
Introduction to CHDL 2
Aggregates and Memory

Chad D. Kersey



Memory
The CHDL STL

From Last Time

CHDL is an open source C++ Hardware Design Library.

The basic type is the node.

Arrays of nodes are bvecs, which are vecs of nodes.

Operator overloads of basic arithmetic are provided for bvec.

Other combinational functions, including multiplexers, priority
encoders, and numerical conversion are in the standard library.

Full documentation of this library is in the file CHDL in the
source directory.

Sequential logic can be implemented using the Reg function,
which creates a D Flip-Flop, providing most of the sequencing
in CHDL.

LLRom can be used to generate an FPGA-synthesizable ROM.

Chad D. Kersey Introduction to CHDL 2: Aggregates and Memory



Memory
The CHDL STL

Memory

A synchronous, FPGA-compatible SRAM can be produced using
the Syncmem functions. Its size is determined by the widths of its
data and address buses:

Two Ways to Syncmem

q = Syncmem(addr, data_in, write_en);

q = Syncmem(rd_addr, data_in, wr_addr, write_en);

These are synchronous memories. The results of a read appear on
their output in the cycle following a read:

Exercise: Build a simple state machine that loads the numbers 0
through 255 into a 256 byte SRAM, then reads the numbers back
out and sums them up.

Chad D. Kersey Introduction to CHDL 2: Aggregates and Memory



Memory
The CHDL STL

Memory: Multiple Read Ports

There is also a version of Syncmem with multiple read ports, taking
a vec of read addresses and returns a vec of results:

Multi-port Syncmem

vec<P, bvec<N>> Syncmem(

vec<P, bvec<M>> qa, bvec<N> d, bvec<M> da, node wr

);

Exercise: Modify your state machine from the previous exercise to
use a Syncmem with two read ports, summing values at even
addresses on one of these ports and odd addresses on the other. It
should finish summing all of them within 128 cycles of the end of
initialization.

Chad D. Kersey Introduction to CHDL 2: Aggregates and Memory



Memory
The CHDL STL

Aggregate Types

The CHDL STL

In addition to CHDL proper, there is also a CHDL Standard
Template Library, a set of useful functions that work with the
CHDL main library.

Getting and Testing CHDL STL

$ git clone https://github.com/cdkersey/chdl-stl.git

$ cd chdl-stl

chdl-stl$ make test

Features include:

Aggregate types using ag, which we will discuss in the
following slides.
Network devices including routers and arbiters.
Containers, including Stack, Queue, and Map.
Bloom filters and hash functions.
Pseudo-random number generation using Lfsr.

Chad D. Kersey Introduction to CHDL 2: Aggregates and Memory



Memory
The CHDL STL

Aggregate Types

Aggregate Types

If you need to arrange multiple signals into a collection, you could
build a C++ struct or class of them.

Could build a struct or class.

This does not allow any kind of reflection.

This does not work with the rest of the CHDL standard library.

We have solved this in CHDL using ag, the CHDL STL aggregate
type. The following is a memory request port built using ag:

MemReq Aggregate Type

typedef ag<STP("ready"), node,

ag<STP("valid"), node,

ag<STP("addr"), bvec<N>,

ag<STP("data"), bvec<N> > > > > memReq_t;

Chad D. Kersey Introduction to CHDL 2: Aggregates and Memory



Memory
The CHDL STL

Aggregate Types

Accessing Aggregate Members

Aggregates can be:

TAPped. The field names are underscore-separated.
Used as inputs and outputs to a Reg.
Flattened into a bvec.
Measured. Their size is ag<...>::sz::val.

To access individual members of an aggregste, a special macro is
used. This leads to code that looks like:

Accessing ag Members

stall = !_(req, "ready");

_(req, "valid") = req_pending;

_(req, "addr") = rsrc_val_0;

_(req, "data") = rsrc_val_1;

Exercise: Build a 2-stage pipelined version of the previous sum
example. Use a single CHDL ag to describe the signals contained
in the pipeline register.

Chad D. Kersey Introduction to CHDL 2: Aggregates and Memory


	Memory
	The CHDL STL
	Aggregate Types


