
DRAM Scheduling Policy for GPGPU
Architectures Based on a Potential Function

Nagesh B. Lakshminarayana, Jaekyu Lee, Hyesoon Kim, Jinwoo Shin
School of Computer Science, Georgia Institute of Technology
{nageshbl, jaekyu.lee, hyesoon.kim, jshin72}@cc.gatech.edu

Abstract—GPGPU architectures (applications) have
several different characteristics compared to traditional
CPU architectures (applications): highly multithreaded
architectures and SIMD-execution behavior are the two
important characteristics of GPGPU computing. In this
paper, we propose a potential function that models
the DRAM behavior in GPGPU architectures and a
DRAM scheduling policy, α-SJF policy to minimize the
potential function. The scheduling policy essentially
chooses between SJF and FR-FCFS at run-time based on
the number of requests from each thread and whether
the thread has a row buffer hit.

Index Terms—GPGPU, DRAM scheduling, Potential
function

I. INTRODUCTION

GPGPU computing architectures employ multi-
threading to hide memory access latency. Nonethe-
less, DRAM scheduling is an important compo-
nent of such architectures for achieving high-
performance for memory intensive applications and
applications that have few threads. Hence, we pro-
pose a new DRAM scheduling policy, α-SJF, which
considers two important GPGPU characteristics.
The first characteristic is the presence of large-
scale multithreading. When a warp1 blocks wait-
ing for a memory access to complete, the (SIMD)
core switches to a ready warp. As the number
of ready warps varies at run-time, different cores
can tolerate memory access latencies to different
degrees. We quantify the ability to tolerate memory
access latency by a metric called tolerance which
is similar to slack or deadline. The proposed α-SJF
uses tolerance for memory request scheduling by
giving cores with low tolerance priority over cores
with high tolerance.
The second characteristic is SIMD execution, be-
cause of which a single memory instruction may
generate multiple memory requests. A warp could
also execute multiple memory instructions before

1In NVIDIA architectures, 32 threads are executed together in
lock-step as a warp and in AMD GPU architectures, 64 threads
are executed together as a wave-front.

blocking. For a warp blocked on memory accesses,
all its memory requests (may) have to be serviced
for it to resume execution, otherwise, the warp may
continue to be blocked or it may block again imme-
diately due to dependencies on unserviced memory
requests. α-SJF tries to schedule all requests from
a warp as one group, so that the warp becomes
ready in a short time. To achieve this objective, α-
SJF employs the well-known Shortest-Job-First (SJF)
scheduling policy. α-SJF represents each warp by
a queue that holds all memory requests from the
warp. These queues are considered as jobs whose
durations are equal to the length of the queues.
However, unlike the FR-FCFS (First-Ready First-
Come-First-Served) [5], [6], [8] policy, SJF does not
exploit row buffer locality in memory requests.
Thus, SJF can reduce the throughput of DRAM
which could result in performance degradation for
applications limited by the performance of DRAM.
To consider all three aspects - tolerance, SIMD-
execution, and row buffer locality - we propose
an adaptive policy, α-SJF, where the parameter α

explores the tradeoff in performance between SJF
and FR-FCFS. This policy is based on a potential
function developed by us for modeling GPGPU
memory systems. The potential function is similar
to α-MW (maximum weight) [7] algorithm in queu-
ing systems.

II. POTENTIAL FUNCTION

We propose a scheduling algorithm using the
”Lyapunov-based scheduling strategy”, i.e., we first
define an appropriate Lyapunov-Foster potential
function, and second, design a scheduling policy
to minimize the potential in a dynamic system. At
time t, the scheduler schedules the memory request
that would minimize the potential value at time
t + 1 . Here, the potential is essentially modeled
as the time required to service all the requests in
the system.

Posted to the IEEE & CSDL on 11/22/2011
DOI 10.1109/L-CA.2011.32 1556-6056/11/$26.00 © 2011 Published by the IEEE Computer Society

IEEE COMPUTER ARCHITECUTRE LETTERS

A. Potential Function of a Memory System

We first develop a potential function (r(t)) with-
out considering the GPGPU characteristics ex-
plained earlier. For simplicity, we assume that there
are only two cores, p and q, and that there is
only one DRAM bank. The developed potential
function can be easily extended to a system with
more than two cores and multiple banks. In a multi-
bank memory system, each bank schedules requests
based on the potential of requests to that bank only.
The potential function uses the following notation:
• Every warp from each core has a queue.
• qi(t) (or pi(t)): the number of memory requests in queue

i of core q (or p) at time t.

The potential function without considering toler-
ance and SIMD-execution behavior is as follows:

r(t) =

N∑

i=1

qi(t) +

N∑

i=1

pi(t) (1)

Therefore, if r(t) > 1
r(t + 1) = r(t)− 1 if the serviced memory request hits in the

DRAM row buffer.
r(t + 1) = r(t) − 1/m if the serviced memory request misses

in the DRAM row buffer.
where, m =

(service time of a request with DRAM Row buffer miss)
(service time of a request with DRAM Row buffer hit)

m denotes the penalty for serving a request with
row buffer miss. Serving a row buffer hit takes
the same time as a DRAM column access. While
the time to serve a row buffer miss is the sum of
precharge, row-access and column-access times. For
GDDR5, used in recent GPGPU systems, m is 3.

pi(t + 1) = pi(t) − 1, if a request is scheduled from the ith
queue of p and the request hits in the DRAM row buffer

pi(t + 1) = pi(t) − 1/m, if a request is scheduled from ith
queue of p and the request misses in the DRAM row buffer

pi(t + 1) = pi(t) otherwise
Queues for warps from core q are updated in the same

manner.
Here, the best scheduling policy is to choose a

qi(t) or pi(t) with a request with a row buffer hit to
minimize r(t + 1); this policy becomes FR-FCFS.

B. Potential Function considering GPGPU Characteris-
tics

Now, we extend the model to include two
GPGPU characteristics: SIMD-execution, and toler-
ance. To reflect SIMD-execution, we introduce a
new parameter, α, which is motivated by the α-
MW(maximum weight) algorithm [7] in queuing
systems.

r(t) =
NX

i=1

(qi(t)
α) +

NX

i=1

(pi(t)
α), 0 < α ≤ 1 (2)

α Parameter: The introduction of α serves two
purposes, for 0 < α < 1, a policy based on the
model will : (1) select a request from the warp
with the shortest queue (assuming all queues have
row hits) (2) try to schedule requests from the
same warp. If the queue lengths do not change
significantly between the scheduling of requests, (2)
naturally follows from (1). α models the benefit
of choosing a request from a warp with fewer
requests. This benefit exists because a warp can
resume execution only when all its requests are
serviced. When α is 1, the model becomes the same
as the one in section II-A. By having α less than
1, we can choose a memory request from a warp
with fewer requests to minimize r(t + 1). When α

is very close to 0, it is highly likely that requests
from the warp with the fewest requests will be
scheduled to minimize r(t + 1). Consequently, an
α value close to 0 favors SJF and a value close to
1 favors FR-FCFS. The optimal value of α may be
different for each benchmark - for benchmarks in
which each warp has requests to only one row, any
value of α between 0 and 1 would work, but for
benchmarks whose warps have several requests to
few rows, a small value of α may be more suitable.
However, small values of α could result in frequent
row-close and open commands being issued and
reduce performance. Depending on the phases of
long running warps in a benchmark, it may be
prudent to vary the value of α dynamically for
some benchmarks.

To reflect tolerance, we divide each term in the
RHS of Equation (2) by the tolerance of the core
to which the queue belongs. This way, queues
from cores with lower tolerance contribute more to
the potential than queues of same size from cores
with higher tolerance. The final potential function
which naturally models both tolerance and SIMD-
execution is shown below.

r(t) =
NX

i=1

(qi(t)
α)

1

ftol(cq, t)
+

NX

i=1

(pi(t)
α)

1

ftol(cp, t)
(3)

ftol(cq, t) = rq(t) × wc (4)

• rq(t) : number of ready warps, i.e., warps that are not
blocked on memory requests, in core q.

• wc: average compute work at time t that each (ready) warp
in a core can perform without blocking. We assume that wc
is constant.

• tolerance for core p is defined similarly.

IEEE COMPUTER ARCHITECUTRE LETTERS

III. SCHEDULING POLICY

We call the scheduling policy we develop to
minimize the potential function as α-SJF.
Tolerance Aware Core Selection: To keep the
hardware simple, the scheduler can first choose the
core with least tolerance, core C, and then select a
request from core C to be serviced next. An alternate
scheduling approach is for the scheduler to look at
requests from all cores and find the request that
minimizes r(t + 1) while considering tolerance as
well. However, because of the complexity of the
latter approach, we discard it.
Queue Selection: After a core is selected, we use
Equation (2), albeit with queues from the selected
core only, instead of Equation (3). At time t, we have
to service the request that results in the minimum
value of r(t + 1). This is the same as servicing the
request that results in the maximum value of (r(t)−
r(t + 1)). Hence, using the first-order Taylor series
approximation, α-SJF eventually chooses a request
from queue i∗ that satisfies Equation (5) where 1A ∈
{0, 1} is the indicator function of event row buffer
hit (H) or miss (M).

i∗ = arg min
i

qi(t)
1−α

· 1i∈H + m · qi(t)
1−α

· 1i∈M , (5)

According to Equation (5), when queue i∗ with a
row buffer hit request is selected, the same queue
i∗ will be the optimal choice until the queue has no
row buffer hits. When the queue has no more row
buffer hits, we have to compute Equation (5) again
to choose a queue (request). This computation is
the same as choosing the minimum value between
qj(t)

1−α and m · qk(t)1−α. Here, qj(t) is the smallest
queue with a row buffer hit request and qk(t) is the
smallest queue without any row buffer hit requests.
When all the queues are large, a queue with a row
buffer hit request is selected, and when some (or all)
of the queues are small, usually a request from the
shortest queue is selected. The rationale behind this
is that when all queues are large, it takes longer to
empty the queues, so it might be better to choose
a request that can be serviced in a short amount
of time. However, when there are small queues,
we can empty those queues fast and increase the
number of ready warps in a short amount of time.

IV. BUILDING α-SJF

Two factors are important for building α-SJF - (1)
Storage to store the number of requests for each

queue (warp) and (2) Computation to select the
next request to be serviced. The amount of storage
needed for α−SJF ultimately depends on the size
of the per-bank request buffers, which is 128 in our
experiments. In the extreme case, there could be 1
request each from 128 warps, this can be handled by
having 128 5-bit counters for a total of 80B/bank.
The computation for Equation (5) can be simpli-
fied using the fact that xn (for x > 0, n ≥ 0) will
be minimum for the smallest value of x. We first
identify the smallest queue with a rowhit, Hs, by
comparing only the lengths of queues with rowhits.
Similarly, we identify the smallest queue without
a rowhit, Ms. In Equation (5), it is sufficient to
compare only Hs and Ms. The comparison can be
further simplified if we take the (1 - α)th root of
the equation and store the precomputed value of
k = m(1/(1−α)) in the system. If the length of Hs

is more than k times the length of Ms, then Ms is
selected, otherwise, Hs is selected.

V. EVALUATION

A. Methodology

Simulations are done using MacSim [2], a cycle
level GPGPU simulator. The simulated architecture,
shown in Table I is based on NVIDIA’s Fermi [3].
The baseline FR-FCFS policy gives equal priority to
both reads and writes when new DRAM rows are
opened, and once a row is open, it gives priority
to reads with row hits and then writes with row
hits. On average, our baseline performs better than
a FR-FCFS policy that always prioritizes reads, since
several GPGPU benchmarks generate significant
write traffic.
To calculate the tolerance of a core, we approxi-
mate the number of ready warps with the number
of warps assigned to each core (even completed
warps are counted, but warps from retired thread
blocks are not counted). This approximation re-
duces communication between the cores and the
DRAM. The number of warps assigned to each core
is sent to the DRAM at the start of the application
and thereafter, only when it changes.

B. Results

Figure 1 shows the performance (IPC) of 6 bench-
marks with two different flavors of α-SJF for differ-
ent values of α relative to the baseline. While α-SJF

IEEE COMPUTER ARCHITECUTRE LETTERS

TABLE I
SIMULATED GPGPU ARCHITECTURE

Num. of cores 11
Front End Fetch width: 1 warp-instruction/cycle,

4KB I-cache, stall on branch, 5 cycle decode

Execution core 2 warp-instructions/cycle, Frequency: 1.2 GHz;
8-wide SIMD, in-order scheduling; latencies are
modeled according to the CUDA manual [4]

On-chip caches 16 KB software managed cache, 16 loads/2-cycle
1-cycle latency constant cache, 16 loads/2-cycle
1-cycle latency texture cache, 16 loads/2-cycle

DRAM 2 KB page, 16 banks with page interleaving,
128 Reqs/Bank, 8 channel, 102.6 GB/s, 1.6 GHz
tCL=20, tRCD=28, tRP=12 (GDDR-5 [1])

Interconnection 20-cycle fixed latency

Fig. 1. IPC of α-SJF relative to FR-FCFS

services writes only after all reads are serviced, α-
SJFW treats reads and writes equally. Also, α-SJFW
assigns writes to the warp causing the write. 2

Benchmarks (BackProp, NearestNeighbor,
StreamCluster) whose warps send requests to one
row and bank only, show benefit with at least one
configuration of α-SJF or α-SJFW since such access
patterns are exploited by SJF. OceanFFT primarily
shows benefit because the write policy of α-SJF is to
service writes only after servicing all reads. When
α-SJF or α-SJFW provides benefit, larger values
of α often show more benefit than smaller values
(0.75 Vs. 0.25 or 0.5). Since smaller α values favor
SJF, they issue more DRAM precharge and activate
commands and reduce performance slightly. In the
best case, BackProp, NearestNeighbor, OceanFFT
and StreamCluster show benefit of 3%, 9%, 11%
and 7%.
Warps in BlackScholes and CFD send requests
to multiple rows in multiple banks, and for such
benchmarks, α-SJF issues excessive precharge and
activate commands, causing performance degrada-
tion. Because of short queues, α-SJF favors SJF, but
since each warp sends requests to multiple rows,
SJF causes rows to be closed even when there are
potential row hit requests from other warps.
For complex access patterns, there should be co-
ordination between banks. However fine grained

2For GPGPU applications with excessive writes, the way
writes are handled can alter performance. In our future work
we will explore more on write scheduling policies.

co-ordination that may be necessary to schedule re-
quests from one warp to different banks in parallel
may be impractical. Also, the potential function has
to be updated to account the cost of serving row
miss requests more accurately. In the current model
it is assumed that serving a row miss over a row hit
affects the value of the potential at time t+1 only,
but serving a row miss request at time t means no
requests can be scheduled at t+1 and t+2.
Note that performance with α = 1.0 is not the
same as the baseline since α-SJF first chooses a core
and then chooses a request from the selected core.
On the other hand, the baseline FR-FCFS usually
chooses the oldest request with a row hit. If α-SJF
is implemented without the core-selection step, then
it produces the same results as FR-FCFS for α= 1.0.

VI. CONCLUSION

We present a GPGPU characteristic-aware DRAM
scheduling policy, α-SJF, that is motivated by a
Lyapunov-Foster potential function. Evaluations
show that α-SJF improves several benchmarks,
but not benchmarks such as BlackScholes and
CFD, whose warps send requests to multiple rows
and/or banks. In future work, we will overcome
the limitations of our model and develop more
enhanced scheduling policies. We will also improve
the model to identify the best α value at run-time
or based on application characteristics. We believe
that α-SJF policy and our cost model open a new
research direction in DRAM scheduling.

REFERENCES
[1] “HYNIX GDDR5 SGRAM,” http://www.hynix.co.kr/inc/
pdfDownload.jsp? path=/datasheet/pdf/graphics/
H5GQ1H24AFR(Rev1.0).pdf.

[2] “MacSim,” http://code.google.com/p/macsim/.
[3] NVIDIA, “Fermi: Nvidia’s next generation cuda compute
architecture,” http://www.nvidia.com/fermi.

[4] CUDA Programming Guide, V4.0, NVIDIA Corporation.
[5] S. Rixner, “Memory controller optimizations for web
servers,” in MICRO-37. Los Alamitos, CA, USA: IEEE
Computer Society, 2004, pp. 355–366.

[6] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.
Owens, “Memory access scheduling,” in ISCA-27. Wash-
ington, DC, USA: IEEE Computer Society, 2000.

[7] D. Shah and D. Wischik, “Switched networks with maximum
weight policies: Fluid approximation and multiplicative state
space collapse,” CoRR, vol. abs/1004.1995, 2010.

[8] W. K. Zuravleff and T. Robinson, “Controller for a syn-
chronous dram that maximizes throughput by allowing
memory requests and commands to be issued out of order,”
U.S. Patent Number 5,630,096, May 1997.

IEEE COMPUTER ARCHITECUTRE LETTERS

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

