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Abstract

Multiprocessor architecture is becoming popular in
both desktop processors and mobile processors. Espe-
cially asymmetric architecture shows promise in saving
energy and power. However, how to design applications
and how to schedule applications in asymmetric multi-
processors are still challenging problems.

In this paper, we evaluate the performance of appli-
cations in asymmetric multiprocessors to understand the
characteristics of asymmetric processors. We also eval-
uate a task size aware scheduling algorithm and a criti-
cal section length aware scheduling algorithm in asym-
metric multiprocessors. We show that when workload is
asymmetric, the task size aware scheduler can improve
performance by up to 14% compared to a scheduler
which does not consider asymmetric characteristics.

1. Introduction

Asymmetric multiprocessor architecture has been
proposed to be a power efficient multiprocessor architec-
ture [4, 10, 2, 15]. Research has shown that these archi-
tectures provide power-performance effective platforms
for both throughput-oriented applications and applica-
tions that would benefit from having high performance
processors.

Unfortunately, the performance behavior of multi-
threaded applications in asymmetric architectures has
not been studied widely. Balakrishnan et al. [3] evalu-
ated the performance behavior in an asymmetric mul-
tiprocessor (AMP) and a symmetric multiprocessor
(SMP) . However, in their work, they only showed per-
formance effects. Grant and Afsahi [9] studied power-
performance efficiency but they only focused on scien-
tific applications.

Unfortunately, job scheduling polices for multi-
threaded applications on an AMP have not been studied
widely. The performance of multithreaded applications
in an AMP is heavily dependent on thread interactions.
Balakrishnan [3] showed that the performance of multi-

threaded applications could be limited by a thread that is
running on a slow processor in an AMP. They suggested
that using dynamic scheduling in OpenMP reduces this
problem, but dynamic scheduling is not directly applica-
ble to all multithreaded applications.

In this paper, first we analyze the performance behav-
ior of multithreaded applications in AMPs. After that
we propose two new scheduling polices for AMPs: the
longest job to a fast processor first (JFFPF) and critical
Jjob to a fast processor first (CJFPF). The basic idea of
these polices is that when a thread is likely to take longer
than other threads, we send the thread to a fast processor.
We evaluate these two policies using micro-benchmarks.

The contributions of our paper are

1. We evaluate the performance behavior of multi-
threaded desktop applications in AMPs.

2. We propose two new job scheduling algorithms for
AMPs and show that they provide performance im-
provement.

2. Methodology
2.1. Evaluation System

We use an 8-core multiprocessor system as shown
in Table 1 to measure performance. All applications
are running with 8 threads. We use SpeedStep tech-
nology [1] with the cpufreq governors to emulate
an AMP. Table 2 describes four machine configurations.
We use RHEL Desktop 5 (Linux kernel 2.6.18).

Table 1. The System Configurations
processor 2 socket 1.87 GHz Quad-core Intel Xeon

memory system 4MB L2-cache, 8GB RAM
1/0 40GB HDD, Quadro NVS 285

2.2. Benchmarks

We use PARSEC [5], and ITK [16] (a medical im-
age processing application) for our evaluations. We



Table 2. Four different machine configurations
All-slow (SMP) All 8 processors are running at 1.6GHz
One-fast (AMP) 1 processors are running at 1.87GHz

7 processors are running at 1.6GHz

4 processors are running at 1.87GHz

4 processors are running at 1.6GHz
All 8 processors are running at 1.87GHz

Half-half (AMP)

All-fast (SMP)

use the native input set for the PARSEC bench-
marks. We also design micro-benchmarks, matrix
multiplication, and globalSum applications to
evaluate thread behavior more closely. The PARSEC
and ITK benchmarks are compiled with gcc 4.1.2 [8]
with -03 —-fprefetch-loop-arrays flags.

3. Performance Evaluations in SMPs and

AMPs

We evaluate the PARSEC benchmarks on the four ma-
chine configurations. Based on the results, we classify
the benchmarks into three categories: slow-limited (the
performance of half-half is the same as that of all-slow),
middle-perf (the performance of half-half is between that
of all-slow and all-fast), and unstable (the performance
of an application varies significantly across runs).

Figure 1 explains why there are slow-limited, middle-
perf and unstable applications. In case (a), there is a
barrier at the end of the program. Therefore, the over-
all performance of the application is dominated by the
slowest thread. Hence, such an application will be slow-
limited. If sequential sections of the code dominate the
overall execution time like in case (b), the performance
of the application would be between the performance of
all-fast and all-slow (i.e., middle-perf). Case (c) explains
the unstable case. The application has several fork-join
sections. After threads have joined, depending on where
the single thread executes, the performance varies. This
causes unstable behavior.

case (a) case (c)

case (b)

Figure 1. Fork-join cases

Figure 2 shows the performance of the PARSEC
benchmarks in the four machine configurations. The re-
sults show that on average half-half, one-fast, and all-
slow increase the execution time by 7.4%, 10.5%, and

by 10.6% respectively compared to all-fast. Half-half
performs more similarly to all-slow due to several slow-
limited benchmarks. Since one-fast and half-half show
similar trends, we only use half-half in the rest of the
evaluations.

1.05

Normalized execution time

Figure 2. Experiments in the four machine configurations (PAR-
SEC)

Table 3 summarizes the category of benchmarks and
also shows the number of synchronization primitives
in the PARSEC Benchmark suite. The data is col-
lected with Pin [14]. All numbers are totals across all
threads. Numbers for synchronization primitives also in-
clude primitives in system libraries.

BlackScholes is the typical slow-limited bench-
mark. It has only one barrier! at the end of the applica-
tion. Hence, the overall performance is limited by the
slowest thread. Facesim and swaptions are also
limited by the barriers. Applications that have a large
number of locks or barriers (fluidanimate, vips,
dedup, and bodytrack) show unstable behavior. The
remaining applications show middle-perf behavior.

4. Longest Job To a Fast Processor First
(LJFPF) Policy

4.1. Mechanism

We propose a new scheduling policy, called the
longest job to a fast processor first (LJFPF). The basic
algorithm of LJFPF is that when a thread has a longer
task than others (the application provides the relative
task length information), the scheduler sends the thread
to a fast processor. A task is the work assigned to each
thread. In this paper, the size of a task is usually deter-

'In Table 3, BlackScholes has 8 barriers. This is because all
8 threads encounter the same barrier at run-time.



Table 3. Characteristics of the Parsec Benchmarks

Application Locks Barriers | Cond. variables | AMP performance category
BlackScholes 39 8 0 slow-limited
Bodytrack 6824702 111160 32361 unstable
canneal 34 0 0 middle-perf
dedup 10002625 0 17 unstable
facesim 1422579 0 330521 slow-limited
ferret 7384488 0 16938 half-half
fulidanimate 1153407308 31998 0 unstable
freqmine 39 0 0 middle-perf
streamcluster 1379 633174 1036 middle-perf
swaptions 39 0 0 slow-limited
vips 792637 0 147694 unstable
x264 207692 0 13793 half-half

mined by the number of iterations. We modify the appli-
cations so that they send the relative task length informa-
tion to the kernel using a system call before a thread is
created. It is almost impossible to predict the exact exe-
cution time at compile time, so we estimate the length of
a task based on how many iterations are assigned to each
thread. Since, the division of work for each thread is
done statically, the application can know the number of
iterations for each thread at compile time. Note that the
total number of iterations is all determined at compile
time in all of the evaluated applications in this section.
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Figure 3. Job scheduling mechanism

Figure 3 shows the conceptual view of the asymmetry
aware scheduling mechanism. Each task has the affinity
information about the relative task size. The scheduler
uses that information to decide whether a thread should
be sent to a slow processor or a fast processor.

Figure 4 shows the scheduling algorithm. We use
Linux Kernel 2.6.18-8. The shaded boxes indicate the
modified code sections. When an application calls
pthread_create(), it calls sys_clone(), do_fork(), and
copy_process() functions sequentially. The scheduler
logic for scheduling a newly created thread is in the
sched_fork() function. We pass information about a task
to the scheduler using new system calls and modify both
copy_process() and sched_fork() functions to use this in-
formation.

4.2. Evaluation

4.2.1. Matrix Multiplication

Figure 5 compares the performance of the matrix
multiplication application in three different ma-
chine configurations (all-fast, all-slow, and half-half).
LJFPF and round robin (RR) scheduling polices are used
for half-half. All-fast and all-slow use RR (Note that RR
performs similar to the default scheduler in the Kernel).

Thematrix multiplication application com-
putes the product matrix of two 2400X2400 matrices by
dividing the computation among 8 threads. X-Y means 4
threads compute X rows each of the product matrix and
the other 4 threads compute Y rows each of the product
matrix.

There are pthread_join() function calls at the end of
the matrix multiplication application. Hence,
when the workload is symmetric (300-300), the per-
formance of half-half is slow-limited. However, when
the application has strongly asymmetric characteristics
(340-260, 350-250, 360-240), half-half with LJFPF ac-
tually performs as well as all-fast. In this case, the ap-
plication is mainly limited by the long task threads. The
long task threads execute on fast processors on both all-
fast and half-half configurations, so all-fast and half-half
show the same performance. As we can expect, half-
half with RR performs poorly. Therefore, we can con-
clude that for a strongly asymmetric workload, LJFPF
improves performance by up to 14% compared to the
scheduler which does not consider asymmetric charac-
teristic.

4.2.2. ITK

To test a real application with an asymmetric work-
load, we use the ITK application [16] (MultiRegistra-
tion), a medical image processing program. The main
parallel loop in the ITK benchmark has 50 iterations and
the number 50 is statically determined from the algo-
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Figure 4. Thread Scheduling Algorithm

rithm. Since 50 is not a multiple of 8, ITK is a naturally
asymmetric workload. Each thread executes 7,7,7,7, 6,
6, 5, and 5 iterations of the loop respectively. This divi-
sion is done at compile time. Our scheduling algorithm
(LJFPF), at run-time, sends all 7-iteration task threads
to fast processors and 6 and 5-iteration task threads to
slow processors. Figure 6 shows the normalized execu-
tion time (all the data is normalized to all-fast).

The results show that half-half with LJIFPF performs
as well as all-fast. Furthermore, LJFPF improves per-
formance by 2.3% compared to RR scheduling. The
results also imply that LJFPF on half-half could save
energy compared to using all-fast since half-half would
consume less power compared to all-fast.

5. Critical Job to a Fast Processor First
(CJFPF) Policy

5.1. Background

Multi-threaded applications are different from multi-
ple single threaded applications because of thread inter-
actions. Waiting for entering critical sections (acquiring

a lock) and waiting for all the threads to finish (barrier)
are the major sources of thread interactions. A lock is
implemented using futex in Linux Kernel 2.6 [7]. Us-
ing futex, when a thread cannot acquire a lock, the sys-
tem puts the thread into the sleep state. When the thread
that had the lock releases the lock, it also wakes up a
waiting thread. When a thread wakes up, the scheduler
sends the thread to an idle processor. In our experiments,
we set the number of threads equal to the number of pro-
cessors, so a thread is usually sent to the same processor
where it was executing before going to the sleep state.

Figure 7 shows two scenarios of critical section inten-
sive applications. For every loop, each thread needs to
enter the critical section to update a shared data struc-
ture, such as a hash table. When the critical section
is short (case (a)), all three threads can perform useful
work all the time. However, when the critical section is
long (case (b)), threads spend most of their time waiting
for acquiring locks [17]. Therefore, they would be in the
sleep state for most of their execution time.
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Figure 5. The performance behavior in the matrix
multiplication application with the LIFPF scheduling

policy
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Figure 6. The performance and energy consumption behavior of
the ITK benchmark

5.2. Mechanism

We propose another new scheduling policy, called a
critical job to a fast processor first (CJFPF). The basic
algorithm of CJFPF is that when a thread has longer crit-
ical sections than others, the scheduler sends the thread
to a fast processor. Threads can have critical sections of
different length due to how they access the shared data
structure. Again, we modify the application so that it
sends the relative critical section length information to
the scheduler. The rest of the scheduling mechanism is
the same as LJFPF.

critical section

08

waiting to enter a critical section

Figure 7. Example of critical section limited benchmarks

5.3. Ciritical Section Length Effects

First, we evaluate the effect of critical section lengths.
We design a micro-benchmark in which we can ad-
just the length of critical sections. The application
(globalsSum) computes the sum of the elements of a
large array using multiple threads. Each thread computes
the sum of a contiguous section of the array. Each thread,
after computing the sum of a certain number of elements
(determined by the frequency of the critical section), en-
ters a critical section to update the global sum value. We
vary the length of critical sections from 10%, 15%, 20%
of the total execution time.?

Figure 9 shows the speedup of the applications in
three different configurations. When critical section
length is 10%, all-slow and half-half perform worse than
all-fast. However, when critical section length increases
the difference between half-half and all-fast decreases.
This is because processors spend more and more time
in the sleep state. So, whether threads are waiting on
fast processors or slow processors does not change the
overall execution time significantly. However, all-slow
is always slower than the other two. This is because both
critical sections and non-critical sections are executed on
slow processors.

OAll-fast
OHalf-halfl
m All-slow

10%CS 15%CS 20%CS

Figure 8. Critical Section length effects on performance

5.4. Evaluation

Figure 9 shows the speedup (compared to the sequen-
tial version of the code) between the CJFPF and the RR
scheduling policies on half-half machine. X-Y means
that 4 threads have X% critical section length and the
other 4 threads have Y% critical section length. When

The length of critical section is defined to be the sum of the
total execution time spent in the critical section divided by the total
sequential program execution time. The time that is spent in the
critical section is also measured using the sequential version of the
code. We vary the length by inserting extra computations inside the
critical section



the critical length is 8-12, CJFPF on half-half performs
2.5% better than RR on half-half. However, when the
critical length is 40-60, CJFPF improves performance by
only 1.2% when compared to RR. This results show that
when a critical section is short, it is important to schedule
long critical section threads to fast processors. However,
when the threads of an application are mostly waiting in
sleep state due to long critical sections, the scheduling
policy becomes less important.

BCJFPF
ORR

1
0
8-12 16-24 40-60

Figure 9. CJFPF and RR scheduling polices on half-half

6. Symmetric and Asymmetric Workload

We proposed two scheduling policies which are us-
ing asymmetric characteristics of workloads. In this sec-
tion, we evaluate whether the PARSEC benchmarks have
symmetric or asymmetric characteristics. We use two
characteristics to evaluate the symmetric nature of work-
loads: the number of instructions in each thread and the
number of synchronization primitives in each thread. We
also define a thread-group of threads for this evalua-
tion. Figure 10 illustrates the concept of thread-group.
The thread-group can be either a parent thread itself or
a group of threads which are running concurrently. Case
(a) has two groups of threads, but case (b) has 4 groups.
Although the application has a maximum of 4 threads
running at any time, the total number of threads that ever
exist can be higher. Case (a) has 5, and case (b) has 13.
hread-group
hread-group

thread—group

thread—group

thread—group

case (a) case (b)

Figure 10. Thread-group examples

We define two new metrics to measure symmetry of
workloads. Symlinst and SymLock calculate the average
of normalized standard deviations within each thread-
group. We normalize the standard deviation to the to-
tal number of instructions or primitives inside a thread-
group.

Table 4. Symmetry of workloads

Application #of threads | # of thread-groups | Symlnst | SymLock
BlackScholes 9 2 0.000 0.073
Bodytrack 9 2 0.003 0.007
canneal 9 2 0.003 0.000
dedup 25 4 0.009 0.95
ferret 35 6 0.014 0.83
facesim 8 2 0.03 0.000
fluidanimate 9 2 0.02 0.10
freqmine 8 2 0.12 0.098
streamcluster 49 7 0.013 0.017
swaptions 9 2 0.00 0.00
vips 11 3 0.0049 0.007

Table 4 shows the two metrics for each benchmark.
Fregmine and f luidanimate benchmarks have the
highest SymlInst and SymLock respectively. Those two
benchmarks are more likely to be asymmetric. Even
though streamcluster has 49 threads during the
execution time, it is a fairly symmetric workload.?
swaptions shows the most extreme case. Both met-
rics have 0s. Overall, most benchmarks are symmet-
ric workloads. However, since there are some applica-
tions which might be asymmetric, in future work, we
will evaluate our scheduling policies with the PARSEC
benchmarks.

The question is why are most applications symmetric?
There are two possible answers. First, it is easy to divide
data equally across all threads. Second, programmers
or compilers already have divided the work equally to
reduce the load imbalance problem. The next question is
what the application writers should do for an application
that might be run on asymmetric processors? We believe
that this is an important question to research.

7. Related Work

Recently, task scheduling algorithms on heteroge-
neous/asymmetric architectures have been actively stud-
ied. For example, Sun [18, 6] and Intel [13, 20, 19]
are looking at operating system managed solutions for
heterogeneous/asymmetric processors. Many academia
researchers [12, 11, 4, 21] are also developing task

3If both SymInst and SymLock of an application are less than
0.01, we consider the application to be symmetric.



scheduling algorithms. The major difference between
other work and our work is that our work demonstrated
the benefit of using the asymmetry aware scheduling
algorithms in a real machine. Furthermore, none of
the work has discussed the effect of critical sections in
AMPs.

The most relevant work to our work is Li et al.’s thread
migration policies in an AMP. In their work, the sched-
uler migrates a thread running on a slow processor to a
fast core if there is an idle fast processor. Their mech-
anism reduces the load imbalance problem at the cost
of thread migrations. However, our work is more fo-
cused on thread assignment. If long task threads are as-
signed to a fast processor from the beginning, there is no
need for thread migrations. Furthermore, our work can
be used together with Li et al.’s mechanism.

8. Conclusion

In this work, we evaluate the characteristics of multi-
threaded applications in AMPs. We observe that barriers
and critical sections are important characteristics of ap-
plications which decide the performance of AMPs. We
propose two new simple but effective scheduling algo-
rithms for AMPs. The scheduling algorithms send long
task threads or long critical section threads to fast cores.
Using knowledge of the applications and processor char-
acteristics, these simple scheduling algorithms can im-
prove performance by up to 14% on an AMP compared
to the scheduler which does not consider the asymmetric
characteristics.

In future work, we will focus on predicting applica-
tion characteristics (e.g., the length of a task) without
requiring information from programmers and designing
task scheduling algorithms that use the predicted infor-
mation for an AMP to improve performance thereby im-
proving energy efficiency.
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