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Abstract—Multiprocessor architectures are increasingly common these days. Unfortunately, writing correct and efficient parallel
programs remains very challenging. Part of the reason is that software tools like execution profilers for parallel programming is still
premature. At the same time, while many compilers support automatic parallelization, we find that they usually fail to parallelize C/C++
programs. In this paper, we propose Prospector, a new binary-instrumentation based profiler which dynamically detects frequently
executed loops and the data dependences that they carry. We demonstrate that Prospector is able to discover parallelizable loops that

are missed by state-of-the-art compilers.

1 INTRODUCTION

ULTIPROCESSORS are becoming mainstream computing
Mplatforms nowadays. In order to fully utilize the abun-
dant hardware parallelism, writing correct and efficient paral-
lel programs has become a pressing need. However, parallel
programming has had limited success so far compared with
sequential programming. Other than the fact that parallel
programs are fundamentally more difficult to write, we believe
that the lack of software support for parallel programming is
also a significant reason.

Ideally, compilers are the perfect tools for exploiting paral-
lelism as they could potentially perform automatic paralleliza-
tion. However, we find that even state-of-the-art compilers
miss many parallelization opportunities in C/C++ programs.
As a result, programmers are forced to manually parallelize ap-
plications. The success of manual parallelization heavily relies
on the quality of execution profilers. Unfortunately, popular
execution profilers like Gprof [1] and DevPartner [2] profile
programs at the function and/or instruction granularity. This
is insufficient for parallel programming as many programs are
instead parallelized at the loop level.

In this study, we propose Prospector, a dynamic binary-level
profiler which discovers potential parallelism by loop profiling
and data-dependence profiling. The basic idea of Prospector is
dividing the work between software tools and programmers to
maximize the overall performance benefit. Prospector provides
candidates of parallelizable loops to programmers which were
discovered by dynamic profiling. Nevertheless, the decisions
of how or whether to parallelize the identified loops are left to
programmers. In other words, Prospector aims to bridge the
gap between automatic and manual parallelization.

A typical parallelization process on a loop-intensive program
consists of the following four steps: (1) finding candidate
loops for parallelization, (2) analyzing data dependences in
the loops, (3) parallelizing the loops, and (4) verifying and
optimizing the parallelized loops. Prospector takes on the first
and second steps but leaves the third and fourth steps to
programmers for they are better in these steps. More specif-
ically, Prospector provides loop execution profile such as trip
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counts and the number of instructions executed inside loops.
It also dynamically detects loop-carried data dependences, which
must be preserved during the parallelization process. Paral-
lelization candidate loops are then reported to programmers,
who could now focus their efforts on important parallelizable
loops. Finally, they perform the actual parallelization using
their own favorite programming APIs such as OpenMP [3] and
Threading Building Blocks [4].

The rest of the paper is organized as follows. First, we pro-
vide insights into when compilers cannot identify paralleliz-
able loops. Second, we discuss our proposed data-dependence
profiling algorithm. Finally, we show the results of applying
Prospector to a number of benchmarks which cannot be auto-
matically parallelized by state-of-the-art compilers.

2 WHEN CAN’T COMPILERS PARALLELIZE CODE?

While state-of-the-art compilers support automatic paralleliza-
tion, we found that these compilers often fail to parallelize
C/C++ programs. We present some case studies to demon-
strate the limitations of automatic parallelization using Intel
C/C++ compiler 10.1.022 (ICC) [5] and the Portland C/C++
compiler 8.0 (PGC) [6]. Both compilers support automatic
vectorization and parallelization. We used them to parallelize
the OmpSCR [7] benchmark suite, a set of scientific kernels that
are already manually parallelized by the programmer using
OpenMP pragmas. We used all compiler options that would
maximize parallelization opportunities, such as interprocedu-
ral analysis and pointer analysis. For ICC, we also disabled
cost/benefit analysis so that the compiler would parallelize
whenever possible. We were unable to find the option that
controls cost/benefit analysis in PGC. Our goal is to see how
many of the manually parallelized loops can be automatically
parallelized.

Table 1 summarizes the results of automatic parallelization
with both compilers. The second column shows the number
of manually parallelized loops by the programmer. The third
and fifth columns show how many of these manually paral-
lelized loops are automatically parallelized by ICC and PGC,
respectively.1 Overall, ICC parallelizes four of the 13 manually

1. The compilers also parallelize other loops that are not parallelized
by the programmers. Nevertheless, we found that most of these
loops are either not frequently executed or not benefited much from
parallelization.



TABLE 1: OmpSCR automatic parallelization results

M[i][]j] = M

[ Benchmark [ Programmer [[ ICC# | Reason [[ PGC# | Reason |
FFT 2 1 Recursion 0 No benefit
FFT6 3 0 Pointers 0 No benefit
Jacobi 2 1 Pointers 0 Pointers
LUreduction 1 0 Pointers 0 Pointers
Mandelbrot 1 0 Reduction 0 Multi-exits
Md 2 1 Reduction 0 Pointers
Pi 1 1 N/A 0 No benefit
QuickSort 1 0 Recursion 0 No benefit
(L TOTAL T 138 [ .4 N/A [0 [ N/A ]
—fortimt—k—"0—% Ntk
2: #pragma omp parallel for
3: for (int 1 = k + 1; 1 < N; i++) {
4: L[i] (k] = M[i] (k] / M[k][k];
5: for (int j = k
6: [
7:

Fig. 1: LUreduction in OmpSCR

parallelized loops while PGC parallelizes none. Based on the
diagnostic reports from the compilers, we estimate the failing
reasons and briefly write them in the fourth and sixth columns.
We discuss the major failing reasons in more details below.

2.1 Pointer-based Accesses

C/C++ programmers often prefer using pointers even if equiv-
alent array expressions exist. C99 [8] supports restrict to
minimize pointer overlapping, but this keyword is not widely
used. For instance, the LUreduction code shown in Fig. 1 is
manually parallelized at the second-level loop among the three
nested loops. The two 2-dimensional double arrays, L and
M were dynamically allocated, being accessed via doublexx*
pointers. ICC does not parallelize the second-level loop due
to potential flow dependences and anti-dependences on M.
However, if these two arrays are statically allocated (e.g.,
double M[16] [16]), ICC can then parallelize the loop. Also,
when loop bounds are not statically known, the compilers
conservatively assume data dependences on arrays.

Pointer-linked data structures like linked lists and trees
pose an even greater challenge to compilers. In many cases,
compilers simply give up parallelization once pointer-linked
data structures are accessed in loops.

2.2 Irregular Control Flows

Compilers may not parallelize loops that have irregular control
flows such as branches, breaks, early returns, or function calls
(including indirect and virtual function calls). Mandelbrot and
Md were not parallelized for this reason. Fig. 2 shows the
Mandelbrot benchmark in which the outer loop should be par-
allelizable by realizing that outside is a reduction variable.
However, the fact that outside is conditionally updated at
line 7 and the potential early exit at line 8 confuse the compiler.
Consequently, the outer loop is not automatically parallelized.

2.3 Recursive Function Calls

FFT and Quicksort parallelize loops by recursion. The FFT code
is shown in Fig. 3. The trip count of the loop is only two, which
is equivalent to the fork-join style. However, the compilers
fail to recognize that the data accessed by the two paths are
independent. As a result, the loop is not parallelized.

1: #pragma omp parallel for reduction (+:outside)
2: for(int 1 = 0; 1 < N; i++) {

3 complex z = pt[i];

4 for (int j = 0; j < MAXITER; Jj++) {
5: z = zxz + pt[i];

6: if (abs(z) > THRESOLD) {

7: outside++;

8 break;

9 }

0: }

1: }

Fig. 2: Mandelbrot in OmpSCR
void FFT(Complex %D, int N, ...){
#pragma omp parallel for

for(i = 0; 1 <= 1; 1i++)
FFT(D + i%n, N/2, ...);

U WN

Fig. 3: The FFT benchmark in OmpSCR

3 OVERVIEW OF PROSPECTOR

Prospector performs both loop profiling and data-dependence
profiling on a given binary. In this section, we focus on the
discussion of our data-dependence profiling algorithm.

Prospector dynamically detects loop-carried Flow (Read-
After-Write or RAW in short), Anti (Write-After-Read or WAR),
and Output (Write-After-Write or WAW) dependences [9].
Since all memory addresses are resolved at runtime, Prospector
can overcome the compilers’ limitations discussed in Section 2.
In particular, Prospector handles loop-carried dependences for
loops that include nested loops, function calls, or recursions.
For each loop, the dependence profiling provides the following
information:

o Types of loop-carried dependences and the number of
their occurrences.

o Sources and targets of the dependences in terms of PC
addresses, file names and line numbers, and variable
names (if applicable).

The ultimate goal of Prospector is to provide good candi-
dates for loop parallelization. Based on the dependence results,
Prospector finds potentially parallelizable loops which have no
or few dependences. A loop with loop-carried dependences are
still potentially parallelizable under the following situations:

« Flow dependences: usually loops with flow dependences
are not parallelizable without a significant change of the
algorithm. However, some flow dependences from a scalar
variable could be simply avoided if the variable is an
induction or reduction variable.

o Output dependences: these dependences are mostly due
to temporary variables. In general, a temporary variable on
a stack is to be private to a thread after parallelization.
A loop with this kind of temporary variables should be
easily parallelizable.

o Antidependences: a number of code transformations can
be used to remove antidependences. For example, antide-
pendences on an array can be avoided by duplicating the
array.

3.1 Basic Data-Dependence Profiling Algorithm

We propose a dynamic data-dependence profiling algorithm.
For the purpose of parallelization, our algorithm profiles only
loop-carried but not loop-independent data dependences. Our
algorithm operates on three hash tables: the pending table,
history table, and conflict table. The pending table captures



the memory accesses in a single iteration of a particular loop.
The history table keeps track of the memory accesses in all
iterations of a particular loop. The conflict table remembers all
data dependences found throughout the program execution.
The algorithm is described below:

1) While executing an iteration of a loop, Prospector tem-
porarily records memory accesses of the iteration in the
pending table. To ignore loop-independent dependences,
all reads from a location which is newly defined inside
the same iteration are not recorded in the pending table.

2) On finishing an iteration, the pending table is checked
against the history table using memory addresses as keys.
All found data dependences are recorded in the conflict
table. Then the current content of the pending table is
copied to the history table and finally the pending table
is flushed.

3) When all iterations of the current loop, say L, finish, the
history table of L is merged into the pending table of the
parent loop of L (only if L is not the outermost loop in
the loop nest). Then the history table is flushed.

4) When the program finishes, Prospector reports the data
dependences recorded in the conflict table.

Discovering data dependences across nested loops is es-
sential because parallelizing an outer loop is usually more
efficient than an inner loop. Prospector handles nested-loop
dependences as if inner loops are completely unrolled. All
memory accesses of an inner loop will be copied to its parent
in Step 3 of the algorithm. Then, dependences from the nested
loops will be recursively checked by Step 2.

3.2 Heuristics for Improving Dependence Profiling

Prospector attempts to report easily removable dependences
caused by induction, reduction, and temporary variables. Com-
pilers typically use data-flow analysis to identify these vari-
ables [10]. However, since Prospector is based on dynamic
binary instrumentation, it does not have the complete flow
graph as a compiler does and hence cannot rely on data-flow
analysis. Instead, we have developed the following heuristics.

3.2.1 Induction and Reduction Variables

Many loops are bounded by a simple loop-counter variable,
also known as an induction variable (IV). An IV incurs all three
types of loop-carried dependences, but this type of variable
virtually does not stop parallelization. Prospector reports a
variable that may be an induction variable if:

o All three types of loop-carried dependences occur on an

identical memory address (i.e., a scalar variable),

o A single instruction generates the address and its content

shows a constant stride increment or decrement.

We use the above heuristics to detect reduction variables as
well. For instance, the reduction variable outside in Fig. 2
can be identified by these heuristics. However, after Prospector
identifies possible IVs and reductions, the programmer needs
to manually make a final decision whether identified ones are
correct. In the future work, we will improve this semi-auto
process by implementing a more sophisticated static analysis
for binaries.

3.2.2 Temporary Variables

In general, a temporary variable should not be considered
incurring loop-carried flow dependences; it is initialized be-
fore being used in each iteration. Thus, its data-dependence

0 1 2 3
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1: int A[4][4], BI[4][4];
2: for (int i = 1; 1 <= 2; ++i)
3: for (int j = 1; J <= 2; ++3j) {
4: A[i]1[3] = A[i]1[3-1] + 1;
5: B[i][3] = B[i+11[3] + 1; }
Fig. 4: A simple example of data-dependence profiling
TABLE 2: Memory traces and dependences of Fig. 4
5os o 5= ©
R A[1][1] = A[1]1[0] + 1; A[11[2] = A[1][1] + 1;
B[1][1] = B[2][1] + 1; B[1][2] = B[2][2] + 1;
S A[2][1] = A[2][0] + 1; A[2][2] = A[2][1] + 1;
B[2][1] = B[(3][1] + 1; | B[2][2] = B[3][2] + 1;

(a) Memory traces on the arrays (Boldfaces: conflicting accesses)

Dependences [ Note

’ Loop ‘ Var Source and Target } T [ #[ T [ #l
B[] (R,5,15)— (W, 5, 5) WAR 2
For—i i (W,2,27)(R,2,27) RAW 1 WAR 1 v
(Outer) i (W,2,27)—(W,2,27) WAW 1 v
i (W,2,27)«<(R,2,17) RAW 2 | WAR | 1 v
i (W,2,27)« (R, 4,17) RAW 2 | WAR | 1 v
1
3 W,3,12)— (W, 3,12) WAW | 1 Temp
3 (W,3,12) — (W,3,29) | iwaw | 1 Temp
5 (W,3,12) —(R,3,29) | iRAW | 2 Temp
3
ALl (W, 4, 5)—>(R,4,15) RAW 2
For3 3 (W,3,29) < (R, 3,29) RAW 2 | war | 2 v
(Inner) Jj (W,3,29)—(W,3,29) WAW 2 v
J (W,3,29)«(R,3,19) RAW 4 | WAR | 2 v
3 (W, 3,29)« (R, 4,20) RAW 2 | WAR | 2 v
Jj

(b) Dependence profiling result (Prefix i means loop-independent. The no-
tation used by the source and target of a data dependence is (Read/Write,
line number, column number), and dependence fields are pairs of its
type(T) and # of occurrence(#).)

pattern is a loop-carried output dependence followed by some
loop-independent dependences. Once this pattern is detected,
Prospector classifies the variable as a temporary variable.

When a temporary variable is detected, the programmer may
or may not need to change the code for parallelization. If
the temporary variable is allocated inside the loop as a local
variable, it would be implicitly privatized by the compiler in
the parallelized version. In contrast, if the temporary variable
is allocated outside the loop (e.g., as a static variable), then the
programmer would need to explicitly privatize the variable
prior to parallelization.

3.3 Example of Profiling a Loop Nest

The program in Fig. 4 is profiled by Prospector. Table 3a
enumerates all memory accesses on the arrays and Table 3b
summarizes the final dependence profiling results.

The array A[] has loop-carried RAWs with respect to the
inner loop, but no dependences with respect to the outer
loop. On the other hand, loop-carried WARs on B[] occur in
the outer loop while no dependences in the inner loop. Two
induction variables, i and j are found for the outer and inner
loops, respectively. The data dependences incurred at j with
respect to the outer loop are classified as temporary-variable
accesses. In this example, the programmer can parallelize the
outer loop after removing the WARs by duplicating B[]. The
inner loop is not parallelizable due to the RAWs on A[].

4 EXPERIMENTAL RESULTS

Prospector is implemented on top of the Pin binary instru-
mentation framework [11]. Prospector statically analyzes x86



TABLE 3: Did Prospector find what programmers parallelized?

B Total Parallelized || Prospector

enchmark - -
Loop # by programmers l Parallelizable [ Matched (Exec Weight) l

FET 6 2 3 7 (80%)
FFT6 28 3 16 3 (91%)
Jacobi 9 2 8 2 (94%)
LUreduction 6 1 4 1 (94%)
Mandelbrot 3 1 2 1 (99%)
Md 2 2 10 2 (97%)
I T T i T (92%)
QuickSort 7 1 4 1 (77%)

binaries to (1) extract loops and (2) insert minimal instructions
to trace loop behaviors and memory accesses. At runtime,
profiling data is collected.

4.1 OmpSCR Results

Table 3 summarizes Prospector’s results for OmpSCR. The
second and third column show the total number of loops and
the number of manually parallelized loops by the programmer,
respectively. The fourth column has the number of paralleliz-
able loops suggested by Prospector among all loops. The final
column is the intersection of the third and fourth columns,
which is the number of manually parallelized loops that are
also suggested by Prospector. This column also includes the
execution weight of matched loops, which is the number of
instructions executed in the matched loops as a percentage of
the total number of instructions.

Prospector successfully reports all the loops already paral-
lelized by the programmers as parallelizable. The execution
weight indicates that these loops dominate the execution time.
The heuristics discussed in Section 3.2 effectively eliminate
all dependences due to induction, reduction, and temporary
variables. Without these heuristics, most loops would not be
classified as parallelizable.

Our results also show that Prospector finds more paralleliz-
able loops than what the programmer has already identified.
For example, Prospector reports that 16 loops of FFT6 are paral-
lelizable while the programmer parallelizes only three of them.
We manually verified that all loops reported by Prospector
as parallelizable can be safely parallelized. The programmer
decided not to parallelize these extra loops probably because
they did not add significant performance benefits.

5 DISCUSSIONS

Prospector uses dynamic data-dependence profiling and binary
instrumentation. We discuss their pros and cons below.

The Dynamic Approach: Dynamic data-dependence profil-
ing alleviates the memory aliasing problem encountered by
static dependence analysis. We have shown that the dynamic
approach can find parallelism that is not easily discovered
by state-of-the-art compilers. However, dynamic profiling is
sensitive to inputs. Prospector can suffer from insufficient code
coverage. In the future, we will improve this by using a
statistical approach (e.g., using a set of randomized inputs).

Binary Instrumentation: Our binary-based approach allows
Prospector to be independent of compiler vendors, compiler
optimizations, and programming languages. Prospector does
not need source code as well. However, as being unable to
access high-level semantic information, filtering induction, re-
duction, and temporary variables needs extra effort. Prospector
currently resorts to runtime heuristics and leverages debugging
information to obtain symbol names and other information. In
the future, we plan to improve the static analysis capability of
Prospector and look for ways to pass high-level information
from compilers to Prospector.

6 RELATED WORK

A number of loop-profiling tools were proposed in the
past [12], [13], [14]. However, they did not implement data-
dependence profiling, which is critical for parallelization.

ParaScope Editor [15] built an interactive parallel program-
ming interface which analyzed data dependences with visu-
alization. However, this tool only targeted Fortran and used
static data-dependence analysis.

Most recently, Embla [16] also proposed using dynamic data-
dependence profiling on binaries. While Embla and Prospector
share a similar approach, they have different focuses. Embla
concentrates on exploiting fork-join parallelism by discovering
general instruction-level data dependences among function
calls. In contrast, Prospector concentrates on discovering loop-
level parallelism by detecting loop-carried dependences.

7 CONCLUSIONS AND FUTURE WORK

We have presented Prospector, a dynamic binary instrumenta-
tion tool that implements loop profiling and data-dependence
profiling. We have demonstrated that Prospector can success-
fully discover parallelizable loops that are not automatically
parallelized by state-of-the-art compilers. We believe that the
Prospector approach is an interesting alternative between au-
tomatic and manual parallelization.

In the future, we plan to improve Prospector in the fol-
lowing ways: (1) incorporating cost-benefit analysis to project
speedups, (2) optimizing the data-dependence profiling pro-
cess, and (3) overcoming the limitations of the dynamic and
binary-level approaches. We will also extend Prospector to
explore SIMD-level parallelism.
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