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Abstract—We present Parallel Prophet, which projects poten-
tial parallel speedup from an annotated serial program before
actual parallelization. Programmers want to see how much
speedup could be obtained prior to investing time and effort
to write parallel code. With Parallel Prophet, programmers
simply insert annotations that describe the parallel behavior
of the serial program. Parallel Prophet then uses lightweight
interval profiling and dynamic emulations to predict potential
performance benefit. Parallel Prophet models many realistic
features of parallel programs: unbalanced workload, multiple
critical sections, nested and recursive parallelism, and specific
thread schedulings and paradigms, which are hard to model in
previous approaches. Furthermore, Parallel Prophet predicts
speedup saturation resulting from memory and caches by
monitoring cache hit ratio and bandwidth consumption in a
serial program.

We achieve very small runtime overhead: approximately a
1.2-10 times slowdown and moderate memory consumption.
We demonstrate the effectiveness of Parallel Prophet in eight
benchmarks in the OmpSCR and NAS Parallel benchmarks by
comparing our predictions with actual parallelized code. Our
simple memory model also identifies performance limitations
resulting from memory system contention.

I. INTRODUCTION

Assisting serial program parallelization is important to
both programmer productivity and program performance in
the multicore era. In this paper, we wish to answer one
of the essential questions on parallelization: How much
speedup could be gained after parallelizing my program?
Before programmers invest their effort into writing parallel
programs or parallelizing sequential programs, they would
like to see whether parallelization would indeed provide
performance benefits. Unfortunately, few practical methods
that estimate parallel speedup by analyzing serial code have
been developed.

Simple analytical models, such as Amdahl’s law [5] and
its extensions including Eyerman and Eeckhout [10], and
Gustafson’s law [12] are effective in obtaining an ideal
limit to parallelization benefit. However, such models are
not explicitly designed to predict parallel speedup practi-
cally because analytical models have difficulty considering
realistic and runtime characteristics.

Recently, several tools that employ dynamic analysis and
profiling have been introduced including Cilkview [13],
Kismet [17], and Suitability analysis in Intel Parallel Advisor
[16]. Cilkview analyzes the scalability of a program, but
programmers should parallelize the program before the pre-
diction. Kismet tries to estimate speedup with an unmodified
serial program, but this requires huge overhead-critical path
analysis. Kismet estimates only an upper bound of the
speedup, so it cannot predict speedup saturation.

Intel Parallel Advisor is different than these two ap-
proaches because programmers’ annotations are needed.
However, we should note that annotating is much easier
than actual parallelization. Annotations not only enable
fast profiling, but also capture programmers’ parallelization
strategies. Our main goal is to provide fast profiling so that
programmers can interactively use the tool to modify their
source code. Hence, we also use the annotation approach.

Parallel Advisor provides good speedup estimation for
some applications, but it is limited to certain parallel pro-
gramming patterns. Furthermore, it does not model perfor-
mance degradations caused by memory bottlenecks. Hence,
we propose Parallel Prophet to solve these two problems.

Parallel Prophet predicts potential speedup by performing
fast interval profiling on an annotated program using two
emulation algorithms: (1) fast-forwarding emulation and (2)
program synthesis-based emulation. Both emulation meth-
ods mimic the parallelized behavior of a given serial pro-
gram from profiled data and annotations, thereby predicting
potential speedups. Our emulators emulate a wide range of
parallel programming patterns while accurately considering
scheduling policies and parallel overhead. The prediction
targets of Parallel Prophet are a subset of the popular parallel
programming patterns, as illustrated in Section III, such as
loop/task/nested/recursive parallelisms and synchronizations
by OpenMP [2] and Cilk Plus [15].

We also propose a simple memory performance model
to estimate the effects of memory behavior on speedup
in parallelized programs. Parallel Prophet exploits low-
overhead hardware performance counters and calculates pre-
dicted penalty factors of memory operations, which we call



burden factors. One of the biggest performance degradations
caused by memory in a parallel system is memory resource
contention, such as bandwidth and queuing delays [7, 9].
Hence, as the first-order performance estimation tool and
also a very lightweight profiling tool, we only predict the
memory resource contention in this mechanism.

The contributions of Parallel Prophet are as follows:

• We propose a new low-overhead mechanism to predict
parallel speedups from only annotated serial code. In
particular, our new dynamic emulation method, pro-
gram synthesis-based emulation, precisely and easily
models various parallel program paradigms.
• Parallel Prophet employs a simple memory perfor-
mance model to capture the performance degradation
caused by the memory system in parallelized code.

II. RELATED WORK

A. Analytical Models in Predicting Speedups

Presumably, Amdahl’s law [5] is the first analytical model
to estimate parallel speedup. Based on Amdahl’s law, a
number of researchers proposed extended analytical models:
Gustafson’s law [12], Karp and Flat metric [19], a model
for multicore chips [26], a model for asymmetric multipro-
cessors [14], and a recent model for critical sections [10].
However, these models are designed to provide insights for
programmers and architects, not to predict speedups from
realistic serial programs.

A number of researchers have proposed more sophisti-
cated analytical models that attempted to practically predict
speedups. Among them, Adve and Vernon’s work [4] may
be compared to our fast-forward emulator (Section IV-C).
Given inputs including task graph and task scheduling
function, Adve and Vernon’s analytical model tracks the
execution states of processors by traversing the task graph
and evaluating the scheduling function. Although this anal-
ysis itself is an analytical model, the model requires input
variables that mostly need dynamic information.

B. Dynamic Approaches to Predict Speedup

Kismet [17] is a profiler that provides estimated speedups
for a given unmodified serial program. Kismet is different
from Parallel Prophet in that no annotation is needed.
Kismet performs an extended version of hierarchical critical
path analysis [11] that calculates self-parallelism for each
dynamic region and then finally reports estimated overall
speedups by summarizing all region profiles. However, the
overhead of Kismet typically shows 100+ slowdowns be-
cause memory instructions are instrumented.

Intel Parallel Advisor (specifically, Suitability analysis)
[16] tries to estimate the speedups of a program for various
threading paradigms and CPU numbers. It does so by
collecting timing information from an instrumented serial
version of the program, using that information to build a

model of the program’s dynamic parallel-region tree, and
then running that model with an interpreter. The emulation
of the model is done by an interpreter that uses a priority
queue to fast forward a pseudo-clock to the next event. The
emulation includes some details specific to the threading
paradigm - for example, how long it takes to acquire a
lock (including contention) - but does not consider memory
interactions or exact choices of the task to run. Cilkview [13]
is different from Kismet, Suitability, and Parallel Prophet
because an input program needs to be parallelized already.
The purpose of Cilkview is not to predict speedups from
a serial code. Rather, Cilkview is a tool that visualizes the
scalability of a parallelized program by Cilk Plus.

Suitability uses an approach that is close to ours. However,
our experimentation shows that Suitability currently supports
limited parallelism models. In the following section, we
present the limitations of Suitability in more detail and
provide the motivations for our work.

III. BACKGROUND AND MOTIVATION

A variety of parallel program patterns exist, but the
state-of-the-art profiling tools can only support a subset of
program patterns. The two most basic patterns commonly
supported are (1) single-level parallel loops and (2) multiple
critical sections. However, based on our survey of OmpSCR
(OpenMP Source Code Repository) [1] and NPB [18], we
found that the following four cases are not fully supported
in the previous approaches.

1: for (k = 0; k < size - 1; k++)
2: #pragma omp parallel for schedule(static,1)
3: for (i = k + 1; i < size; i++) {
4: L[i][k] = M[i][k] / M[k][k];
5: for (j = k + 1; j < size; j++)
6: M[i][j] = M[i][j] - L[i][k]*M[k][j];
7: }

(a) Workload imbalance and inner loop parallelism in LUreduction:
Note that the trip count of inner loops varies.

1: void FFT(...) {
...
11: cilk_spawn FFT(D, a, W, n, strd/2, A);
12: FFT(D+n, a+strd, W, n, strd/2, A+n);
13: cilk_sync;
...
17: cilk_for (i = 0; i <= n - 1; i++) {
...
27: }

(b) Recursive and nested parallelism in FFT: For better efficient
execution, OpenMP 2.0 is replaced by Cilk Plus.

Figure 1. Parallel program behaviors in OmpSCR.

• Workload imbalance: This is a common cause for low
speedups. In Figure 1(a), the amount of work of each
iteration is proportional to the for-i loop variations.
In particular, the shape of work for threads is regu-
lar diagonal. Scheduling policies can affect speedups
significantly in these cases. Hence, speedup prediction
should consider such policies.



Name Input to the Profiler Parallel Program Patterns OverheadSimple loops/locks Imbalance Inner-loop Recursive Memory limited
Cilkview [13] Parallelized code © © © © × Moderate
Kismet [17] Unmodified serial code © 4 4 4 4 (only super-linear) Huge
Suitability [16] Annotated serial code © 4 4 4 × Small
Parallel Prophet Annotated serial code © © © © 4 (Mem. contention only) Small

Table I
COMPARISONS OF RECENT DYNAMIC TOOLS TO PREDICT PARALLEL SPEEDUPS.©: PREDICTS WELL FOR THE EXPERIMENTATION IN

THE PAPER; 4: PREDICTIONS ARE LIMITED; ×: NOT EXPLICITLY MODELED.
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Figure 2. FT in NPB. Input set is ’B’ of 850 MB memory footprint.
Kismet and Suitability overestimate speedups. Speedups are saturated due
to increased memory traffics.

• Inner loop parallelism: In general, parallelizing an
outer loop yields better speedups by minimizing spawn-
ing and joining overhead. However, as shown in Figure
1(a), programmers are often forced to parallelize inner
loops if an outer loop is not effectively parallelizable.
Predicting the cost and benefit of inner loop parallelism
would be very informative for programmers.
• Nested and recursive parallelism: Speedups of nested
or recursive parallel programs are not easy to predict
because their runtime behavior heavily depends on par-
allel libraries. Figure 1(b) shows recursive parallelism,
which is also a form of nested parallelism. However, a
naive implementation by OpenMP’s nested parallelism
mostly yields poor speedups in these patterns because
of too many spawned physical threads. For such recur-
sive parallelism, TBB, Cilk Plus, and OpenMP 3.0’s
task are much more effective. Hence, speedup predic-
tion should consider these characteristics.
• Memory-limited Behavior: Figure 2 shows an example
in which the speedup does not scale due to poor mem-
ory performance in a parallelized code. This motivates
us to build a memory performance model that predicts
this behavior. Without any memory models, the speedup
could be significantly mispredicted.

Table I summarizes the previous approaches for the above
four cases. The reasons for the limitations of these ap-
proaches are as follows.

• Modeling realistic parallel behavior: Speedups can be
substantially varied by (1) scheduling policies (both
parallel libraries and operating systems) and (2) parallel
overhead. Kismet does not explicitly model scheduling

policies yet. Suitability considers this to some extent.
However, it cannot effectively and fully differentiate
various schedulings and paradigms.
• Modeling memory performance: Kismet provides a

cache-aware model, but it can only predict super-linear
effects. The cache model also incurs huge overhead
because a cache simulator is used for prediction. Suit-
ability currently implements no such model.

Parallel Prophet overcomes these limitations by introduc-
ing a program synthesis-based emulation algorithm and a
low-overhead memory performance model.

IV. DETAILED DESCRIPTIONS OF PARALLEL PROPHET

An overview of Parallel Prophet is shown in Figure 3.
First, programmers insert annotations on a serial program
and then recompile the annotated program. Second, Parallel
Prophet performs interval profiling with a representative
input. Simple memory profiling that collects hardware per-
formance counters is also conducted. The interval profiling
generates a program tree for the emulations, and the memory
profiling results are augmented on a program tree. Parallel
Prophet emulates the parallel behavior using two methods
along with a memory performance model. Finally, speedups
are reported against different parallelization parameters such
as scheduling policies, threading models, and CPU numbers.

Annotated 
program 

Estimates 

Input 
Memory Performance Model 

Interval Profiling 

Memory Profiling 

Emulators 
(FF and Synthesizer) 

Figure 3. Workflow of Parallel Prophet.

A. Annotating Serial Code

Parallel Prophet takes an annotated serial program that
specifies potentially parallel and protected regions. Table II
enumerates our annotations, which are similar to those of
Suitability except for supporting multiple locks and nowait

in OpenMP. A pair of PAR_TASK_* defines a parallel task
that may be executed in parallel. A pair of PAR_SEC_*
defines a parallel section, a container in which parallel tasks
within the section are executed in parallel. A parallel section
defines an implicit barrier at the end unless a programmer



 1: PAR_SEC_BEGIN(“loop1”); 

 2: for (i = 0; i < N; ++i) {     // parallel 

 3:   PAR_TASK_BEGIN(“t1”); 

 4:   Compute(p1); 

 5:   LOCK_BEGIN(lock1); 

 6:   Compute(p2); // To be protected 

 7:   LOCK_END(lock1); 

 8:   if (p3) { 

 9:     PAR_SEC_BEGIN(“loop2”); 

10:     for (j = 0; j < M; ++j) { // parallel 

11:       PAR_TASK_BEGIN(“t2”); 

12:       Compute(p4); 

13:       PAR_TASK_END(); 

14:     } 

15:     PAR_SEC_END(true /*implicit barrier*/); 

16:   } 

17:   Compute(p5); 

18:   PAR_TASK_END(); 

19: } 

20: PAR_SEC_END(true); 

Burden factors 
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Figure 4. An example of a program tree: The numbers in nodes are the elapsed cycles within the node. Burden factors are computed by the memory
performance model and will be multiplied with all terminal nodes in a section. Note that the root node is omitted.

Interface Description
PAR_TASK_BEGIN(string task_name) This task may be run in parallel.
PAR_TASK_END() The end of a task.
PAR_SEC_BEGIN(string sec_name) This parallel section begins.
PAR_SEC_END(bool nowait) The end of the current section.
LOCK_BEGIN(int lock_id) Try to acquire the given lock.
LOCK_END(int lock_id) Release the owned lock.

Table II
ANNOTATIONS IN PARALLEL PROPHET.

overrides the behavior by, for example, OpenMP’s nowait.
These annotations can describe multiple critical sections and
the parallel programming patterns in Figure 1.

Our experience shows that the annotation is very effective
and requires little effort compared to actual parallelization
efforts, even if a program is embarrassingly parallel. The
annotation is currently a manual process. However, this step
can be made fully or semi-automatic by several techniques:
(1) traditional static analyses from compilers, (2) dynamic
dependence analyses [20, 21, 24, 25, 27], and (3) an ex-
tended critical path analysis [11].

B. Interval Profiling to Build a Program Tree

Next, Parallel Prophet performs low-overhead interval
profiling to collect the lengths of all annotation pairs. A
length of an annotation pair is defined as either the elapsed
time or the number of dynamically executed instructions
between a pair of annotations. In this implementation, we
use the elapsed time (cycles) as the unit of interval profiling.

Meanwhile, hardware performance counters, including
cache misses and instruction counts, are collected for each
top-level parallel section. The memory performance model
will calculate a burden factor for each section. Section V
discusses the detail of the memory performance model.

The procedure for interval profiling is as follows:

• When an *_BEGIN annotation is encountered, the
current cycle stamp is pushed on a stack. If the observed

annotation is the beginning of a top-level section, we
start to collect hardware performance counters.
• On an *_END annotation, we match the kinds of

current END (section, task, or lock) and the top of the
stack. If they do not match, an error is reported. If they
match, the elapsed cycles between the two annotations
are calculated by subtracting the top of the stack from
the current cycle stamp. However, we must exclude
the profiling overhead itself for accurate results. This
important issue is discussed in Section VI-A. If a top-
level section finishes, the collection of performance
counters is halted. Finally, the stack is popped.

While collecting lengths and counters, Parallel Prophet
concurrently builds a program tree that records dynamic
execution traces of parallel sections from an annotated serial
program. The kinds of nodes are (1) section, (2) task, (3)
L (computations in a lock), (4) U (computations without a
lock), and (5) root (It has a list of top-level parallel sections
and serial sections), as illustrated in Figure 4.

The code of Figure 4 has a critical section and two
nested parallel loops. The inner loop may be executed on the
condition of parameter p3. The inner loop has four iterations,
and the length of each iteration is either 40 or 50 cycles.
As this figure shows, each iteration (task) is recorded as
a separate node. Therefore, the size of the tree could be
extremely huge when the trip count of a loop is large and
deeply nested parallel loops exist. We solve this problem by
compression, which is discussed in Section VI-B.

Figure 4 also shows that the top-level section node has
the corresponding burden factors. For example, β2 = 1.2
indicates that our memory performance model predicts that if
the code were to be parallelized on two threads, the durations
of the nodes in this parallel section would be penalized by
20%, due to increased memory contention.



 Case 1: schedule(static,1)  Speedup = 1500 / (1150 + ε) ≅ 1.30 

Thread 0: 
(I0, I2) 

Thread 1: 
(I1) 

150 250 450 50 150 50 50 
wait 

100 300 200 

 Case 2: schedule(static)  Speedup = 1500 / (1250 + ε) ≅ 1.20 

Thread 0: 
(I0, I1) 

Thread 1: 
(I2) 

150 450 50 100 300 200 

150 450 50 50 
wait 

 Case 3: schedule(dynamic,1)  Speedup = 1500 / (950 + ε) ≅ 1.58 

Thread 0: 
(I0) 

Thread 1: 
(I1, I2) 

150 250 450 50 
wait 

100 300 200 150 100 50 50 
wait 

(scheduling overhead) (dynamic scheduling overhead) (locking overhead) 

I0 : 650 I1 : 600 I2 : 250 

150 450 (Lock) 50 100 300 (Lock) 200 150 50 50 

Figure 5. An example of the fast-forwarding method, where a loop with
three unequal iterations and a lock is to be parallelized on a dual-core. The
numbers above the boxes are the elapsed cycles. ε is the parallel overhead.

C. Emulating Parallel Execution: (1) The Fast-Forwarding
Emulation Algorithm (The FF)

The final step of the prediction is emulation, which
emulates parallel execution to compute the projected parallel
execution time. Parallel Prophet provides two complemen-
tary emulators: (1) fast-forward emulation (the FF) and
(2) program synthesis-based emulation (the synthesizer).
The basic idea of both emulations is to emulate parallel
behavior by traversing a program tree. The FF emulates in
an analytical form that does not require measurement on
multicore machines. In contrast, the synthesizer measures
the actual speedup of an automatically generated parallel
program. We first discuss the FF and its challenges and then
introduce the synthesizer in the following section.

The FF traverses a program tree and calculates the ex-
pected elapsed time for each ideal processor data structure
using a priority heap. The FF predicts speedups for an arbi-
trary CPU number while considering a specific parallelism
paradigm (this paper implements an OpenMP emulator),
scheduling policies (static and dynamic schedulings), and
parallel overhead (e.g., barriers and locking). Due to space
constraints, we cannot present the details of the FF. However,
we show two intuitive illustrations.

Figure 5 demonstrates a simple example of (1) workload
imbalance, (2) a critical section, and (3) scheduling policies
of OpenMP. As shown in the figure, precise modeling of
scheduling policies is important for accurate prediction.
We also model the overhead of the OpenMP’s parallel
constructs. We use the benchmarks [8] to obtain the overhead
factors. We then add the factors in the FF emulator when
(1) a parallel loop is started and terminated, (2) an iteration
is started, and (3) a critical section is acquired and released.
The overhead is also shown in the illustration as thin colored
rectangles.
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Figure 6. An example of nested parallel loops in the FF: Loop1, LoopA,
and LoopB are parallel loops (sections), while LoopA and LoopB are
nested parallel loops. In and In k are loop iterations (tasks). Black circles
and arrows indicate an order of the tree traverse, assuming dual-core and
OpenMP’s (static,1). The same numbers in the black circles (see
the gray arrows) mean parallel executions.

Figure 6 illustrates how the FF handles a nested parallel
loop. The upper loop (Loop1) has three iterations, and two
iterations invoke a nested loop (LoopA and LoopB). All
loops are to be parallelized. The order of the tree traverse
is depicted in this figure. The exact total order will be
determined by the lengths of all U and L nodes. We explain
a few cases:

• The first and second iteration of Loop1 (I0, I1) are
executed in parallel (the gray arrows at ¶) by the
scheduling policy, OpenMP’s (static,1). The exe-
cution order of the U and L nodes of I0 and I1 are
determined by their lengths. The FF uses a priority heap
that serializes and prioritizes competing tasks.
• (2) After finishing I0, the FF fetches I2 (¹ → º) on

the same core, using the (static,1) policy.
• (3) For a nested loop, the FF allocates a separate

data structure for the scheduling context of the nested
loop and processes nested parallel tasks as usual. The
priority heap resolves the ordering of parallel tasks, too.

D. Challenges and Limitations in Fast-Forwarding Method

The FF shows highly accurate prediction ability in many
cases, but we have observed cases where the FF produces
significant errors. First, if the parallel overhead is too high,
such as frequent lock contention or frequent fork/join, the
predictions are not precise. Second, the FF does not model
the details of dynamic scheduling algorithms and interac-
tions with an operating system. These simplifications may
often lead to incorrect predictions for complex cases, such
as nested and recursive parallelism.

Figure 7 shows a simplified program tree of a two-level
nested parallel loop. If the code is parallelized on a dual-
core, the speedup is 2 (=30/15). However, our initial FF
implementation as well as Suitability give a speedup of 1.5
(=30/20). This is because neither of them models the thread
scheduling of the operating system, such as preemptive
scheduling and oversubscription (i.e., the number of worker
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Figure 7. A two-level nested parallel loop where the FF and Suitability
cannot predict precisely. The numbers in circles are the scheduling order.
The numbers of the nodes are computation lengths. The prediction was 1.5,
while the real speedup is 2.0.

threads is greater than the number of processors).
We detail the reason for such inaccuracy in Figure 7. After

finishing ¬, the FF needs to assign the second parallel task
of ParLoopB, , to a CPU. However, the FF simply maps
 to CPU0 in a round-robin fashion. Furthermore, the work
is assigned to a CPU in a non-preemptive way: A whole U

(or L) node is assigned to a logical processor.
Of course, we can modify this behavior, but a simple

ad-hoc modification cannot solve the problem entirely. We
must model the thread scheduling of the operating system
as well, which is very hard to implement and also takes a
long time to emulate. Furthermore, neither FF nor Suitability
can predict the case in Figure 1(b): the recursive (or deeply
nested) parallelism. We also need a sophisticated emulator
that implements logical parallel tasks and a work-stealing
scheduler, as in Cilk Plus.

To address these challenges in FF and Suitability, we pro-
vide an alternative and complementary way to emulate the
parallel behavior, called program synthesis-based emulation.

E. Emulating Parallel Execution: (2) Program Synthesis-
Based Emulation Algorithm (The Synthesizer)

The synthesizer predicts speedups by measuring the actual
speedups of automatically generated parallel code on a
real machine. A parallel code does not contain any real
computation from what the original code has. Instead,
it contains intended parallel behaviors, task lengths, and
synchronizations. The synthesizer has a template code that
generates a parallel code for each parallel section based
on a program tree. It then measures its real speedup. As
the synthesizer traverses a program tree, all speedups from
parallel sections are summed to give an overall speedup.
Hence, the overall speedup for a given number of threads,
t, is calculated as follows:

S =

∑N
i EmulTopLevelParSec(seci, t) +

∑M
i Length(Ui)∑N

i Length(seci) +
∑M

i Length(Ui)
,

where seci is a top-level parallel section node, Ui is a top-
level serial computation node (i.e., a U node without a Sec),
N is the total number of top-level parallel sections, and M is
the total number of top-level serial nodes. EmulTopLevel-
ParSec, defined in Figure 8, returns an estimated parallel

 1: void EmulWorkerCilk(NodeSec& sec, OverheadManager&) 

 2: { 

 3:   cilk_for (int i = 0; i < sec.trip_count; ++i) { 

 4:     foreach (Node node in sec.par_tasks[i]) { 

 5:       overhead += OVERHEAD_ACCESS_NODE; 

 6:       if (node.kind == 'U') 

 7:         FakeDelay(node.length* sec.burden_factor); 

 8:       else if (node.kind == 'L') { 

 9:         locks[node.lock_id]->lock(); 

10:         FakeDelay(node.length * sec.burden_factor); 

11:         locks[node.lock_id]->unlock(); 

12:       } else if (node.kind == 'Sec') { 

13:         overhead += OVERHEAD_RECURSIVE_CALL; 

14:         EmulWorkerCilk(node, overhead); 

15:       } 

16:     } 

17:   } 

18: } 

19:   

20: int64_t EmulTopLevelParSec(NodeParSec& sec, int nt) 

21: { 

22:   __cilkrts_set_param("nworkers", nt); 

23:   OverheadManager overhead; 

23:   int64_t gross_time = rdtsc(); 

24:   EmulWorkerCilk(sec, overhead); 

25:   gross_time = rdtsc() - gross_time; 

26:   return gross_time –overhead.GetLongestOverhead(); 

27: } 

Figure 8. Pseudo code of the synthesizer for Cilk Plus.

execution time for a given (1) top-level parallel section, (2)
a number of threads, and (3) a parallelism paradigm.

Figure 8 has a synthesizer code for Cilk Plus. It first sets
the number of threads to be estimated (Line 22). Then, it
starts to measure the elapsed cycle by using rdtsc() for
a given top-level parallel section, which is implemented in
the worker function, EmulWorkerCilk.

Recall the program tree in Figure 4: a section has a list
of children-parallel tasks. These children tasks are to be run
concurrently in the parent section. To execute all the children
tasks concurrently, we apply a parallel construct, cilk_for,
on a section node (Line 3). Because we actually use a real
parallel construct, unlike the FF, all the details of schedulings
and overhead are automatically and silently modeled. For
example, we do not need to consider the order of traversing
parallel tasks; the parallel library and operating system will
automatically handle them. Hence, the problem of Figure 7
does not occur in the synthesizer.

For each concurrently running task, we now iterate all
computation nodes (Line 4). The computations in U and L

nodes are emulated by FakeDeay in which a simple busy
loop spins for a given time without affecting any caches and
memory. The computation lengths are adjusted by the burden
factors (Lines 7 and 10), which are given by the memory
performance model. Note that the computation cannot be
simply fast-forwarded like in FF. Doing so may repeat
the same mistake of Figure 7. To fully observe the actual
effects from an operating system, the actual computation
time should be executed on a real machine.



Emulation Method Fast-Forward Program Synthesis
Kin Analytical model Experimental (dynamic) method
Time Overhead (per estimate) Mostly 1.1-3× slowdown; Worst case: 30+× slowdown Mostly 1.1-2× slowdown (See Section VII-D)
Memory overhead Moderate (by compression) Moderate (by compression)
Accuracy Accurate, except for some cases Very accurate
Target parallel machine An abstracted parallel machine A real parallel machine
Supported paradigms Only implemented parallelism paradigms Easily supports many parallelism paradigms
Ideal for To see inherent scalability and diagnose bottleneck. To see more realistic predictions.

For a small program tree and 1-level parallel loops. For a large program tree and nested parallel loops.

Table III
COMPARISONS OF THE FAST-FORWARDING EMULATION AND THE PROGRAM SYNTHESIS-BASED EMULATION.

For an L node, a real mutex is acquired and released,
thereby emulating precise behavior and overhead of lock
contention (Line 9 and 11). Finally, a Sec node means
nested and recursive parallelism, which is extremely hard to
emulate in the FF. Now, it is supported by a simple recursive
call (Line 14).

Writing a synthesizer for a different specific parallel
paradigm is surprisingly easy. If we replace cilk_for with
#pragma omp parallel for, we will have an OpenMP
synthesizer. In sum, the synthesizer easily and precisely
models factors related to parallel libraries, operating sys-
tems, and target machines.

Nonetheless, implementing a precise synthesizer presents
a major challenge: The tree-traversing overhead must be
subtracted. If the number of nodes is small, the traversing
overhead is negligible. However, a program tree could
be huge (an order of GB), for example, if nested loops
are parallelized and its nested loops are frequently in-
voked. In this case, the traversing overhead itself takes
considerable time, resulting in significantly deviated esti-
mations. To attack this problem, we measure the overhead
of two units in the tree traversing via a simple profiling
on a given real machine: OVERHEAD_ACCESS_NODE and
OVERHEAD_RECURSIVE_CALL, as shown in Figure 8. This
approach is based on the observation that the unit overhead
tends to be stable across various program trees. For example,
these two units of overhead on our machine are both
approximately 50 cycles. We count the traversing overhead
per each work thread (Line 5 and 13), and take the longest
one as the final tree-traversing overhead (Line 26).

Unlike the FF, which predicts speedups on arbitrary CPU
numbers, the synthesizer can only predict performance for
a given real machine. Programmers should run Parallel
Prophet where they will run a parallelized code. Table III
compares these two approaches.

V. LIGHTWEIGHT MEMORY OVERHEAD PREDICTION

We introduce burden factors to model the speedup slow-
down due to increased memory traffic. The model is built
on an analytical model with coefficients measured on the
profiling machine. Runtime profiling information for a given
program is obtained from hardware performance counters,
as this paper particularly focuses on low overhead up to a
10 times slowdown.

Variation of Observed memory traffic from serial code
LLC miss/instr Low Moderate Heavy

Par � Ser Likely scalable Slowdown+ Slowdown++
Par ∼= Ser Scalable Slowdown Slowdown++
Par � Ser Scalable or superlinear - -

Table IV
EXPECTED SPEEDUP CLASSIFICATIONS BASED ON MEMORY BEHAVIOR.
This paper only considers the second row cases for lightweight predictions.

Note that a burden factor is estimated for each top-level
parallel section. If a top-level parallel section is executed
multiple times, we take an average. This burden factor is then
multiplied to all computation nodes (U and L nodes) within
the corresponding section. It adds overhead to the original
execution time and in turn simulates speedup slowdowns.

A. Assumptions

We discuss and justify the assumptions for our low-
overhead memory performance model.
• Assumption 1: We can separate the execution time of a
program into two disjoint parts: (a) computation cost and (b)
memory cost. Our model only predicts additional overhead
on the memory cost due to parallelization. Assumption 2
discusses the computation cost.
• Assumption 2: We assume that the work is ideally divided
among threads, similar to an SPMD (Single Program Multi-
ple Data) style. Hence, we assume that each thread has n-th
of the total parallelizable work, where n is the number of
threads. We also assume that no significant differences exist
in branches, caches, and computations among threads. The
tested subset of NPB benchmarks satisfies this assumption.
• Assumption 3: A simplified memory system is assumed.
(a) We only explicitly consider LLC(last-level cache), and
only the number of LLC misses is used; (b) the latencies
of memory read and write are the same; (c) SMT or hard-
ware multi-threading is not considered; and (d) hardware
prefetchers are disabled.
• Assumption 4: We only consider the case of when
the LLC misses per instruction does not significantly vary
from serial to parallel. Table IV shows the classifications
of applications based on the trend of the LLC misses per
instruction from serial to parallel: (1) increases, (2) does
not vary significantly, and (3) decreases. However, in order
to estimate LLC changes, an expensive memory profiling or



cache simulation is necessary. The main goal of this paper
is to provide a lightweight profiling tool. The cases of the
first and third rows in Table IV will be investigated in our
future work.
• Assumption 5: The super-linear case is not considered.
When LLC misses per instruction is less than 0.00l for a
given top-level parallel section, the burden factor is 1, which
is the minimum value in our model.

B. The Performance Model

Based on these assumptions, the execution time (in cycles)
of an application may be represented as follows:

T = CPI ·N = CPI$ ·N + ω ·D, (1)

where N is the number of all instructions, D is the number
of DRAM accesses, CPI$ is the average CPI for all instruc-
tions if there are no DRAM accesses (i.e., all data are fit into
the CPU caches), and ω is the average CPU stall cycles for
one DRAM access. For example, if a CPU is stalled for 100
cycles because of 10 DRAM requests, ω is 10. Note that
CPI$ and ω represent the disjointed computation cost and
memory cost, respectively, as in the first assumption.

C. The Burden Factor

The burden factor for a given thread number t (βt)
represents the performance degradation only due to the
memory performance when a program is parallelized. We
define βt as the ratio of T t and T t

i , where T t is the execution
time of a parallelized program on a real target machine with
t cores, and T t

i is the execution time on an ideal machine
where the memory system is perfectly scalable:1

βt =
T t

T t
i

=
CPIt ·N t

CPIti ·N t
i

=
CPIt$ ·N

t + ωt ·Dt

CPIt$,i ·N
t
i + ωt

i ·Dt
i

. (2)

However, our assumptions further simplify Eq. (2):
• N t, the number of instructions in parallel code for a

thread, is obviously the same as N t
i .

• In our SPMD parallelization assumption, we may safely
consider that N/N t ' t and D/Dt ' t.

• Recall assumption 4: the LLC misses per instruction do
not vary from serial to parallel. Hence, MPI (or D/N ,
LLC misses per instruction from a serial program) will
be identical to MPIt and MPIti .

• We assumed that the computation cost, CPI$ will not
change in parallel code. Hence, CPI$, CPIt$, and
CPIt$,i are all identical.

• Finally, the DRAM access penalty on a perfectly scal-
able parallel machine equals the penalty on a single
core. Hence, ωt

i and ω (= ω1) should be the same.

1The superscript t indicates a value from one thread when a program is
parallelized on t cores. Note that profiling values from different threads will
not vary significantly by the assumption 2. For simplicity, the superscript
t can be omitted if t is 1 (or numbers from a serial program).

As a result, the burden factor is finally expressed as:

βt =
CPI$ +MPI · ωt

CPI$ +MPI · ω
. (3)

Our goal is to calculate βt by only analyzing an annotated
serial program. We obtain the T , N , D, and MPI of a
serial program from hardware performance counters. The
remaining terms are now ω, ωt, and CPI$. However, once
we predict ω, Eq. (1) computes CPI$. Therefore, the
calculation of the burden factor is reduced to the estimation
of ω and ωt, which equals predicting ωt.

D. DRAM Access Overhead, wt Prediction

Recall that ωt is the additional cycles purely due to
DRAM accesses. Our insight for this model is that ωt would
depend on the DRAM access traffic. Hence, the prediction
of ωt can be done by two steps: (1) predict the total DRAM
access traffic of t threads by using a serial profiling result
only; and (2) predict ωt under the predicted DRAM traffic.
This step is formulated as follows:

δt = Ψ(δ), (4)
ωt = Φ(δt), (5)

where δ is a measured DRAM traffic (in MB/s) by using
D, LLC line size, and CPU frequency; δt is an estimated
DRAM traffic from a single thread when t threads are
running simultaneously.

Based on this modeling, we find two empirical formu-
las, Ψ and Φ, via a specially designed microbenchmark.
Basically, the microbenchmark measures the elapsed cycles
for arbitrary DRAM traffic by making various degrees of
DRAM traffic. It also controls the number of threads to
measure the total DRAM traffic of multiple threads.

To determine Ψ, we first measure the traffic of the
single thread execution from the microbenchmark. Then, we
measure the total traffic when multiple threads are running
together. Obviously, we would observe both scalable and
saturated cases. We obtain Ψ per each thread number on our
machine. The machine specification is described in Section
VII-A. The formula is (only when δ ≥ 2000 MB/s):

δ2 = (1.35 · δ + 1758) / 2,

δ4 = (5756 · ln(δ)− 38805) / 4,

δ8 = (6143 · ln(δ)− 39657) / 8,

δ12 = (6314 · ln(δ)− 39621) /12.

(6)

Regarding Φ, we also use the same microbenchmark. We
first measure total execution cycles by only changing LLC
misses while L1 and L2 cache misses are fixed.2 However,
we must subtract the computation cycles from the total
cycles to obtain ωt. This is done by measuring the total

2In practice, we manipulate memory access patterns in our microbench-
mark so that all memory instructions miss L1 and L2 caches, but while the
LLC miss ratio is controlled.



cycles when there are no LLC misses; however, again, L1
and L2 misses must be the same. Then, we can compute
the pure overhead due to DRAM accesses for an arbitrary
DRAM traffic:

wt = 101481 · (δt)−0.964
, (δt ≥ 2000 MB/s). (7)

Φ and Ψ may return nonsensical numbers when δt is
small. Recall assumption 5. In such a small δ range where
the LLC misses per instruction is very small, βt will be 1.

To summarize, obtain the N , T , D, MPI , and δ of a serial
program via profiling; estimate δt from Eq. (4); estimate ωt

from Eq. (5); finally, Eq. (3) yields the burden factor.

VI. IMPLEMENTATION

We implement Parallel Prophet as a tracer that performs
profiling and an analyzer that emulates a program tree. The
tracer is based on Pin [22] and PAPI [3], but uses Pin’s
probe mode to minimize overhead. Our annotations are
implemented as C/C++ macros calling corresponding stub
functions, which will be detected by Pin.

A. Implementation of Interval Profiling

During profiling, collecting length information as pre-
cisely as possible is critical. We use rdtsc(), which reads
cycle counts for extremely high resolution. However, there
are a couple of known problems in using rdtsc() on
multicore processors, such as interference with other cores.
We fix the processor affinity of the tracer (where an input
program is running) to a specific processor.

Likewise, in the tree-traversing overhead issue in Section
IV-E, we also need to exclude the profiling overhead itself
from the length values. If we use the unit of length as
the number of executed instructions, the problem is easy
to solve. However, we observed that different instruction
mixes cause a lot of prediction errors. Also, obtaining
instruction counts and mixes incurs additional overhead
(need to instrument every basic block). Instead, we use time
as the unit. We tried our best to calculate the net length of
each node, but every detail cannot be described here.

B. Profiler Memory Overhead Problem and Solutions

A program tree may consume huge memory because all
intervals of the loop iterations are recorded. Many bench-
marks in our experiments use moderate memory consump-
tion (less than 500 MB); however, IS in the NPB bench-
mark consumes 10 GB to build a program tree. To solve
this memory overhead problem, we apply a compression
technique. When intervals of loop iterations do not vary
significantly, we perform lossless compression using a very
simple RLE(Run-length encoding) and a simple dictionary-
based algorithm. Such simple compression is quite effective.
For example, the program tree of CG in NPB (with ‘B’
input) can be compressed into 950 MB from 13.5 GB (a 93%
reduction). In our implementation, we allow 5% of variation

 1: // To be parallelize by OpenMP. 

 2: for (int64_t i = 0; i < i_max; ++i) { 

 3:   overhead = ComputeOverhead(i, i_max, M, m, s); 

 4:   FakeDelay(overhead * ratio_delay_1); 

 5:   if (do_lock1) { 

 6:     // To be protected. 

 7:     FakeDelay(overhead * ratio_delay_lock_1); 

 8:   } 

 9:   FakeDelay(overhead * ratio_delay_2); 

10:   if (do_lock2) { 

11:     // To be protected. 

12:     FakeDelay(overhead * ratio_delay_lock_2); 

13:   } 

14:   FakeDelay(overhead * ratio_delay_3); 

15: } 

 
Figure 9. Test1: workload imbalance + locks + high lock contention.

 1: // To be parallelize by OpenMP. 

 2: for (int64_t k = 0; k < k_max; ++i) { 

 3:   overhead = ComputeOverhead(k, k_max, M, m, s); 

 4:   FakeDelay(overhead * ratio_delay_A); 

 5:   if (do_nested_parallelism) 

 6:     Test1(k, k_max); 

 7:   FakeDelay(overhead * ratio_delay_B); 

 8: } 

Figure 10. Test2: Test1 + inner-loop parallelism + nested parallelism.

to be considered as the same length. However, simple
compressions may not be feasible if the iteration lengths
of a loop are extremely hard to compress in a lossless way.
As a last resort, we may use lossy compression. Fortunately,
lossy compression was not needed in our experimentations.
With lossless compression, 3 GB of memory is sufficient for
all evaluated benchmarks in this paper.

VII. EXPERIMENTATION RESULTS

A. Experimentation Methodologies

All experiments are done on a 12-core machine with 24
GB memory and two sockets of an Intel Xeon processor
(Westmere architecture). Each CPU has six cores and 12
MB L3 cache. Hyper-Threading, Turbo Boost, SpeedStep,
and hardware prefetchers are all disabled. We use OpenMP
and Cilk Plus of Intel C/C++ Compiler 12.0. Finally, eight
benchmarks in OmpSCR [1] and NPB [18] are evaluated.

B. Validation of the Prediction Model

We first conduct validation experiments to verify the
prediction accuracy of Parallel Prophet without considering
memory and caches. This step is important to quantify the
correctness and diagnose the problems of Parallel Prophet
before predicting realistic programs with our memory per-
formance model.

We use randomly generated samples from two serial
program patterns: Test1 and Test2, shown in Figure 9
and Figure 10, respectively. Test1 exhibits (1) load im-
balance, (2) critical sections whose contentions and lengths
are arbitrary, and (3) a high parallel overhead case: high
lock contention. Test2 shows all of the characteristics
of Test1 as well as (1) a high parallel overhead case:
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(d) Estimates (Test2,  12 core, FF) 

static-1

static

dynamic-1

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

R
e
a
l 

S
p

e
e
d

u
p

 

(e) Estimates (Test2,  12 core, SYN) 
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Figure 11. Prediction accuracy results of Test1 and Test2, targeting eight and 12 cores, and OpenMP: FF and SYN mean the FF and the synthesizer
emulations, respectively. SUIT is the Suitability in Parallel Advisor.

frequent inner loop parallelism and (2) nested parallelism,
as well as all the characteristics of Test1. The function
ComputeOverhead in the code generates various workload
patterns, from a randomly distributed workload to a regular
form of workload, or a mix of several cases.

We generate 300 samples per each test case by ran-
domly selecting the arguments. These randomly generated
programs are annotated and predicted by Parallel Prophet.
To verify the correctness, we also parallelize samples using
OpenMP and measure real speedups on 2, 4, 6, 8, 10, and
12 cores. OpenMP samples use three scheduling policies:
(static,1), (static), and (dynamic,1). We finally
plot the predicted speedups versus the real speedups to
visualize the accuracy. We only show the results of 8 and
12 cores in Figure 11, but the rest of the results show the
same trend.

Fast-forwarding emulation achieves very high accuracy
for Test1, shown in Figure 11 (a) and (b); the average
error ratio is less than 4% and the maximum error ratio
is 23% for a case of predicting 12 cores. Figure 11 (c) and
(d) show the results of Test2 with the FF. The average error
ratio is 7% and the maximum was 68%, which are higher
than the results of Test1. Among the three schedulings,
(static) shows more severe errors. Our investigation of
such errors tentatively concludes that operating system-level
thread scheduling can affect the speedups, which the FF cur-
rently does not precisely model. An example was discussed
in Figure 7. We also discover that the overhead of OpenMP
is not always constant, unlike the results from the previous
work [6, 8]. The previous work claims that the overhead of

OpenMP constructs can be measured as constant delays, but
our experience shows that the overhead is also dependent
on the trip count of a parallelized loop and the degree of
workload imbalance. To address such difficulties, we have
introduced the synthesizer. Fortunately, the synthesizer can
provide highly accurate predictions for Test2, showing a
3% average error ratio and 19% at the maximum, shown
in Figure 11(e). Please note that such a 20% deviation in
speedups is often observed in multiple socket machines;
thus we consider a 20% error as a boundary for reasonably
precise results.

We finally conduct validation tests with Suitability anal-
ysis. Due to constraints of the out-of-the-box tool, we are
only able to predict Test1 and Test2 up to quad cores. The
results of Test1 (not shown in the paper) are as accurate
as ours. However, Figure 11(f) shows that Suitability does
not predict Test2 well. Note that Suitability does not
provide speedup predictions for a specific scheduling. Our
experience shows that the emulator of Suitability is close to
the OpenMP’s (dynamic,1). We speculate that the reasons
for such inaccuracy would be (1) the limitations of the
emulator discussed in Section IV-D, and (2) the lack of
precise modeling of OpenMP’s scheduling policies.

C. OmpSCR/NPB Results with Memory Performance Model
We present the prediction results on four OmpSCR (MD,

LU, FFT, QSort) and four NPB benchmarks (EP, FT, MG,
CG) in Figure 12. Each benchmark is estimated by (1)
the synthesizer without the memory model (‘Pred’), (2)
the synthesizer with the memory model (‘PredM’), and (3)
Suitability (‘Suit’).
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Figure 12. Predictions of OmpSCR and NPB benchmarks: ‘Pred’ and ‘PredM’ are the results without/with the memory performance model, respectively.
‘Suit’ is the results of Suitability. Note that Suitability does not have a memory performance model, and only provides speedups for 2N CPU numbers.
The predictions of Suitability for 6/10/12 cores are interpolated. The captions show the input set and its maximum memory footprint.

Even without considering memory effects, four bench-
marks, MD-OMP, LU-OMP, QSort-Cilk, and NPB-EP, show
very good prediction results. However, we underestimate the
speedups of MD-OMP and LU-OMP on 6-12 cores. This
could be the super-linear effects due to increased effective
cache sizes. We do not currently consider such an optimistic
case. However, our memory model gives burden factors of 1,
meaning they are not limited by the memory performance.
Suitability was not effective to predict LU-OMP. A reason
would be the fact that LU-OMP has a frequent parallelized
inner loop, overestimating the parallel overhead.

The burden factors of the other benchmarks (FFT-Cilk,
NPB-FT, NPB-CG, NPB-MG) are greater than 1. For ex-
ample, the burden factors of NPB-FT show the range of 1.0
to 1.45 for two to 12 cores. Some burden factors (e.g., NPB-
FT and NPB-MG) tend to be predicted conservatively. FFT-
Cilk shows more deviations on the burden factors. However,
we believe that the results show the outstanding prediction
ability. We also verified the burden factor prediction by using
the microbenchmark used in Eqs. (6) and (7). In more than
300 samples that show speedup saturation, we were able to
predict the speedups mostly within a 30% error bound.

FFT-Cilk and QSort-Cilk use recursive parallelism that
cannot be efficiently implemented by OpenMP 2.0. They are
parallelized by Cilk Plus and predicted. As our synthesizer
can easily model a different threading paradigm, the results
are also pretty close. For the case of FFT-Cilk, Suitability
was unable to provide meaningful predictions. However, we
found that the tree-traversing overhead did show some varia-
tions for these benchmarks. Because the synthesizer actually

performs recursive calls, this behavior may introduce hard-
to-predict cache effects on the tree-traversing overhead.

D. The overhead of Parallel Prophet

The worst memory overhead in all experimentations is 3
GB when only the loseless compression is used. Note that
NPB-FT only requires 5 MB for storing its program tree.
The time overhead is generally a 1.1× to 3.5× slowdown per
each estimate, except for the prediction of FFT with the FF
emulator, where the slowdown is more than 30×. Suitability
shows 200× slowdowns for FFT. Such high overhead comes
from the significant overhead of tree traversing and intensive
computation using the priority heap. The synthesizer only
shows approximately 3.5× slowdowns for FFT.

Quantifying the time overhead is somewhat complicated.
The total time overhead is dependent on how many estimates
programmers want. The more estimates desired, the more
time needed. In addition, the synthesizer runs a parallelized
program. Hence, its time overhead per estimate is dependent
on its estimated speedup as well. An estimated speedup of
2.5 would have at least a 1.4× slowdown (=1+1/2.5).

The total time of the synthesizer can be expressed as:

TSY N ≈ TP +

K∑
i=1

(TT +
T

Si
),

where T is the serial execution time, TP is the interval
and memory profiling overhead, TT is the tree-traversing
overhead in the emulators, K is the number of estimates to
obtain, and S is the measured speedup. Note that TP and
TT are heavily dependent on the frequency of annotations.



E. Limitations of Parallel Prophet

Parallel Prophet has the following limitations:

• Obviously, a profiling result is dependent on an input.
• We assume no I/O operations in annotated regions.
• Current annotations only support task-level parallelism
and mutex. However, supporting other types of syn-
chronization and parallelism patterns is not challenging.
For example, pipelining can be easily supported by
extending annotations [23] and the emulation algorithm.
• Section V-A discussed the assumptions of our memory
model. The assumptions include the current limitations.

VIII. CONCLUSIONS AND FUTURE WORK

We presented Parallel Prophet, which predicts the poten-
tial speedup of a parallel program by dynamically profiling
and emulating a serial program. It takes an input as annotated
serial programs, where annotations describe parallel loops
and critical sections. We provided detailed descriptions of
two emulation algorithms: fast-forwarding emulation and the
synthesizer. In particular, the synthesizer is a novel method
to model various parallel patterns easily and precisely.
We also proposed a simple memory model to predict the
slowdown in parallel applications resulting from memory
resource contention.

We evaluated Parallel Prophet with a series of mi-
crobenchmarks that show highly accurate prediction results
(less than 5% errors in most cases). We also demonstrate
how Parallel Prophet executes the prediction with low over-
head. Finally, we evaluated Parallel Prophet with a subset
of OmpSCR benchmarks and NPB benchmarks, showing
good prediction accuracies as well. Our memory model
which uses few hardware performance counters predicts
performance degradations after parallelization in memory
intensive benchmarks.

In our future work, we will improve our memory model
to include more complex parallel programming patterns.
Combining a static memory address pattern analysis and
dynamic profiling could be an option to develop a low-
overhead memory profiler.
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