
In the proceedings of the 18th IEEE International Symposium on High Performance Computer Architecture (HPCA), February 2012

TAP: A TLP-Aware Cache Management Policy for a CPU-GPU Heterogeneous

Architecture

Jaekyu Lee Hyesoon Kim

School of Computer Science

Georgia Institute of Technology

{jaekyu.lee, hyesoon}@cc.gatech.edu

Abstract

Combining CPUs and GPUs on the same chip has be-

come a popular architectural trend. However, these het-

erogeneous architectures put more pressure on shared re-

source management. In particular, managing the last-

level cache (LLC) is very critical to performance. Lately,

many researchers have proposed several shared cache man-

agement mechanisms, including dynamic cache partition-

ing and promotion-based cache management, but no cache

management work has been done on CPU-GPU heteroge-

neous architectures.

Sharing the LLC between CPUs and GPUs brings new

challenges due to the different characteristics of CPU and

GPGPU applications. Unlike most memory-intensive CPU

benchmarks that hide memory latency with caching, many

GPGPU applications hide memory latency by combining

thread-level parallelism (TLP) and caching.

In this paper, we propose a TLP-aware cache man-

agement policy for CPU-GPU heterogeneous architectures.

We introduce a core-sampling mechanism to detect how

caching affects the performance of a GPGPU application.

Inspired by previous cache management schemes, Utility-

based Cache Partitioning (UCP) and Re-Reference Interval

Prediction (RRIP), we propose two new mechanisms: TAP-

UCP and TAP-RRIP. TAP-UCP improves performance by

5% over UCP and 11% over LRU on 152 heterogeneous

workloads, and TAP-RRIP improves performance by 9%

over RRIP and 12% over LRU.

1. Introduction

On-chip heterogeneous architectures have become a new

trend. In particular, combining CPUs and GPUs (for graph-

ics as well as data-parallel applications such as GPGPU

applications) is one of the major trends, as can be seen

from Intel’s recent Sandy Bridge [7], AMD’s Fusion [2],

and NVIDIA’s Denver [15]. In these architectures, vari-

ous resources are shared between CPUs and GPUs, such as

the last-level cache, on-chip interconnection, memory con-

trollers, and off-chip DRAM memory.

The last-level cache (LLC) is one of the most impor-

tant shared resources in chip multi-processors. Managing

the LLC significantly affects the performance of each ap-

plication as well as the overall system throughput. Under

the recency-friendly LRU approximations, widely used in

modern caches, applications that have high cache demand

acquire more cache space. The easiest example of such

an application is a streaming application. Even though a

streaming application does not require caching due to the

lack of data reuse, data from such an application will oc-

cupy the entire cache space under LRU when it is running

with a non-streaming application. Thus, the performance of

a non-streaming application running with a streaming ap-

plication will be significantly degraded.

To improve the overall performance by intelligently

managing caches, researchers have proposed a variety of

LLC management mechanisms [4, 8–10, 21, 22, 27, 28].

These mechanisms try to solve the problem of LRU by ei-

ther (1) logically partitioning cache ways and dedicating

fixed space to each application [10,21,22,28] or (2) filtering

out adverse patterns within an application [9, 27]. In logi-

cal partitioning mechanisms, the goal is to find the optimal

partition that maximizes the system throughput [21, 22, 28]

or that provides fairness between applications [10]. On the

other hand, the other group of cache mechanisms identi-

fies the dominant pattern within an application and avoids

caching for non-temporal data. This can be done by in-

serting incoming cache blocks into positions other than the

most recently used (MRU) position to enforce a shorter life-

time in the cache.

However, these mechanisms are not likely applicable

to CPU-GPU heterogeneous architectures for two reasons.

The first reason is that GPGPU applications often tolerate

memory latency with massive multi-threading. By having a

huge number of threads and continuing to switch to the next

available threads, GPGPU applications can hide some of the

off-chip access latency. Even though recent GPUs have em-

1

In the proceedings of the 18th IEEE International Symposium on High Performance Computer Architecture (HPCA), February 2012

ployed hardware-managed caches [14], caching is merely

a secondary remedy. This means that caching becomes ef-

fective when the benefit of multi-threading is limited, and

increasing the cache hit rate even in memory-intensive ap-

plications does not always improve performance in GPGPU

applications. The second reason is that CPU and GPGPU

applications often have different degrees of cache access

frequency. Due to the massive number of threads, it is quite

common for GPGPU applications to access caches much

more frequently than CPUs do. Since previous cache mech-

anisms did not usually consider this effect, many policies

will favor applications with more frequent accesses or more

cache hits, regardless of performance.

To accommodate the unique characteristics of GPGPU

applications running on heterogeneous architectures, we

need to consider (1) how to identify the relationship be-

tween cache behavior and performance for GPGPU appli-

cations even with their latency-hiding capability and (2) the

difference in cache access rate. Thus, we propose a thread-

level parallelism (TLP)-aware cache management policy

(TAP). First, we propose core sampling that samples GPU

cores with different policies. For example, one GPU core

uses the MRU insertion policy in the LLC and another GPU

core uses the LRU insertion. Performance metrics such as

cycles per instruction (CPI) from the cores are periodically

compared by the core sampling controller (CSC) to iden-

tify the cache friendliness1 of an application. If different

cache policies affect the performance of the GPGPU appli-

cation significantly, the performance variance between the

sampled cores will be significant as well. The second com-

ponent of TAP is cache block lifetime normalization that

considers the different degrees in access rate among appli-

cations. It enforces a similar cache lifetime to both CPU

and GPGPU applications to prevent adverse effects from a

GPGPU application that generates excessive accesses.

Inspired by previously proposed Utility-based Cache

Partitioning (UCP) and Re-Reference Interval Prediction

(RRIP) mechanisms, we propose two new mechanisms,

TAP-UCP and TAP-RRIP, that consider GPGPU applica-

tion characteristics in heterogeneous workloads.

The contributions of our paper are as follows:

1. To the best of our knowledge, we are the first to address

the cache-sharing problem in CPU and GPU heteroge-

neous architectures.

2. We propose a core sampling mechanism that exploits the

symmetric behavior of GPGPU applications.

3. We propose two new TLP-aware cache management

mechanisms, TAP-UCP and TAP-RRIP, that signifi-

cantly improve performance across 152 heterogeneous

workloads.

1Cache friendliness means that more caching improves the perfor-

mance of an application.

2. Background and Motivation

2.1. Target Architecture

As Figure 1 illustrates, we project that future heteroge-

neous architectures will have high-end CPUs and GPUs on

the same chip, with all cores sharing various on-chip re-

sources. Intel’s Sandy Bridge [7] is the first commercial

processor that integrates GPUs on the chip, and AMD’s Fu-

sion architecture [2] integrates more powerful GPUs on the

same die. In these architectures, we can run OpenCL [16]

like applications that utilize both types of cores or multi-

program workloads that run different applications on CPUs

and GPUs. In this paper, we focus on multi-program work-

loads on heterogeneous architectures.

CPU

SIMD GPU cores

Last-Level Cache (LLC)

CPU CPU CPU

Out-of-order, superscalar CPU cores

Private $ Private $ Private $ Private $

PE PE

PE PE

…

PE PE

PE PE

…

Private $ Private $

PE PE

PE PE

…

PE PE

PE PE

…

Private $ Private $

Memory

Controller

and other

interfaces

On-chip Interconnection Network

Figure 1. Target heterogeneous architecture.

Since these two different types of cores share on-chip

resources, the resource-sharing becomes a new problem due

to the different nature of the two types of cores. Thus, we

aim to solve the problem in these new architectures.

2.2. Characteristic of GPGPU Applications

In this section, we explain the memory characteristics

of GPGPU applications. First, we classify GPGPU applica-

tions based on how the cache affects their performance. Fig-

ures 2 and 3 show cycles per instruction (CPI) and misses

per kilo instruction (MPKI) variations for all application

types as the size of the cache increases. Note that to in-

crease the size of the cache, we fix the number of cache sets

(4096 sets) and adjust the number of cache ways from one

(256 KB) to 32 (8 MB). Application types A, B, and C in

Figure 2 can be observed in both CPU and GPGPU appli-

cations. We summarize these types as follows:

• Type A has many computations and very few memory

instructions. The performance impact of those few mem-

ory instructions is negligible since memory latencies can

be overlapped by computations. Thus, the CPI of this

type is close to the ideal CPI, and MPKI is also very low.

• Thrashing applications are typical examples of type B.

Because there is a lack of data reuse or the working set

size is significantly larger than the limited cache size,

CPI is high and MPKI is extremely high.

• Type C applications are typical cache-friendly bench-

marks. For these benchmarks, more caching improves

the cache hit rate as well as performance.

2

In the proceedings of the 18th IEEE International Symposium on High Performance Computer Architecture (HPCA), February 2012

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0

0.5

1

1.5

2

2.5

3

1 4 7 1013161922252831

M
P

K
I

C
P

I

of cache ways (# set is fixed)

CPI MPKI

0

20

40

60

80

100

120

0

1

2

3

4

1 4 7 10 13 16 19 22 25 28 31

M
P

K
I

C
P

I

of cache ways (# set is fixed)

CPI MPKI

0

10

20

30

40

50

60

70

0

1

2

3

4

5

1 4 7 10 13 16 19 22 25 28 31

M
P

K
I

C
P

I

of cache ways (# set is fixed)

CPI MPKI

Type A

Compute Intensive

Type B

Large Working Set

Type C

Cache-friendly

Figure 2. Application types based on how the cache affects performance (Ideal CPI is 2 in the baseline. We fix the number of cache sets
(4096 sets) and vary the number of cache ways from one (256KB) to 32 (8MB)).

0

5

10

15

20

25

30

0

1

2

3

4

1 4 7 10 13 16 19 22 25 28 31

M
P

K
I

C
P

I

of cache ways

CPI MPKI

0

20

40

60

80

100

0

0.5

1

1.5

2

2.5

1 4 7 10 13 16 19 22 25 28 31

M
P

K
I

C
P

I
of cache ways

CPI MPKI

Type D (TLP)

Cache sensitive

Performance insensitive

Type E (TLP)

Memory intensive

Figure 3. GPGPU unique application types.

Types D and E in Figure 3 are unique to GPGPU appli-

cations. These types have many cache misses, but multi-

threading is so effective that almost all memory latency can

be tolerated. We summarize these types as follows:

• Type D shows that MPKI is reduced as the cache size in-

creases (cache-sensitive), but there is little performance

improvement (performance-insensitive). In this type,

multi-threading can effectively handle off-chip access la-

tencies even without any caches, so having larger caches

shows little performance improvement.

• Type E is very similar to type B. Due to the thrashing be-

havior, cache MPKI is very high. However, unlike type

B, the observed CPI is very close to the ideal CPI of 2

since the thread-level parallelism (TLP) in type E can

hide most memory latencies.

Note that types C and D are almost identical except for

the change in CPI. For type C, larger caches are benefi-

cial, but not for type D. Since these two types have iden-

tical cache behavior, we cannot differentiate them by just

checking the cache behavior. Hence, our mechanisms aim

to distinguish these two types by identifying the relationship

between cache behavior and performance.

2.3. Last-Level Cache Management

Here we provide the background of previous cache

mechanisms and why they may not be effective for CPU

and GPGPU heterogeneous workloads. These mechanisms

can be categorized into two groups, namely, dynamic cache

partitioning and promotion-based cache management.

2.3.1. Dynamic Cache Partitioning

Dynamic cache partitioning mechanisms achieve their goal

(throughput, fairness, bandwidth reduction, etc.) by strictly

partitioning cache ways among applications. Therefore,

the interference between applications can be reduced by

having dedicated space for each application. Qureshi and

Patt [21] proposed Utility-based Cache Partitioning (UCP),

which tries to find an optimal cache partition such that the

overall number of cache hits is maximized. UCP uses a set

of shadow tags and hit counters to estimate the number of

cache hits in each cache way for each application. Periodi-

cally, UCP runs a partitioning algorithm to calculate a new

optimal partition. In every iteration of the partitioning al-

gorithm, an application with the maximum number of hits

will be chosen. The partitioning iterations continue until all

ways are allocated to applications.

To minimize the adverse effect from streaming applica-

tions, Xie and Loh [28] proposed Thrasher Caging (TC). TC

identifies thrashing applications by monitoring cache ac-

cess frequency and the number of misses and then enforces

streaming/thrashing applications to use a limited number of

cache ways, called the cage. Since the antagonistic effect

is isolated in the cage, TC improves performance with rela-

tively simple thrasher classification logic.

These mechanisms are based on the assumption that high

cache hit rate leads to better performance. For example,

UCP [21] finds the best partition across applications that

can maximize the number of overall cache hits. UCP works

well when cache performance is directly correlated to the

core performance, which is not always the case for GPGPU

applications. They are often capable of hiding memory la-

3

In the proceedings of the 18th IEEE International Symposium on High Performance Computer Architecture (HPCA), February 2012

tency with TLP (types D and E). UCP prioritizes GPGPU

applications when they have a greater number of cache hits.

However, this will degrade the performance of CPU ap-

plications, while there is no performance improvement on

GPGPU applications. Hence, we need a new mechanism to

identify the performance impact of the cache for GPGPU

applications.

2.3.2. Promotion-based Cache Management

Promotion-based cache mechanisms do not strictly divide

cache capacity among applications. Instead, they insert

incoming blocks into a non-MRU position and promote

blocks upon hits. Thus, non-temporal accesses are evicted

in a short amount of time and other accesses can reside for

a longer time in the cache by being promoted to the MRU

position directly [9] or promoted toward the MRU position

by a single position [27].

For example, the goal of Re-Reference Interval Predic-

tion (RRIP) [9] is to be resistant to scan (non-temporal

access) and thrashing (larger working set) by enforcing a

shorter lifetime for each block and relying on cache block

promotion upon hits.2 The conventional LRU algorithm

maintains an LRU stack for each cache set. An incoming

block is inserted at the head of the stack (MRU), and the

tail block (LRU) is replaced. When there is a cache hit, the

hitting block will be moved to the MRU position. Thus, the

lifetime of a cache block begins at the head and continues

until the cache block goes through all positions in the LRU

stack, which will be a waste of cache space.

On the other hand, RRIP inserts new blocks near the

LRU position instead of at the MRU position. Upon a hit, a

block is moved to the MRU position. The intuition of RRIP

is to give less time for each block to stay in the cache and to

give more time only to blocks with frequent reuses. Thus,

RRIP can keep an active working set while minimizing the

adverse effects of non-temporal accesses. RRIP also uses

dynamic insertion policies to further optimize the thrashing

pattern using set dueling [19].

Promotion-based cache mechanisms assume a similar

number of active threads in all applications, and thereby

assume a similar order of cache access rates among appli-

cations. This is a reasonable assumption when there are

only CPU workloads. However, GPGPU applications have

more frequent memory accesses due to having an order-of-

magnitude-more threads within a core. Therefore, we have

to take this different degree of access rates into account to

prevent most blocks of CPU applications from being evicted

by GPGPU applications even before the first promotion is

performed.

2Note that we use a thread-aware DRRIP for our evaluations.

2.3.3. Summary of Prior Work

Table 1 summarizes how previous mechanisms work on het-

erogeneous workloads consisting of one CPU application

and each GPGPU application type. For types A, B, D, and

E, since performance is not significantly affected by the

cache behavior, having fewer ways for the GPGPU appli-

cation would be most beneficial. However, previous cache-

oriented mechanisms favor certain applications based on the

number of cache hits or cache access rate, so the GPGPU

application is favored in many cases, which will degrade

the performance of a CPU application.

Table 1. Application favored by mechanisms when running hetero-
geneous workloads (1 CPU + each type of GPGPU application).

Workloads Favored application type
Ideal

GPGPU UCP RRIP TC

CPU+

Type A CPU CPU none CPU

Type B CPU ≈ or GPGPU CPU CPU

Type C GPGPU GPGPU CPU Fair share

Type D GPGPU GPGPU CPU CPU

Type E CPU ≈ or GPGPU CPU CPU

For type C GPGPU applications, due to excessive cache

accesses and a decent cache hit rate, both UCP and RRIP

favor GPGPU applications. However, the ideal partitioning

will be formed based on the behavior of applications, and

usually, giving too much space to one application results in

poor performance. On the other hand, TC can isolate most

GPGPU applications by identifying them as thrashing. The

Ideal column summarizes the ideal scenario of prioritiza-

tion that maximizes system throughput.

3. TLP-Aware Cache Management Policy

This section proposes a thread-level parallelism-aware

cache management policy (TAP) that consists of two com-

ponents: core sampling and cache block lifetime normal-

ization. We also propose two new TAP mechanisms: TAP-

UCP and TAP-RRIP.

3.1. Core Sampling

As we discussed in Section 2, we need a new way to

identify the cache-to-performance effect for GPGPU appli-

cations. Thus, we propose a sampling mechanism that ap-

plies a different policy to each core, called core sampling.

The intuition of core sampling is that most GPGPU appli-

cations show symmetric behavior across cores on which

they are running.3 In other words, each core shows simi-

lar progress in terms of the number of retired instructions.

Using this characteristic, core sampling applies a different

policy to each core and periodically collects samples to see

how the policies work. For example, to identify the effect

of cache on performance, core sampling enforces one core

(Core-POL1) to use the LRU insertion policy and another

3There are some exceptional cases; pipelining parallel programming

patterns do not show the symmetric behavior.

4

In the proceedings of the 18th IEEE International Symposium on High Performance Computer Architecture (HPCA), February 2012

core (Core-POL2) to use the MRU insertion policy. Once

a period is over, the core sampling controller (CSC) col-

lects the performance metrics, such as the number of re-

tired instructions, from each core and compares them. If the

CSC observes significant performance differences between

Core-POL1 and Core-POL2, we can conclude that the per-

formance of this application has been affected by the cache

behavior. If the performance delta is negligible, caching is

not beneficial for this application. Based on this sampling

result, the CSC makes an appropriate decision in the LLC

(cache insertion or partitioning) and other cores will follow

this decision. Core sampling is similar to set dueling [19].

The insight of set dueling is from Dynamic Set Sampling

(DSS) [20], which approximates the entire cache behavior

by sampling a few sets in the cache with a high probability.

Similarly, the symmetry in GPGPU applications makes the

core sampling technique viable.

Policy1: e.g. LRU insertion

Policy2: e.g. MRU insertion

Performance Metric

Decision (Hint) Core-Follower

Core-POL1

Core-Follower

Core-POL2

Core-Follower

Core-Follower

Core Sampling

Controller (CSC)

Last-Level Cache
Accesses

Figure 4. The core sampling framework.

Figure 4 shows the framework of core sampling. Among

multiple GPU cores, one core (Core-POL1) uses policy

1, another core (Core-POL2) uses policy 2, and all others

(Core-Followers) follow the decision in the LLC made by

the CSC. Inputs to the CSC are performance metrics from

Core-POL1 and Core-POL2.

3.1.1. Core Sampling with Cache Partitioning

When core sampling is running on top of cache partition-

ing, the effect of different policies for a GPGPU applica-

tion is limited to its dedicated space once the partition is

set for each application. For example, if a GPGPU applica-

tion has only one way and CPU applications have the rest

of the ways, sampling policies affect only one way for the

GPGPU application. In this case, no difference exists be-

tween the MRU and LRU insertion policies. Therefore, we

set core sampling to enforce Core-POL1 to bypass the LLC

with cache partitioning.

3.1.2. Benchmark Classification by Core Sampling

Based on the CPI variance between Core-POL1 and Core-

POL2, we categorize the variance into two groups using

Thresholdα. If the CPI delta is less than Thresholdα,

caching has little effect on performance. Thus, types A,

B, D, and E can be detected. If the CPI delta is higher

than Thresholdα, this indicates that an application is cache-

friendly. When an application has asymmetric behavior,

core sampling may misidentify this application as cache-

friendly. However, we found that there are only a few asym-

metric benchmarks and the performance penalty of misiden-

tifying these benchmarks is negligible. Note that we set

Thresholdα to 5% from empirical data.

3.1.3. Overhead

Control logic Since we assume the logic for cache parti-

tioning or promotion-based cache mechanisms already ex-

ists, core sampling only requires periodic logging of perfor-

mance metrics from two cores and the performance-delta

calculation between the two. Thus, the overhead of the con-

trol logic is almost negligible.

Storage overhead The core sampling framework requires

the following additional structures. 1) One counter per core

to count the number of retired instructions during one pe-

riod: Usually, most of today’s processors already have this

counter. 2) Two registers to indicate the ids of Core-POL1

and Core-POL2: When a cache operation is performed to

a cache line, the core id field is checked. If the core id

matches with Core-POL1, the LRU insertion policy or LLC

bypassing is used. If it matches with Core-POL2, the MRU

insertion policy is used. Otherwise, the underlying mecha-

nism will be applied to cache operations.

Table 2. Hardware complexity (our baseline has 6 GPU cores and
4 LLC tiles).

Hardware Purpose Overhead

20-bit counter per core Perf. metric 20× 6 cores = 120 bits

2 5-bit registers
Ids of Core-POL1 10-bit × 4 LLC tiles

and Core-POL2 = 40 bits

Total 160 bits

Table 2 summarizes the storage overhead of core sam-

pling. Since core sampling is applied on top of dynamic

cache partitioning or promotion-based cache mechanisms,

such as UCP or RRIP, we assume that the underlying hard-

ware already supports necessary structures for them. There-

fore, the overhead of core sampling is fairly negligible.

3.1.4. Discussions

Worst-performing core and load imbalance Core sam-

pling may hurt the performance of a sampled core, Core-

POL1 or Core-POL2, if a poorly performing policy is en-

forced during the entire execution. In set dueling, a total of

32 sets will be sampled out of 4096 sets (64B cache line,

32-way 8MB cache). Only 0.78% of the entire cache sets

are affected. Since we have a much smaller number of cores

than cache sets, the impact of having a poorly performing

core might be significant. Also, this core may cause a load

imbalance problem among cores. However, these problems

can be solved by periodically rotating sampled cores instead

of fixing which cores to sample.

5

In the proceedings of the 18th IEEE International Symposium on High Performance Computer Architecture (HPCA), February 2012

Synchronization Most current GPUs cannot synchronize

across cores, so core sampling is not affected by synchro-

nization. However, if future GPUs support synchronization

such as a barrier across cores, since all cores will make the

same progress regardless of the cache policy, core sampling

cannot detect performance variance between cores. In this

case, we turn off core sampling and all cores follow the pol-

icy of the underlying mechanism after a few initial periods.

Handling multiple applications So far, we assume that

GPUs can run only one application at a time. When a GPU

core can execute more than one kernel concurrently4, the

following support is needed: (1) We need separate counters

for each application to keep track of performance metrics;

(2) Instead of Core-POL1 and Core-POL2 being physically

fixed, the hardware can choose which core to be Core-POL1

and Core-POL2 for each application, so each application

can have its own sampling information.

3.2. Cache Block Lifetime Normalization

GPGPU applications typically access caches much more

frequently than CPU applications. Even though memory-

intensive CPU applications also exist, the cache access rate

cannot be as high as that of GPGPU applications due to

a much smaller number of threads in a CPU core. Also,

since GPGPU applications can maintain high throughput

because of the abundant TLP in them, there will be con-

tinuous cache accesses. However, memory-intensive CPU

applications cannot maintain such high throughput due to

the limited TLP in them, which leads to less frequent cache

accesses. As a result, there is often an order of difference

in cache access frequencies between CPU and GPGPU ap-

plications. Figure 5 shows the number of memory requests

per 1000 cycles (RPKC) of applications whose RPKC is in

the top and bottom five, along with the median and average

values from all CPU and GPGPU applications, respectively.

The top five CPU applications have over 60 RPKC, but the

top five GPGPU applications have over 400 and two of them

have even more than 1000 RPKC. Hence, when CPU and

GPGPU applications run together, we have to take into ac-

count this difference in the degree of access rates.

To solve this issue, we introduce cache block lifetime

normalization. First, we detect access rate differences by

collecting the number of cache accesses from each appli-

cation. Periodically, we calculate the access ratio between

applications. If the ratio exceeds the threshold, Txs
5, this

ratio value is stored in a 10-bit register, called XSRATIO.

When the ratio is lower than Txs, the value of XSRATIO

will be set to 1. When the value of XSRATIO is greater

4NVIDIA’s Fermi now supports the concurrent execution of kernels,

but each core can execute only one kernel at a time.
5We set Txs to 10, which means a GPGPU application has 10 times

more accesses than the CPU application that has the highest cache access

rate, via experimental results. However, we do not show these results due

to space constraints.

n

a

m

d

s

j

e

n

g

g

a

m

e

s

s

h

2

6

4

r

e

f

g

o

b

m

k

w

r

f

s

p

h

i

n

x

3

b

w

a

v

e

s

m

i

l

c

l

e

s

l

i

e

3

d

A

V

G

0

10

20

30

40

50

60

70

80

90

R
e
q
.

P
e
r

K
i
l
o

C
y
c
l
e
s

c

Bottom 5 Top 5 MED

15.7

AVG

25.0

(a) CPU application

D

x

t

c

V

o

l

u

m

e

R

a

y

T

r

a

c

e

C

e

l

l

A

E

S

B

i

c

u

b

i

c

I

m

g

D

e

n

o

c

f

d

f

f

t

l

b

m

A

V

G

0

500

1000

1500

2000

2500

R
e
q
.

P
e
r

K
i
l
o

C
y
c
l
e
s

c

Bottom 5 Top 5 MED

151.2

AVG

278.3

0.38 3.04 8.01 15.1 20.8

(b) GPGPU application

Figure 5. Memory access rate characteristics.

than 1, TAP policies utilize the value of the XSRATIO reg-

ister to enforce similar cache residential time to CPU and

GPGPU applications. We detail how the XSRATIO register

is used in the following sections.

3.3. TAP-UCP

TAP-UCP is based on UCP [21], a dynamic cache par-

titioning mechanism for only CPU workloads. UCP peri-

odically calculates an optimal partition to adapt a run-time

behavior of the system. For each application, UCP main-

tains an LRU stack for each sampled set6 and a hit counter

for each way in all the sampled sets during a period. When

a cache hit occurs in a certain position of an LRU stack,

the corresponding hit counter will be incremented. Once

a period is over, the partitioning algorithm iterates until all

cache ways are allocated to applications. In each iteration,

UCP finds the marginal utility of each application using the

number of remaining ways to allocate and the hit counters

of an application.7 Then, UCP allocates one or more cache

ways to the application that has the highest marginal utility.

As explained in Section 2.3.1, UCP tends to favor

GPGPU applications in heterogeneous workloads. How-

ever, TAP-UCP gives more cache ways to CPU applica-

tions when core sampling identifies that a GPGPU appli-

cation achieves little benefit from caching. Also, TAP-UCP

adjusts the hit counters of a GPGPU application when the

GPGPU application has a much greater number of cache

accesses than CPU applications. To apply TAP in UCP, we

need two modifications in the UCP’s partitioning algorithm.

6UCP collects the information only from sampled sets to reduce the

overhead of maintaining an LRU stack for each set.
7Marginal utility is defined as the utility per unit cache resource in [21].

For more details, please refer to Algorithm 1 in Appendix A.

6

In the proceedings of the 18th IEEE International Symposium on High Performance Computer Architecture (HPCA), February 2012

The first modification is that only one way is allocated

for a GPGPU application when caching has little benefit on

it. To implement this, we add one register to each cache,

called the UCP-Mask. The CSC of core sampling sets the

UCP-Mask register when caching is not effective; otherwise

the value of the UCP-Mask remains 0. TAP-UCP checks the

value of this register before performing the partitioning al-

gorithm. When the value of the UCP-Mask is set, only CPU

applications are considered for the cache way allocation.

The second modification is that when partitioning is per-

formed, we first divide the value of the GPGPU applica-

tion’s hit counters by the value of the XSRATIO register,

which is periodically set by cache block lifetime normal-

ization, as described in Section 3.2. More details about

the TAP-UCP partitioning algorithm can be found in Ap-

pendix A.

3.4. TAP-RRIP

First, we provide more details about the RRIP mecha-

nism [9], which is the base of TAP-RRIP. RRIP dynami-

cally adapts between two competing cache insertion poli-

cies, Static-RRIP (SRRIP) and Bimodal-RRIP (BRRIP), to

filter out thrashing patterns. RRIP represents the inser-

tion position as the Re-Reference Prediction Value (RRPV).

With an n-bit register per cache block for the LRU counter,

an RRPV of 0 indicates an MRU position and an RRPV of

2n-1 represents an LRU position. SRRIP always inserts the

incoming blocks with an RRPV of 2n-2, which is the best

performing insertion position between 0 to 2n-1. On the

other hand, BRRIP inserts blocks with an RRPV of 2n-2

with a very small probability (5%) and for the rest, which

is the majority, it places blocks with an RRPV of 2n-1.

RRIP dedicates few sets of the cache to each of the com-

peting policies. A saturating counter, called a Policy Selec-

tor (PSEL), keeps track of which policy incurs fewer cache

misses and decides the winning policy. Other non-dedicated

cache sets follow the decision made by PSEL.

To apply TAP to RRIP, we need to consider two prob-

lems: 1) manage the case when a GPGPU application does

not need more cache space and 2) prevent the interference

by a GPGPU application with much more frequent accesses.

When either or both problems exist, we enforce the BRRIP

policy for the GPGPU application since BRRIP generally

enforces a shorter cache lifetime than SRRIP for each block.

Also, the hitting GPGPU block will not be promoted and

GPGPU blocks will be replaced first when both CPU and

GPGPU blocks are replaceable. In pseudo-LRU approxi-

mations including RRIP, multiple cache blocks can be in

LRU positions. In this case, TAP-RRIP chooses a GPGPU

block over a CPU block for the replacement.

In TAP-RRIP, we add an additional register, called the

RRIP-Mask. The value of the RRIP-Mask register is set

to 1 when 1) core sampling decides caching is not benefi-

cial for the GPGPU application or 2) the value of the XS-

RATIO register is greater than 1. When the value of the

RRIP-Mask register is 1, regardless of the policy decided

by PSEL, the policy for the GPGPU application will be set

to BRRIP. Otherwise, the winning policy by PSEL will be

applied. Table 3 summarizes the policy decision of TAP-

RRIP for the GPGPU application.

Table 3. TAP-RRIP policy decisions for the GPGPU application.

RRIP’s TAP Final
GPGPU type Note

decision (RRIP-Mask) Policy

SRRIP 0 SRRIP
Type C

Base

BRRIP 0 BRRIP RRIP

SRRIP 1 BRRIP Types Always

BRRIP 1 BRRIP A, B, D, E BRRIP

4. Evaluation Methodology

4.1. Simulator

We use MacSim simulator [1] for our simulations. As

the frontend, we use Pin [18] for the CPU workloads and

GPUOcelot [6] for GPGPU workloads. For all simula-

tions, we repeat early terminated applications until all other

applications finish, which is a similar methodology used

in [8, 9, 21, 27]. Table 4 shows the evaluated system con-

figuration. Our baseline CPU cores are similar to the CPU

cores in Intel’s Sandy Bridge [7], and we model GPU cores

similarly to those in NVIDIA’s Fermi [14]; each core is run-

ning in SIMD fashion with multi-threading capability. The

integration of both cores is illustrated in Figure 1.

Table 4. Evaluated system configurations.

CPU

1-4 cores, 3.5GHz, 4-wide, out-or-order

gshare branch predictor

8-way 32KB L1 I/D (2-cycle), 64B line

8-way 256KB L2 (8-cycle), 64B line

GPU

6 cores, 1.5GHz, in-order, 2-wide 8-SIMD

No branch predictor (switch to the next ready thread)

8-way 32KB L1 D (2-cycle), 64B line

4-way 4KB L1 I (1-cycle), 64B line

L3 Cache 32-way 8MB (4 tiles, 20-cycle), 64B line

NoC 20-cycle fixed latency, at most 1 req/cycle

DRAM
4 controllers, 16 banks, 4 channels

DDR3-1333. 41.6GB/s Bandwidth, FR-FCFS

4.2. Benchmarks

Table 5 and Table 6 show the type of CPU and GPGPU

applications that we use for our evaluations. We use 29

SPEC 2006 CPU benchmarks and 32 CUDA GPU bench-

marks from publicly available suites, including NVIDIA

CUDA SDK, Rodinia [5], Parboil [26], and ERCBench [3].

For CPU workloads, Pinpoint [17] was used to select a rep-

resentative simulation region with the ref input set. Most

GPGPU applications are run until completion.

Table 7 describes all workloads that we evaluate for het-

erogeneous simulation. We thoroughly evaluate our mecha-

nisms on an excessive number of heterogeneous workloads.

7

In the proceedings of the 18th IEEE International Symposium on High Performance Computer Architecture (HPCA), February 2012

Table 5. CPU benchmarks classification.

Type Benchmarks (INT // FP)

Cache-friendly (10)
bzip2, gcc, mcf, omnetpp, astar //

leslie3d, soplex, lbm, wrf, sphinx3

Streaming / libquantum // bwaves, milc,

Large working set (6) zeusmp, cactusADM, GemsFDTD

Compute intensive(13)

perlbench, gobmk, hmmer, sjeng,

h264ref, xalancbmk // gamess, gromacs,

namd, dealII, povray, calculix, tonto

Table 6. GPGPU benchmarks classification.

Type Benchmarks (SDK // Rodinia // ERCBench // Parboil)

A (4) dxtc, fastwalsh, volumerender // cell // NA // NA

B (12)
bicubic, convsep, convtex, imagedenoise, mergesort

sobelfilter // hotspot, needle // sad // fft, mm, stencil

C (3) quasirandom, sobolqrng // raytracing // NA // NA

D (4) blackscholes, histogram, reduction // aes // NA // NA

E (9)
dct8x8, montecarlo, scalarprod // backprop, cfd, nn, bfs

// sha // lbm

We form these workloads by pseudo-randomly selecting

one, two, or four CPU benchmarks from cache-friendly and

compute-intensive group in Table 5 and one GPGPU bench-

mark from each type in Table 6. For Stream-CPU work-

loads, in addition to streaming applications from SPEC2006

(Table 5), we add five more streaming benchmarks from the

Merge [11] benchmarks.

Table 7. Heterogeneous workloads.

Type # CPU # GPGPU # of total workloads

1-CPU 1 1 152 workloads

2-CPU 2 1 150 workloads

4-CPU 4 1 75 workloads

Stream-CPU 1 1 25 workloads

4.3. Evaluation Metric

We use the geometric mean (Eq. 1) of the speedup of

each application (Eq. 2) as the main evaluation metric.

speedup = geomean(speedup(0 to n−1)) (1)

speedupi =
IPCi

IPCbaseline
i

(2)

5. Experimental Evaluation

5.1. TAP-UCP Evaluation

Figure 6 shows the base UCP and TAP-UCP speedup

results normalized to the LRU replacement policy on all

1-CPU workloads (one CPU + one GPGPU). Figure 6 (a)

shows the performance results for each GPGPU application

type. For 1-CPU-A8, 1-CPU-B, and 1-CPU-E workloads,

8CPU application with one type A GPGPU application. Same rule ap-

plies to other types.

as explained in Table 1, since these types of GPGPU appli-

cations do not have many cache hits, UCP can successfully

partition cache space toward being CPU-friendly. There-

fore, the base UCP performs well on these workloads and

improves performance over LRU by 0%, 15%, and 12%

for workloads 1-CPU-A, 1-CPU-B, and 1-CPU-E, respec-

tively. Note that since type A applications are computation-

intensive, even LRU works well.

0.9

1

1.1

1.2

1-CPU-A 1-CPU-B 1-CPU-C 1-CPU-D 1-CPU-E AVG

S
p

e
e
d

u
p

 o
v
e
r
 L

R
U

 UCP TAP-UCP

(a) UCP speedup results per type

0.8
1

1.2
1.4
1.6
1.8

2
2.2
2.4

1 51 101 151

S
p

e
e
d

u
p

 o
v
e
r
 L

R
U

Workloads (1 CPU + 1 GPGPU)

UCP TAP-UCP

(b) S-curve for TAP-UCP speedup results

Figure 6. TAP-UCP speedup results.

For 1-CPU-C and 1-CPU-D, UCP is less effective than

other types. For 1-CPU-C, we observe that the number

of cache accesses and cache hits of GPGPU applications

is much higher than that of CPUs (at least an order). As

a result, UCP strongly favors the GPGPU application, so

there is a severe performance degradation in the CPU ap-

plication. Therefore, UCP shows only a 3% improvement

over LRU. However, by considering the different access

rates in two workloads, TAP-UCP successfully balances

cache space between CPU and GPGPU applications. TAP-

UCP shows performance improvements of 14% and 17%

compared to UCP and LRU, respectively, for 1-CPU-C

workloads. For 1-CPU-D, although larger caches are not

beneficial for GPGPU applications since they have more

cache hits than CPU applications, UCP naturally favors the

GPGPU applications. However, the cache hit pattern of the

GPGPU applications often shows a strong locality near the

MRU position, so UCP stops the allocation for GPGPU ap-

plications after a few hot cache ways. As a result, UCP per-

forms better than LRU by 5% on average. The performance

of TAP-UCP is 5% better than UCP by detecting when more

caching is not beneficial for GPGPU applications.

From the s-curve9 result in Figure 6 (b), TAP-UCP usu-

9For all s-curve figures from now on, we sort all results by the perfor-

mance of the TAP mechanisms in ascending order.

8

In the proceedings of the 18th IEEE International Symposium on High Performance Computer Architecture (HPCA), February 2012

ally outperforms UCP except in a few cases with type C

GPGPU applications. When a CPU application is running

with a type C GPGPU application, giving very few ways to

GPGPU applications increases the bandwidth requirement

significantly. As a result, the average off-chip access latency

increases, so the performance of all other memory-intensive

benchmarks is degraded severely. We see these cases only

in seven workloads out of 152. In our future work, we

will monitor bandwidth increases to prevent these negative

cases. Overall, UCP performs 6% better than LRU, and

TAP-UCP improves UCP by 5% and LRU by 11% across

152 heterogeneous workloads.

5.2. TAP-RRIP Evaluation

Figure 7 (a) presents the speedup results of RRIP and

TAP-RRIP for each GPGPU type. We use a thread-aware

DRRIP, which is denoted as RRIP in the figures, for eval-

uations with a 2-bit register for each cache block. Other

configurations are the same as in [9]. The base RRIP per-

forms similarly to LRU. As explained in Section 2.3.2,

RRIP favors GPGPU applications because of its more fre-

quent cache accesses. Thus, GPGPU blocks occupy the ma-

jority of cache space. On the other hand, TAP-RRIP tries to

give less space to GPGPU blocks if core sampling identifies

that more caching is not beneficial.

0.9

1

1.1

1.2

1.3

1-CPU-A 1-CPU-B 1-CPU-C 1-CPU-D 1-CPU-E AVG

S
p

e
e
d

u
p

 o
v
e
r
 L

R
U

 RRIP TAP-RRIP

(a) RRIP speedup results per type

0.8
1

1.2
1.4
1.6
1.8

2
2.2
2.4

1 51 101 151

S
p

e
e
d

u
p

 o
v
e
r
 L

R
U

Workloads (1 CPU + 1 GPGPU)

RRIP TAP-RRIP

(b) S-curve for TAP-RRIP speedup results

Figure 7. TAP-RRIP speedup results.

Figure 7 (b) shows the s-curve for the performance on

all 152 workloads. Although RRIP does not show many

cases with degradation, RRIP is not usually effective and

performs similarly to LRU. However, TAP-RRIP shows

performance improvement in more than half of the evalu-

ated workloads. Two TAP-RRIP cases show degradation

of more than 5%. Again, this is the problem due to type C

GPGPU applications (too little space is given to the GPGPU

application, so the bandwidth is saturated).

On average, the base RRIP performs better than LRU

by 3% while TAP-RRIP improves the performance of RRIP

and LRU by 9% and 12%, respectively.

5.3. Streaming CPU Application

When a streaming CPU application is running with a

GPGPU application, our TAP mechanisms tend to un-

necessarily penalize GPGPU applications even though the

streaming CPU application does not need any cache space.

Since we have only considered the adverse effect of GPGPU

applications, the basic TAP mechanisms cannot effectively

handle this case. Thus, we add a streaming behavior de-

tection mechanism similar to [27, 28], which requires only

a few counters. Then, we minimize space usage by CPU

applications once they are identified as streaming. The en-

hanced TAP-UCP will allocate only one way to a stream-

ing CPU application and the enhanced TAP-RRIP will reset

the value of the RRIP-Mask register to operate as the base

RRIP, which works well for streaming CPU applications.

0.95
0.96
0.97
0.98
0.99

1
1.01

S
p

e
e
d

u
p

 o
v
e
r
 L

R
U

Figure 8. Enhanced TAP mechanism (TAP-S) results.

Figure 8 shows the performance results of the enhanced

TAP mechanisms (TAP-S) that consider the streaming be-

havior of CPU applications on the 25 Stream-CPU work-

loads in Table 7. The basic TAP mechanisms degrade per-

formance by 3% and 4% over LRU, respectively. However,

the TAP-S mechanisms solve the problem of basic mech-

anisms and show a performance similar to LRU. Since all

other previous mechanisms, including LRU, can handle the

streaming application correctly, the TAP mechanisms can-

not gain further benefit. Note that the TAP-S mechanisms

do not change the performance of other workloads.

5.4. Multiple CPU Applications

So far, we have evaluated the combinations of one CPU

and one GPGPU application. In this section, we evaluate

multiple CPU applications running with one GPGPU appli-

cation (2-CPU and 4-CPU workloads in Table 7). As the

number of concurrently running applications increases, the

interference by other applications will also increase. Thus,

the role of intelligent cache management becomes more

crucial. Figure 9 shows evaluations on 150 2-CPU and 75

4-CPU workloads. TAP-UCP shows up to a 2.33 times and

1.93 times speedup on 2-CPU and 4-CPU workloads, re-

9

In the proceedings of the 18th IEEE International Symposium on High Performance Computer Architecture (HPCA), February 2012

spectively.10 TAP-UCP performs usually no worse than the

base UCP except in a few cases. In this case, two or four

memory-intensive CPU benchmarks are running with one

type C GPGPU application. On average, TAP-UCP im-

proves the performance of LRU by 12.5% and 17.4% on

2-CPU and 4-CPU workloads, respectively, while UCP im-

proves by 7.6% and 6.1%.

1

1.05

1.1

1.15

1.2

1.25

1.3

2-CPU 4-CPU

S
p

e
e
d

u
p

 o
v
e
r
 L

R
U

 UCP TAP-UCP RRIP TAP-RRIP

Figure 9. Multiple CPU application results.

TAP-RRIP shows up to a 2.3 times and 2.2 times speedup

on 2-CPU and 4-CPU workloads, respectively. On average,

RRIP improves the performance of LRU by 4.5% and 5.6%

on 2-CPU and 4-CPU workloads, respectively, while TAP-

RRIP improves even more, by 14.1% and 24.3%. From

multi-CPU evaluations of the TAP mechanisms, we con-

clude that our TAP mechanisms show good scalability by

intelligently handling inter-application interference.

5.5. Comparison to Static Partitioning

Instead of using dynamic cache partitioning, a cache ar-

chitecture can be statically partitioned between CPUs and

GPUs, but statically partitioned caches cannot use the re-

sources efficiently. In other words, it cannot adapt to work-

load characteristics at run-time. In this section, we evalu-

ate a system that statically partitions the LLC between the

CPUs and GPUs evenly. All CPU cores (at most 4) share 16

ways of the LLC regardless of the number of concurrently

running CPU applications, and the GPU cores (6 cores)

share the rest of the 16 ways.

1

1.05

1.1

1.15

1.2

1.25

1.3

1-CPU 2-CPU 4-CPU

S
p

e
e
d

u
p

 o
v
e
r
 L

R
U

 UCP RRIP TAP-UCP TAP-RRIP Static

Figure 10. Static partitioning results.

Figure 10 shows the TAP results compared to static par-

titioning. For 1-CPU workloads, static partitioning shows a

6.5% improvement over LRU, while TAP-UCP and TAP-

RRIP show 11% and 12% improvements. However, as

the number of concurrently running applications increases,

10The detailed data is not shown due to space constraints.

static partitioning does not show further improvement (7%

over in both 2-CPU and 4-CPU workloads), while the ben-

efit of the TAP mechanisms continuously increases (TAP-

UCP: 12% and 19%, TAP-RRIP: 15% and 24% for 2-CPU

and 4-CPUworkloads, respectively). Moreover, static parti-

tioning performs slightly worse than LRU in many cases (52

out of 152 in 1-CPU, 54 out of 150 in 2-CPU, and 28 out

of 75 in 4-CPU workloads, respectively), even though the

average is 7% better than that of LRU.11 We conclude that

static partitioning on average performs better than LRU, but

it cannot adapt to workload characteristics, especially when

the number of applications increases.

5.6. Cache Sensitivity Evaluation

1

1.05

1.1

1.15

1.2

1.25

2M-8 8M-8 4M-16 8M-16 4M-32 16M-32

S
p

e
e
d

u
p

 o
v
e
r
 L

R
U

 UCP TAP-UCP RRIP TAP-RRIP

Figure 11. Cache sensitivity results (size-associativity).

Figure 11 shows the performance results with other

cache configurations. We vary the associativity and size of

caches. As shown, our TAP mechanisms constantly out-

perform their corresponding mechanisms, UCP and RRIP,

in all configurations. Therefore, we can conclude that our

TAP mechanisms are robust to cache configurations.

5.7. Comparison to Other Mechanisms

In this section, we compare the TAP mechanisms with

other cache mechanisms, including TADIP [8], PIPP [27],

and TC [28] along with UCP and RRIP. TADIP is a dynamic

insertion policy (DIP) that dynamically identifies the ap-

plication characteristic and inserts single-use blocks (dead

on fill) in the LRU position to evict as early as possible.

PIPP [27] pseudo partitions cache space to each applica-

tion by having a different insert position for each applica-

tion, which is determined using a utility monitor as in UCP.

Upon hits, each block is promoted toward the MRU by one

position. PIPP also considers the streaming behavior of an

application. When an application shows streaming behav-

ior, PIPP assigns only one way and allows promotion with

a very small probability (1/128).

Figure 12 shows the speedup results. As explained in

Section 2.3.2, if cache space is not strictly partitioned, an

application that has more frequent cache accesses is fa-

vored. As a result, TADIP also favors GPGPU applications,

thereby showing only 3% improvement over LRU. On the

other hand, PIPP can be effective by handling GPGPU ap-

plications as streaming. Since most GPGPU applications

11Because of the space limitation, we cannot present the detailed data.

10

In the proceedings of the 18th IEEE International Symposium on High Performance Computer Architecture (HPCA), February 2012

1
1.02
1.04
1.06
1.08
1.1

1.12
1.14

S
p

e
e
d

u
p

 o
v
e
r
 L

R
U

Figure 12. TAP comparison to other policies.

are identified as streaming, PIPP can be effective for types

A, B, D, and E GPGPU applications. However, for type

C, due to the saturated bandwidth from off-chip accesses

by GPGPU applications, PIPP is not as effective as it is for

other types. TC has similar benefits and problems as PIPP.

On average, PIPP and TC improve performance by 4% and

6%, respectively, over LRU. Our TAP mechanisms outper-

form these previous mechanisms by exploiting GPGPU-

specific characteristics.

6. Related Work

Dynamic cache partitioning: Suh et al. [23,24] first pro-

posed dynamic cache partitioning schemes in chip multi-

processors that consider the cache utility (number of cache

hits) using a set of in-cache counters to estimate the cache-

miss rate as a function of cache size. However, since the

utility information is acquired within a cache, information

for an application cannot be isolated from other applica-

tions’ intervention.

Kim et al. [10] considered the fairness problem from

cache sharing such that slowdown due to the cache shar-

ing is uniform to all applications. Moretó et al. [13] pro-

posed MLP-aware cache partitioning, where the number of

overlapped misses will decide the priority of each cache

miss, so misses with less MLP will have a higher priority.

IPC-based cache partitioning [25] considered performance

as the miss rate varies. Even though the cache-miss rate is

strongly related to performance, it does not always match

the performance. However, since the baseline performance

model is again based on the miss rate and its penalty, it

cannot distinguish GPGPU-specific characteristics. Yu and

Petrov [29] considered bandwidth reduction through cache

partitioning. Srikantaiah et al. proposed the SHARP con-

trol architecture [22] to provide QoS while achieving good

cache space utilization. Based on the cache performance

model, each application estimates the cache requirement

and central controllers collect this information and coor-

dinate requirements from all applications. Liu et al. [12]

considered an off-chip bandwidth partitioning mechanism

on top of cache partitioning mechanisms.

LLC policies by application level management: We

have already compared TADIP [8] and PIPP [27] in Sec-

tion 5.7. Pseudo-LIFO [4] mechanisms are a new family of

replacement policies based on the fill stack rather than the

recency stack of the LRU. The intuition of pseudo-LIFO is

that most hits are from the top of the fill stack and the re-

maining hits are usually from the lower part of the stack.

Pseudo-LIFO exploits this behavior by replacing blocks in

the upper part of the stack, which are likely to be unused.

7. Conclusion

LLC management is an important problem in to-

day’s chip multi-processors and in future many-core-

heterogeneous processors. Many researchers have pro-

posed various mechanisms for throughput, fairness, or

bandwidth. However, none of the previous mechanisms

consider GPGPU-specific characteristics in heterogeneous

workloads such as underlying massive multi-threading and

the different degree of access rates between CPU and

GPGPU applications. Therefore, when CPU applications

are running with a GPGPU application, the previous mech-

anisms will not deliver the expected outcome and may even

perform worse than the LRU replacement policy. In order

to identify the characteristics of a GPGPU application, we

propose core sampling, which is a simple yet effective tech-

nique to profile a GPGPU application at run-time. By ap-

plying core sampling to UCP and RRIP and considering the

different degree of access rates, we propose the TAP-UCP

and TAP-RRIP mechanisms. We evaluate the TAP mecha-

nisms on 152 heterogeneous workloads and show that they

improve the performance by 5% and 10% compared to UCP

and RRIP and 11% and 12% to LRU. In future work, we

will consider bandwidth effects in shared cache manage-

ment on heterogeneous architectures.

Acknowledgments

Many thanks to Chang Joo Lee, Aamer Jaleel, Moinud-

din Qureshi, Yuejian Xie, Nagesh B. Lakshminarayana, Jae

Woong Sim, Puyan Lofti, other HPArch members, and the

anonymous reviewers for their suggestions and feedback on

improving the paper. We gratefully acknowledge the sup-

port of the National Science Foundation (NSF) CAREER

award 1139083, the U.S. Department of Energy including

Sandia National Laboratories, Intel Corporation, Advanced

Micro Devices, Microsoft Research, and the equipment do-

nations from NVIDIA.

References

[1] MacSim. http://code.google.com/p/macsim/.

[2] AMD. Fusion. http://sites.amd.com/us/fusion/apu/Pages/fusion.aspx.

[3] D. Chang, C. Jenkins, P. Garcia, S. Gilani, P. Aguil-

era, A. Nagarajan, M. Anderson, M. Kenny, S. Bauer,

M. Schulte, and K. Compton. ERCBench: An open-source

benchmark suite for embedded and reconfigurable comput-

ing. In FPL’10, pages 408–413, 2010.

[4] M. Chaudhuri. Pseudo-LIFO: the foundation of a new fam-

ily of replacement policies for last-level caches. InMICRO-

42, pages 401–412, 2009.

11

In the proceedings of the 18th IEEE International Symposium on High Performance Computer Architecture (HPCA), February 2012

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-

H. Lee, and K. Skadron. Rodinia: A benchmark suite for

heterogeneous computing. In IISWC’09, 2009.
[6] G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark. Ocelot:

A dynamic compiler for bulk-synchronous applications in

heterogeneous systems. In PACT-19, 2010.
[7] Intel. Sandy Bridge.

http://software.intel.com/en-us/articles/sandy-bridge/.
[8] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely,

Jr., and J. Emer. Adaptive insertion policies for managing

shared caches. In PACT-17, pages 208–219, 2008.
[9] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer. High

performance cache replacement using re-reference interval

prediction (RRIP). In ISCA-32, pages 60–71, 2010.
[10] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and

partitioning in a chip multiprocessor architecture. In PACT-

13, pages 111–122, 2004.
[11] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng.

Merge: a programming model for heterogeneous multi-core

systems. In ASPLOS XIII, 2008.
[12] F. Liu, X. Jiang, and Y. Solihin. Understanding how off-

chip memory bandwidth partitioning in chip multiprocessors

affects system performance. In HPCA-16, pages 1 –12, jan.

2010.
[13] M. Moretó, F. J. Cazorla, A. Ramı́rez, and M. Valero. MLP-

aware dynamic cache partitioning. In HiPEAC’08, volume

4917, pages 337–352. Springer, 2008.
[14] NVIDIA. Fermi: Nvidia’s next generation cuda compute

architecture.

http://www.nvidia.com/fermi.
[15] NVIDIA. Project denver.

http://blogs.nvidia.com/2011/01/project-denver-processor-

to-usher-in-new-era-of-computing/.
[16] OpenCL. The open standard for parallel programming of

heterogeneous systems.

http://www.khronos.org/opencl.
[17] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and

A. Karunanidhi. Pinpointing representative portions of large

intel R©itanium R©programs with dynamic instrumentation.

InMICRO-37, pages 81–92, 2004.
[18] Pin. A Binary Instrumentation Tool. http://www.pintool.org.
[19] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and

J. Emer. Adaptive insertion policies for high performance

caching. In ISCA-29, pages 381–391, 2007.
[20] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A

case for MLP-aware cache replacement. In ISCA-28, pages

167–178, 2006.
[21] M. K. Qureshi and Y. N. Patt. Utility-based cache parti-

tioning: A low-overhead, high-performance, runtime mech-

anism to partition shared caches. InMICRO-39, pages 423–

432, 2006.
[22] S. Srikantaiah, M. Kandemir, and Q. Wang. Sharp control:

Controlled shared cache management in chip multiproces-

sors. InMICRO-42, pages 517 –528, dec. 2009.
[23] G. Suh, S. Devadas, and L. Rudolph. A new memory mon-

itoring scheme for memory-aware scheduling and partition-

ing. In HPCA-8, pages 117–128, feb. 2002.
[24] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partition-

ing of shared cache memory. The Journal of Supercomput-

ing, 28(1):7–26, 2004.

[25] G. Suo, X. Yang, G. Liu, J. Wu, K. Zeng, B. Zhang, and

Y. Lin. IPC-based cache partitioning: An ipc-oriented dy-

namic shared cache partitioning mechanism. In ICHIT’08,

pages 399 –406, aug. 2008.

[26] The IMPACT Research Group, UIUC. Parboil benchmark

suite. http://impact.crhc.illinois.edu/parboil.php.

[27] Y. Xie and G. H. Loh. PIPP: promotion/insertion pseudo-

partitioning of multi-core shared caches. In ISCA-31, pages

174–183, 2009.

[28] Y. Xie and G. H. Loh. Scalable shared-cache management

by containing thrashing workloads. In Y. N. Patt, P. Foglia,

E. Duesterwald, P. Faraboschi, and X. Martorell, editors,

HiPEAC’10, volume 5952, pages 262–276. Springer, 2010.

[29] C. Yu and P. Petrov. Off-chip memory bandwidth minimiza-

tion through cache partitioning for multi-core platforms. In

DAC’10, pages 132–137, 2010.

Appendix

A. TAP-UCP

In this section, we provide the partitioning algorithm of

the TAP-UCP mechanism in Algorithm 1. Based on the

UCP’s look-ahead partitioning algorithm [21], we extend

it by applying core sampling (line 8:11) and cache block

lifetime normalization (line 3:5).

Algorithm 1 TAP-UCP algorithm (modified UCP)

1: balance = N

2: allocation[i] = 0 for each competing application i

3: if XSRATIO > 1 // TAP-UCP begin .

4: foreach way j in GPGPU application i do

5: way counteri[j] /= XSRATIO // TAP-UCP end

6: while balance do:

7: foreach application i do:

8: // TAP-UCP begin .

9: if application i is GPGPU application and UCP-Mask == 1

10: continue

11: // TAP-UCP end .

12: alloc = allocations[i]

13: max mu[i] = get max mu(i, alloc, balance)

14: blocks req[i] = min blocks to get max mu[i] for i

15: winner = application with maximum value of max mu

16: allocations[winner] += blocks req[winner]

17: balance -= blocks req[winner]

18: return allocations

19:

20: // get the maximum marginal utility of an application

21: get max mu(app, alloc, balance):

22: max mu = 0

23: for (ii=1;ii<=balance;ii++) do:

24: mu = get mu value(p, alloc, alloc+ii)

25: if (mu > max mu) max mu = mu

26: return max mu

27:

28: // get a marginal utility

29: get mu value(app, a, b):

30: U = change in misses for application p when the number of blocks

31: assigned to it increases from a-way to b-way (a < b)

32: return U/(b-a)

12

