-perf
the application is dominated by the slowest thread. Hence, facesim 1422579 | 0O 330521 slow-limited
h licati il b | limited. If tial fulidanimate|| 11534073084 31998 0 unstable
such an application will be slow-limited. sequential—fzgmine 7 5 5 middle-perf
sections of the code dominate the overall execution timetreamcluste 1379 | 633174 1036 middle-pert
; ; inati Iy swaptions 39 0 0 slow-limited
like in case (b), the performance of the application would—>= 67653 5 7593 i

be between the performance of all-fast and all-slow (i.e-;
middle-perf). Case (c) explains the unstable case. The
application has several fork-join sections. After threhdge A. Power Consumption Measurements

joined, depending on where the single thread executes, thergpie |v summarizes the average power consumption of
performance varies. This causes unstable behavior. different number of threads for each machine configuration.
We use thematri x nul tiplication applicatiod to

measure the average power. A machine in idle state con-
sumes about 10-20% less power than a machine that

barrier | barrier &=

O

case () case (b) case (c) threads encounter the same barrier at run-time.
i o 3This application computes the product of two 2400X2400 ivesr by
Fig. 1. Fork-join cases dividing the computation among n number of threads.

2|n Table I, bl ackschol es has 8 barriers. This is because all 8

executes 16 threads. All-slow (16 @ 1 GHz) with 16 threadsow critical sections and barriers affect performance and
consumes 15.7% less power than all-fast (16 @ 2 GHz) withower consumption behavior.
16 threads.

In this study, we focus on energy consumption rathef- Background
than power consumption itself. The amount of energy Figure 4 shows a scenario of a critical section limited
consumed is proportional to both execution time and poweapplication [17]. When an application is limited by a critic
Hence, even though low frequency machine configuratiorsection, most of the threads are in the idle state, waiting
consume less power than high frequency machine configs acquire a lock. A lock is implemented usifgt ex in
urations, if they increase the execution time significanthLinux Kernel 2.6 [8]. Using futex, when a thread cannot
they would not result in energy savings. For example, iicquire a lock, the system puts the thread into the sleep
all-slow (with 16 threads) increases execution time by morstate. When the thread that had the lock, releases the lock, a
than 15.7% in comparison with all-fast (with 16 threads)waiting (sleeping) thread is woken up. When a thread wakes
it would consume more energy than all-fast. Note that thiap, the scheduler sends the thread to an idle processor. In

15.7% number is dependent on workloads. our experiments, we set the number of threads equal to the
number of processors, so a thread is likely to be sent to the
200 T — same processor where it was executed before going to the
160 ali-ha
g %zﬁ B Allslow sleep state.
& 2 'E | —— ‘
5 & meado (o))) critical section
s 9 3[meass [] P) () usetuvon
s ‘ ﬂ‘i—l‘lt e BR messz (S y waing o etr a el secto
2 & o8 g IR & » > .@f ©
S5 7,&"&-\” QS&Q&\"Q & q,é‘z%b\o" &*’QQ & Fig. 4. Critical section limited application example
\,08_5 v°b < &b,;\ @ S@ & &
N AN &

Fig. 3. Energy consumption behavior in three machine cordiipns B Critical Section Length Effects
(PARSEC) To evaluate the effect of critical sections, we design
Figure 3 shows the energy consumption behavior ia microbenchmark in which we can adjust the length of
three different machine configurations. On average, albritical sections. The applicatiorgl obal Sunm) computes
fast shows the best energy consumption behavior. Half-hdlie sum of the elements of a large array using multiple
consumes 30% more energy and all-slow consumes 39.9%eads. Each thread computes the sum of a contiguous
more energy compared to all-fast. Since the performand#ock of elements in the array. Each thread, after computing
slowdown is more than the benefit of power savings, botthe sum of a certain number of elements (determined by the
half-half and all-slow do not results in energy savingsfrequency of the critical section), enters a critical setio
Only st r eantl ust er shows opposite behavior, whereinupdate the global sum value. We vary the length of critical
all-slow consumes the least amount of energy. The mosections from 10%, 15%, 20%, 50% to 75% of the total
distinguishable characteristic sft r eancl ust er is that execution time.
it has the most number of barriers (more than 600K barriers) Figure 5 shows the average power consumption with
among all the evaluated benchmarks. We suspect that tbetical sections of different lengths normalized to therlv
number of barriers also plays an important factor, whiclage power of the 16 threadat ri x mul ti plication
is why we evaluate the effect of barriers more carefullyworkload for each machine configuration respectively . As
in the next section. Fodedup, all-fast and half-half we increase the critical section length, the average power
consume similar amounts of energy because the differencegnsumption decreases because many threads are waiting in
in execution times on the three machine configurations atbe idle state. For example, the 75% critical section work-
small. From the results, we can conclude that on averadead on the 16 @ 2GHz configuration consumes only 85%
using an SMP with fast processors saves energy except fair the 16 threadratri x mul tiplicati on workload
a few applications. We will investigate more on why thereat the same machine configuration.
are some applications that are exceptions in the following Figure 6 shows the execution time and energy con-
sections. sumption normalized to the 16 @ 1GHz configuration.
The execution time (lower is faster in the execution time
graph) shows a similar trend across all SMPs regardless
of critical section length (i.e., each SMP shows the same
Multithreaded applications are different from multiplespeedup across all the critical section lengths). Howeker,
single threaded applications because of thread interactio
Locks and barriers are the major sources of thread in-4The length of critical section is defined as the sum of the &tacution
teractions. Waiting to enter critical sections (acquiriag time spent in the critical section divided by the total setis program

lock d iti f Il the th ds to finish (barri execution time. The time that spent in the critical sect®also measured
oc) and waitling for a € threads to 1nis (amer) areusing sequential version of the code. We vary the length bgriing extra

instances of thread interactions. In this section, we a®aly computations inside the critical section.

IV. PERFORMANCE ANDENERGY CONSUMPTION
BEHAVIOR WITH CRITICAL SECTIONS

TABLE IV
AVERAGE POWER CONSUMPTION (UNIT W) OF MACHINE-II (X@Y GHz MEANS X NUMBER OF Y GHZ PROCESSOR}

| Machine configuration [[idle]1 thread 2 threadg 4threadq 8 threads 16 thread$
16 @ 1 GHz (SMP) 480 485.5 | 4885 | 4945 | 506.5 531.5
8 @ 1 GHz 8 @ 2 GHz (AMP)||504| 509.5 | 512.5 525 543.5 581
16 @ 1.2 GHz (SMP) 491 496 499.5 | 507.5 522 552
8 @ 1.2 GHz, 8 @ 2 GHz (AMR)510{ 515.5 | 519.5 531 533 592

16 @ 1.4 GHz (SMP) 501 507 510.5 520 537.5 571.5
8 @ 1.4 GHz, 8 @ 2 GHz (AMH)515] 521 526.5 | 538.5 | 559.5 601
16 @ 1.7 GHz (SMP) 515/ 521 5275 | 537.5 | 5585 602.5
8 @ 1.7 GHz, 8 @ 2 GHz (AMH)515| 529 5335 546 570 615.5
16 @ 2 GHz (SMP) 522| 536.5 541 5555 | 5795 630.5

When the threads on the fast processors exit the critical
section, the threads on the slow processors are ready to
enter the critical section. In this case, slow processors do
not increase the execution time significantly. However, all
slow increases the execution time significantly because eve
critical sections execute on slow processors all the tirhe. |
a thread scheduler can intelligently schedule threads that

0.9

0.8

1owcs iswcs 2mcs smcs swcs execute critical sections into fast processors, half-walild
Fig. 5. Average power vs. different critical section lengtiormalized to ~ perform as fast as all-fast, then it would result in energy
the 16 threadmatri x mul ti pli cati on workload) savings.

performance of AMPs is very sensitive to the critical sattio
length. For example, the 8 @ 1.2 GHz, 8 @ 2 GHz maching ggyrier effects
configuration in the 10% critical section length benchmark
is 37% slower than all-fast, but in the 75% critical section Figure 8 shows the performance results when we vary the
length benchmark it is only 10% slower than all-fast. Thissumber of barriers in thel obal Sum program. Similar
is generally true for all AMP configurations except for ato the results of critical section experiments, when the
few cases. This is because processors spend more and Mmlighber of barriers is small (1000), half-half performs as
time in the idle state. When we increase the frequency &fiow as all-slow. This is because the total execution time
entering a critical section, this trend becomes clearer. We dominated by the slowest thread. However, when the
will discuss this effect in the next section. number of barriers increases, half-half performs simitar t
all-fast. When there are many barriers, the waiting time for
barriers becomes a significant portion of the overall execu-
Not only the length of critical sections, but also how oftertion time. Again, when threads are waiting for other threads
a thread enters a critical section impacts performance am@ving a few slow processors does not reduce performance
energy consumption. In Figure 7, we vary the frequency ddignificantly. With 1000 barriers, half-half consumes 74%
the critical sections. X-Y means that X% critical sectionrmore energy than all-fast, but with 1M barriers, half-half
length and Y frequency. The frequency of critical sectiongonsumes only 7.5% more energy. Note that, when the
is varied from f10000 to f10. f10 means that the applicanumber of barriers increases, the application also shows
tion enters a critical section approximately every millionunstable behavior because the operating system intecieren
instructions? As the results show, when the critical sectionincreases [2].
frequency is higher, the execution time differences betwee
half-half and all-fast are reduced. Consequently, halffiha
both the 75%-f10000 and 75%-f1000 cases consumes less
energy than all-fast. Diopzcn
The results show that if the majority of the execution
time is spent waiting to acquire locks, having some slow
processors does not affect overall performance signifigant
This could be because threads on fast processors execute
a critical section while threads on slow processors are »
still doing computation before entering the critical senti

C. Critical Section Frequency Effects

2 20

51000 enters a critical section 10 times frequently thanOfl8ec- Fig. 8. Barrier effects on performance

tion IV-B uses f100 for the experiments.

16 @ 1 GHz (SMP) 0s 16 @ 1 GHz (SMP)

038 16 @ 1.2 GHz (SMP)

o

16 @ 1.2 GHz (SMP)

o o

W16 @ 1.4 GHz (SMP) 0.7 W16 @ 1.4 GHz (SMP)
06
05
04
03 08 @ 1GHz, 8 @ 2 GHz (AMP)

°
S

W16 @ 1.7GHz (SMP) W16 @ 1.7GHz (SMP)

W16 @ 2 GHz (SMP) 16 @ 2 GHz (SMP)

°
2

08 @ 1GHz, 8 @ 2 GHz (AMP)

°

B8 @12 GHz, 8 @ 2 GHz (AMP)

°

02 W8 @12GHz, 8 @ 2 GHz (AMP)
01

Normalized execution time
o
Normalized energy consumption

°

[18 @ 1.4 GHz, 8 @ 2 GHz (AMP) [18 @ 1.4 GHz, 8 @ 2 GHz (AMP)

°
°

8@ 1.7GHz, 8 @ 2 GHz (AMP) 8@ 1.7GHz, 8 @ 2 GHz (AMP)
10% 15% 20% 50% 75% 10% 15% 20% 50% 75%

Fig. 6. Critical Section length effects on performance andrgy (left: execution time, right: energy consumption)
W16 @ 1 GHz (SMP) W16 @ 1 GHz (SMP)
22— m8@ 1GHz, 8 @ 2 GHz (AMP) P e — 08 @ 1GHz, 8 @ 2 GHz (AMP)
g B16 @ 2 GHz (SMP) g N 516 @ 2 GHz (SMP)
oL RN MENEEEN 1
g 0.6 ; 06 [
E 04 g 044
T 02 E 02
2 o E o
S O O O & & O s ® 2 S & & & SR
. & \;’”@ q\"'\@ No?\y ,06)6 V\J‘@ & ég\y &@“ \ & q\&\@ 8 2 . >°°@ ¢ K w\@“ g\? 0@0 r & s“"& o K@Q@e ,0@“ o\d& g\y
o A LM & 8 o g PO @ & 80 A A

Fig. 7. Critical section frequency effects on performanod anergy (left: execution time, right: energy consumption

V. DYNAMIC SCHEDULING EFFECTS INOPENMP the square of each element of a large array using the

To improve the performance of an AMP, Balakrishnar?P€nMPparallel for directiye. _ .
et al. [2] suggested using a dynamic scheduling policy in The performance of static scheduling is dominated by the

OpenMP [18] programs. OpenMP supports several typ(j’;greads_on slow processors in an AMP. However, dynamic
of scheduling policies such ast ati ¢, dynani ¢, and scheduling can alleviate load imbalance, so the performanc

gui ded. The default is static scheduling, which staticallyOlc the ,AMP is petween all-slow and all-fast. Therefprq,_
divides the number of iterations among threads. In dy(jynamlc scheduling can reduce energy consumption signifi-

namic scheduling, each thread is assigned some numif@ntly compared to static scheduling. In case of 8 @ 1.7GHz
of iterations €hunk sets this number) at the start of2Nd 8 @ 2GHz, dynamic scheduling consumes almost the
the loop. After that, each thread requests more iteratiorMe amount of energy as 16 @ 2GHz (all-fast).

after it has completed the work already assigned to it [5], AMong our evaluated PARSEC benchmarks, —only
Guided scheduling is similar to dynamic scheduling ex! €dm ne can utilize dynamic scheduling. Dynamic
cept that dynamic scheduling uses a constant chunk si3&neduling improves the execution timefafeqmi ne by
while guided scheduling adjusts the chunk size at runtS% @nd reduces energy consumption by 12% compared
time. Guided scheduling has the highest overhead since!® Static scheduling in half-half. However, compared te all
needs to calculate the chunk size at run-time. Dynamic h&&St: half-half still consumes 13% more energy. The main

medium overhead. Static has the lowest overhead since HgSon is that not all parallel code inreqmi ne can
the scheduling is done statically. utilize the benefit of the dynamic scheduling (only loops

can use dynamic scheduling). Hence, when an application
TABLE V : : i
PERFORMANCE AND ENERGY CONSUMPTION Opar al | el - for can support dynamic sched_ullng, an AMP should utilize it,
[normalized exec. timpnormalized energy DUt we need other mechanisms to make AMPs perform as

machine configuration

| static/dynamic | static/dynamic | well as SMPs.

16 @ 1 GHz (SMP) 1.00 1.00

e gmg; 05 o8 VI. A NEw JOB SCHEDULING PoLicY FOR

16 @ 1.7 GHz (SMP) 0.59 0.68 ASYMMETRIC WORKLOADS

16 @ 2 GHz (SMP) 0.50 0.61)) _
8@ 1 GHz, 8 @ 2 GHz (AMP) 1.00/0.67 1.05/0.73 In the previous sections, all benchmarks have symmetric
8 @ 1.2 GHz, 8 @ 2 GHz (AMP 0.83/0.63 0.90/0.70 H H H
8 @ LA GHs- 8 @ 7 GFs (AVH e 550067 workl07ads (i.e., all chll_d threads have S|m|Ia_r amounts of
8@ 1.7 GHz, 8 @ 2 GHz (AMP 0.59/0.54 0.69/0.63 work).” When an application has asymmetric workloads,

the performance of the application on an AMP is very

Table V shows the effects of static and dynamic schedufléPendent on the operating system’s job scheduling pol-

ing® on thepar al | el - f or application which computes Y- To evaluate the performance and energy consumption
behavior with asymmetric workloads, we modify the Linux

6We also evaluate the guided scheduling policy but due to teehead
of the guided scheduling policy, it always increases theceten time "We measured the dynamic number of instructions for eachathre
more than 2 times. Hence, we only report the results of theadyo in all applications. Most benchmarks have almost the sanmbeu of
scheduling policy. instructions across all child threads.

kernel scheduler to implement a new, simple, but effective 12 AT
Half-half-I(LIJFPF)

scheduling algorithma longest job to a fast processor as] st
first (LJFPF). The basic algorithm of LIFPF is that when q
a thread has a longer task than others (the application 111
provides the relative task length information), the schedu
sends the thread to a fast processor. In this experiment, we
modify the applications so that they send the relative task
length information to the kernel using a system call before
a thread is created. It is almost impossible to predict the NN
exact execution time at compile time. Hence, we estimate T a0 a0 30
the length of a task based on how many iterations are oo

assigned to each thread. Since, the division of work for each 12

1.05 A

Normalized execution time

0.95

AT
ARIIIMIMINMINNNNNY

w
@
?®
w
K
S

350- 360-
250 240

N
N
=]
N
o
o

DAl-fast-|

thread is done statically, the application knows the number is] vt (4R

g All-slow-I

of iterations for each thread at compile time. Note that the
total number of iterations is all determined at compile time
in all of the evaluated applications in this section. We use
machine-I and all applications have 8 threads.

Normalized energy consumption

A. Matrix Multiplication

[arrzzzzrz7zs77777277770777227777)

Figure 9 compares the performance of thatri x
mul ti plication application in three different machine
configurations (all-fast-l (8 @ 1.87GHz), all-slow-I (8 @
1.6GHz), and half-half-l (4 @ 1.87GHz, 4 @ 1.6GHz)).Fig. 9. The performance and energy consumption behavidreint r i x
LJFPF and round robin (RR) scheduling polices are us@éédti%'n'tﬁﬁé" ggttgﬁﬁl'ecﬁgfgr;Vggzsﬂ‘;pﬂiﬁF scheduling policy (top:
for half-half-I. All-fast-1 and all-slow-I use RR.

The matrix nultiplication application com- of the loop respectively. This division is done at compile
putes the product matrix of two 2400X2400 matrices b¥ime. Our scheduling algorithm (LJFPF), at run-time, sends
dividing the computation among 8 threads. X-Y means 4| 7-iteration task threads fast processors and 6 and 5-
threads compute X rows each of the product matrix and thesration task threads to slow processors. Figure 10 shows
other 4 threads compute Y rows each of the product matrihe normalized execution time and energy consumption (all

There is apthread joinfunction call at the end of the the data is normalized to all-fast-1). The results show that
matrix nultiplication application. Hence, when najf-half-l with LJFPF performs as well as all-fast-l, and
the workload is symmetric (300-300), the performance of also reduces energy consumption by 3.4% compared
half-half-I is slow-limited. However, when the applicatio to a||-fast-l. Hence, even in a real application like ITK,
has strongly asymmetric characteristics (340-260, 33-25yhen the workload is asymmetric, using an AMP with our

360-240), half-half-1 with LJFPF actually performs as wellnew scheduling policy (LJFPF) results in the best energy
as all-fast-l. In this case, the application is mainly it gsayings.

by longer task threads. Longer task threads execute on fast
processors on both all-fast-1 and half-half-1, so all<hand VII. RELATED WORK
half-half- show the same performance. Since, half-half-l Many researchers have shown that asymmet-
consumes less power than all-fast-1, half-half-I consumesc/heterogeneous multi-core/multiprocessor architess
the least amount of energy among all three configuratiorssan save power and energy [3], [13], [1], [15]. Since
for the 340-260, 350-250 and 360-240 cases. Therefore, wiee focus of our work is evaluation of the behavior of
can conclude that for a strongly asymmetric workload, amultithreaded applications in a real system, we only discus
AMP with LJFPF can save energy even compared to gmevious work that also use real heterogeneous/asymmetric
SMP with fast processors. systems.
Balakrishnan et al. [2] studied the performance behavior

B. ITK of multithreaded applications in an AMP using real systems.

To test a real application with an asymmetric workloadThey also observed similar performance behavior on an
we use a modified medical image processing applicatiohMP as us. We extend their work in two directions. First,
(MultiRegistration) from ITK [16]. The main parallel loop we evaluate how thread interactions can affect performance
in the ITK benchmark has 50 iterations and the number 58nd power in more detail. Second, we measure the system
is statically determined from the algorithm. Since 50 is nopower and energy consumption, not only performance.
a multiple of 8, ITK is a naturally asymmetric workload. Annavaram et al. [1] studied energy per instruction (EPI)
Each thread executes 7, 7, 7, 7, 6, 6, 5, and 5 iteratiotisrottling ideas in AMPs. They measured basic power and

310-

320- 330- 340- 350- 360-
280 270 260 250 240

N
©
S

£ 104 We also propose and evaluate a new, simple scheduling
S 102 algorithm for an AMP. The scheduling algorithm simply
ERE sends the longest thread to a fast processor. Using knowl-
% 822 edge of the application and processor characteristics, thi
E 094 | s_lmple scheduling algorithm can reduce energy consump-
S 02 t|0_n _by up to 4% on an AMP compared to the best energy
] o R - - efficient SMP configuration.
« ; T o _
o ;aﬁ 5¢ % In future work, we will focus on predicting application
- characteristics (e.g., the length of a task) without requir
ing information from the programmer and designing task
S 104 scheduling algorithms that use the predicted informatan f
g 1027 an AMP to reduce energy consumption
s — ay puon.
0
S 008 - ACKNOWLEDGMENTS
3 0.06 1 We thank Min Lee and Sushma Rao for helping us understand
e 094 | the Linux Kernel. We also thank Richard Vuduc and Onur Mutlu
B 092 for insightful discussions and Jaekyu Lee and Sunpyo Homng fo
= = =0 = L initial settings for the benchmarks. We thank Aemen Lodbh&
E 2 £Q T S- bae Kim and the anonymous reviewers for their comments and
2 b s3 s= z suggestions. This research is supported by gifts from Migfto
; . . Research.
Fig. 10. The performance and energy consumption behaviteofTK
benchmark (top: execution time, bottom: energy) REFERENCES
[1] M. Annavaram, E. Grochowski, and J. Shen, “Mitigating dafl’s

performance data in real systems and used software simlfz-]
lations to predict the benefit of their throttling mechanism
Their work focused on dynamic voltage/frequency scaling
mechanisms. However, our work focuses on understandin§!
the effects of thread interactions in an AMP.

Li et al. [14] also measured the performance of AMPsI[4]
by changing the clock frequencies. However, their work
focused on proposing thread migration polices in AMPSs, 5
rather than understanding the performance/power behavior
in AMPs. (6]

Both Ge et al. [10] and Grant and Afashi [11] also
used a real system to measure performance and powéfl
consumption behavior in AMPs. Both works presented onIy[8
the trade-offs between power and energy consumption in
multithreaded scientific applications whereas we evaluat?9

thread interaction effects thoroughly. (10]

VIIl. CONCLUSION (11
In this work, we evaluate the performance and energjy o)
consumption behavior of desktop-oriented multithreaded
applications in AMPs. We also evaluate the effects of crititS]
cal sections and barriers thoroughly to understand thnead i
teraction behavior on AMPs. We use real 8 and 16 processid#]
systems to measure performance and energy consumption.
The conclusions of our experiments are that (1) wheps)
the workload is symmetric, it is usually better to use an
SMP with fast processors than an AMP to reduce both trt%]
execution time and the energy consumption, (2) when an
application has frequent and long critical sections, using [17]
AMP could be better than using all fast processors to save
energy, and (3) when the workload is highly asymmetricsg)
using an AMP provides the lowest energy consumption.

Law through EPI throttling,” inISCA-32 2005.

S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai, “The iagb
of performance asymmetry in emerging multicore architexsyi in
ISCA-32 2005.

A. Baniasadi and A. Moshovos, “Asymmetric-frequencystering: a
power-aware back-end for high-performance processors3LPED
2002.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
benchmark suite: Characterization and architectural izafibns,”
Princeton University, Tech. Rep. TR-811-08, 2008.

R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and é: M
Donald, Parallel Programming in OpenMP Morgan Kaufmann,
2000.

C.-K. L. et al., “Pin: Building customized program ansiy tools
with dynamic instrumentation,” ifPLDI, 2005.

“Extech 380801, http://www.extech.com/instrumegmdducts/310
399/380801.html, Extech Instruments Corporation.

] H. Franke, R. Russell, and M. Kirkwood, “Fuss, futexed daor-

wocks: Fast userlevel locking in linux,” iDttawa Linux Symposium
2002.

] GCC-4.0, “GNU compiler collection,” http://gcc.gnug.

R. Ge, X. Feng, and K. W. Cameron, “Improvement of power-
performance efficiency for high-end computing,”IPDPS’05 2005.
R. Grant and A. Afsahi, “Power-performance efficiencly asym-
metric multiprocessors for multi-threaded scientific aggtions,” in
IPDPS 2006.

“Enhanced Intel SpeedStep Technology for the Intel tikem M
Processor-White Paper,” Intel, March 2004.

R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and Msérny
“Single-ISA heterogeneous multi-core architectures: Hutential
for processor power reduction,” iklICRO-36 2003.

T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn, “Effioie
operating system scheduling for performance-asymmettittiswore
architecture,” inln Proceedings of Supercomputing, @007.

T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, and E. dyad,
“Performance, power efficiency and scalability of asymioettuster
chip multiprocessors,” vol. 5, no. 1, 2006.

National Library, “Medicine insight segmentation amegistration
toolkit (ITK),” http://www.itk.org/.

M. A. Suleman, M. K. Qureshi, and Y. N. Patt, “Feedbackein
threading: Power-efficient and high-performance executibmulti-
threaded workloads on cmps,” ®SPLOS-XII] 2008.

“OpenMP,” http://openmp.org/wp/, The OpenMP Arcloitiere Re-
view Board.

