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Abstract
Tuning code for GPGPU and other emerging many-core platforms
is a challenge because few models or tools can precisely pinpoint
the root cause of performance bottlenecks. In this paper, we present
a performance analysis framework that can help shed light on
such bottlenecks for GPGPU applications. Although a handful of
GPGPU profiling tools exist, most of the traditional tools, unfor-
tunately, simply provide programmers with a variety of measure-
ments and metrics obtained by running applications, and it is of-
ten difficult to map these metrics to understand the root causes of
slowdowns, much less decide what next optimization step to take to
alleviate the bottleneck. In our approach, we first develop an analyt-
ical performance model that can precisely predict performance and
aims to provide programmer-interpretable metrics. Then, we apply
static and dynamic profiling to instantiate our performance model
for a particular input code and show how the model can predict the
potential performance benefits. We demonstrate our framework on
a suite of micro-benchmarks as well as a variety of computations
extracted from real codes.

Categories and Subject Descriptors C.1.4 [Processor Archi-
tectures]: Parallel Architectures; C.4 [Performance of Systems]:
Modeling techniques; C.5.3 [Computer System Implementation]:
Microcomputers

General Terms Measurement, Performance

Keywords CUDA, GPGPU architecture, Analytical model, Per-
formance benefit prediction, Performance prediction

1. Introduction
We consider the general problem of how to guide programmers
or high-level performance analysis and transformation tools with
performance information that is precise enough to identify, under-
stand, and ultimately fix performance bottlenecks. This paper pro-
poses a performance analysis framework that consists of an ana-
lytical model, suitable for intra-node analysis of platforms based
on graphics co-processors (GPUs), and static and dynamic profil-
ing tools. We argue that our framework is suitable for performance
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Figure 1. Performance speedup when some combinations of four
independent optimization techniques are applied to a baseline ker-
nel.

diagnostics through examples and case studies on real codes and
systems.

Consider an experiment in which we have a computational ker-
nel implemented on a GPU and a set of n independent candidate
optimizations that we can apply. Figure 1 shows the normalized
performance when some combinations of four independent opti-
mization techniques are applied to such a kernel, as detailed in Sec-
tion 6.2.1. The leftmost bar is the parallelized baseline. The next
four bars show the performance of the kernel with exactly one of
four optimizations applied. The remaining bars show the speedup
when one more optimization is applied on top of Shared Memory,
one of the optimizations.

The figure shows that each of four optimizations improves per-
formance over the baseline, thereby making them worth apply-
ing to the baseline kernel. However, most of programmers can-
not estimate the degree of benefit of each optimization. Thus, a
programmer is generally left to use intuition and heuristics. Here,
Shared Memory optimization is a reasonable heuristic starting
point, as it addresses the memory hierarchy.

Now imagine a programmer who, having applied Shared
Memory, wants to try one more optimization. If each optimization
is designed to address a particular bottleneck or resource constraint,
then the key to selecting the next optimization is to understand to
what extent each bottleneck or resource constraint affects the cur-
rent code. In our view, few, if any, current metrics and tools for
GPUs provide this kind of guidance. For instance, the widely used
occupancy metric on GPUs indicates only the degree of thread-
level parallelism (TLP), but not the degree of memory-level or
instruction-level parallelism (MLP or ILP).

In our example, the kernel would not be improved much
if the programmer tries the occupancy-enhancing T ight since
Shared Memory has already removed the same bottleneck that



T ight would have. On the other hand, if the programmer decides to
apply SFU , which makes use of special function units (SFUs)
in the GPU, the kernel would be significantly improved since
Shared Memory cannot obtain the benefit that can be achieved
by SFU .

Our proposed framework, GPUPerf, tries to provide such under-
standing. GPUPerf quantitatively estimates potential performance
benefits along four dimensions: inter-thread instruction-level paral-
lelism (Bitilp), memory-level parallelism (Bmemlp), computing effi-
ciency (Bfp), and serialization effects (Bserial). These four metrics
suggest what types of optimizations programmers (or even compil-
ers) should try first.

GPUPerf has three components: a frontend data collector, an
analytical model, and a performance advisor. Figure 2 summa-
rizes the framework. GPUPerf takes a CUDA kernel as an in-
put and passes the input to the frontend data collector. The fron-
tend data collector performs static and dynamic profiling to ob-
tain a variety of information that is fed into our GPGPU analytical
model. The analytical model greatly extends an existing model, the
MWP-CWP model [9], with support for a new GPGPU architecture
(“Fermi”) and addresses other limitations. The performance advi-
sor digests the model information and provides interpretable met-
rics to understand potential performance bottlenecks. That is, by
inspecting particular terms or factors in the model, a programmer
or an automated tool could, at least in principle, use the information
directly to diagnose a bottleneck and perhaps prescribe a solution.
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Figure 2. An overview of GPUPerf.

For clarity, this paper presents the framework in a “reverse or-
der.” It first describes the key potential benefit metrics output by
the performance advisor to motivate the model, then explains the
GPGPU analytical model, and lastly explains the detailed mech-
anisms of the frontend data collector. After that, to evaluate the
framework, we apply it to six different computational kernels and
44 different optimizations for a particular computation. Further-
more, we carry out these evaluations on actual GPGPU hardware,
based on the newest NVIDIA C2050 (“Fermi”) system. The results
show that our framework successfully differentiates the effects of
various optimizations while providing interpretable metrics for po-
tential bottlenecks.

In summary, our key contributions are as follows:

1. We present a comprehensive performance analysis framework,
GPUPerf, that can be used to predict performance and under-
stand bottlenecks for GPGPU applications.

2. We propose a simple yet powerful analytical model that is an
enhanced version of the MWP-CWP model [9]. Specifically,
we focus on improving the differentiability across distinct opti-
mization techniques. In addition, by following the work-depth-
graph formalism, our model provides a way to interpret model
components and relates them directly to performance bottle-
necks.

3. We propose several new metrics to predict potential perfor-
mance benefits.

2. MWP-CWP Model
The analytical model developed for GPUPerf is based on the one
that uses MWP and CWP [9]. We refer to this model as the MWP-
CWP model in this paper. The MWP-CWP model takes the fol-
lowing inputs: the number of instructions, the number of memory

requests, and memory access patterns, along with GPGPU archi-
tecture parameters such as DRAM latency and bandwidth. The to-
tal execution time for a given kernel is predicted based on the in-
puts. Although the model predicts execution cost fairly well, the
understanding of performance bottlenecks from the model is not so
straightforward. This is one of the major motivations of GPUPerf.

2.1 Background on the MWP-CWP Model

Figure 3 shows the MWP-CWP model. The detailed descriptions
of the model can be found in [9]. Here, we breifly describe the
key concepts of the model. The equations of MWP and CWP
calculations are also presented in Appendix A.1
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Figure 3. MWP-CWP model. (left: MWP < CWP, right: MWP >
CWP)

Memory Warp Parallelism (MWP): MWP represents the
maximum number of warps2 per streaming multiprocessor (SM) 3

that can access the memory simultaneously. MWP is an indicator
of memory-level parallelism that can be exploited but augmented
to reflect GPGPU SIMD execution characteristics. MWP is a func-
tion of the memory bandwidth, certain parameters of memory op-
erations such as latency, and the number of active warps in an
SM. Roughly, the cost of memory operations is modeled to be the
number of memory requests over MWP. Hence, modeling MWP
correctly is very critical.

Computation Warp Parallelism (CWP): CWP represents the
number of warps that can finish their one computation period dur-
ing one memory waiting period plus one. For example, in Figure 3,
CWP is 5 in both cases. One computation period is simply the
average computation cycles per one memory instruction. CWP is
mainly used to classify three cases, which are explained below.

Three Cases: The key component of the MWP-CWP model
is identifying how much (and/or which) cost can be hidden by
multi-threading in GPGPUs. Depending on the relationship be-
tween MWP and CWP, the MWP-CWP model classifies the three
cases described below.

1. MWP < CWP: The cost of computation is hidden by memory
operations, as shown in the left figure. The total execution cost
is determined by memory operations.

2. MWP >= CWP: The cost of memory operations is hidden by
computation, as shown in the right figure. The total execution
cost is the sum of computation cost and one memory period.

3. Not enough warps: Due to the lack of parallelism, both compu-
tation and memory operation costs are only partially hidden.

2.2 Improvements over the MWP-CWP Model

Although the baseline model provides good prediction results for
most GPGPU applications, some limitations make the model obliv-
ious to certain optimization techniques. For instance, it assumes

1 MWP and CWP calculations are updated for the analytical model in
GPUPerf.
2 Warp, a group of 32 threads, is a unit of execution in a GPGPU.
3 SM and core are used interchangeably in this paper.



that a memory instruction is always followed by consecutive de-
pendent instructions; hence, MLP is always one. Also, it ideally
assumes that there is enough instruction-level parallelism. Thus, it
is difficult to predict the effect of prefetching or other optimizations
that increase instruction/memory-level parallelism.

Cache Effect: Recent GPGPU architectures such as NVIDIA’s
Fermi GPGPUs have a hardware-managed cache memory hierar-
chy. Since the baseline model does not model cache effects, the
total memory cycles are determined by multiplying memory re-
quests and the average global memory latency. We simply model
the cache effect by calculating average memory access latency
(AMAT); the total memory cycles are calculated by multiplying
memory requests and AMAT.

SFU Instruction: In GPGPUs, expensive math operations such
as transcendentals and square roots can be handled with dedicated
execution units called special function units (SFUs). Since the
execution of SFU instructions can be overlapped with other floating
point (FP) instructions, with a good ratio between SFU and FP
instructions, the cost of SFU instructions can almost be hidden.
Otherwise, SFU contention can hurt performance. We model these
characteristics of special function units.

Parallelism: The baseline model assumes that ILP and TLP are
enough to hide instruction latency, thereby using the peak instruc-
tion throughput when calculating computation cycles. However,
when ILP and TLP are not high enough to hide the pipeline latency,
the effective instruction throughput is less than the peak value. In
addition, we incorporate the MLP effect into the new model. MLP
can reduce total memory cycles.

Binary-level Analysis: The MWP-CWP model only uses infor-
mation at the PTX level.4 Since there are code optimization phases
after the PTX code generation, using only the PTX-level informa-
tion prevents precise modeling. We develop static analysis tools to
extract the binary-level information and also utilize hardware per-
formance counters to address this issue.

3. Performance Advisor
The goal of the performance advisor is to convey performance bot-
tleneck information and estimate the potential gains from reducing
or eliminating these bottlenecks. It does so through four potential
benefit metrics, whose impact can be visualized using a chart as
illustrated by Figure 4. The x-axis shows the cost of memory op-
erations and the y-axis shows the cost of computation. An applica-
tion code is a point on this chart (here, point A). The sum of the
x-axis and y-axis values is the execution cost, but because compu-
tation and memory costs can be overlapped, the final execution cost
of Texec (e.g., wallclock time) is a different point, A’, shifted rela-
tive to A. The shift amount is denoted as Toverlap. A diagonal line
through y = x divides the chart into compute bound and memory
bound zones, indicating whether an application is limited by com-
putation or memory operations, respectively. From point A’, the
benefit chart shows how each of the four different potential benefit
metrics moves the application execution time in this space.

A given algorithm may be further characterized by two addi-
tional values. The first is the ideal computation cost, which is gen-
erally the minimum time to execute all of the essential computa-
tional work (e.g., floating point operations), denoted Tfp in Fig-
ure 4. The second is the minimum time to move all data from the
DRAM to the cores, denoted by Tmem min. When memory requests
are prefetched or all memory service is hidden by other computa-
tion, we might hope to hide or perhaps eliminate all of the mem-
ory operation costs. Ideally, an algorithm designer or programmer
could provide estimates or bounds on Tfp and Tmem min. However,

4 PTX is an intermediate representation used before register allocation and
instruction scheduling.
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Figure 4. Potential performance benefits, illustrated.

when the information is not available, we could try to estimate Tfp
from, say, the number of executed FP instructions in the kernel.5

Suppose that we have a kernel, at point A’, having different
kinds of inefficiencies. Our computed benefit factors aim to quan-
tify the degree of improvement possible through the elimination of
these inefficiencies. We use four potential benefit metrics, summa-
rized as follows.

• Bitilp indicates the potential benefit by increasing inter-thread
instruction-level parallelism.

• Bmemlp indicates the potential benefit by increasing memory-
level parallelism.

• Bfp represents the potential benefit when we ideally remove
the cost of inefficient computation. Unlike other benefits, we
cannot achieve the 100% of Bfp because a kernel must have
some operations such as data movements.

• Bserial shows the amount of savings when we get rid of the
overhead due to serialization effects such as synchronization
and resource contention.

Bitilp, Bfp, and Bserial are related to the computation cost, while
Bmemlp is associated with the memory cost. These metrics are
summarized in Table 1.

Name Description Unit

Texec Final predicted execution time cost
Tcomp Computation cost cost
Tmem Memory cost cost
Toverlap Overlapped cost due to multi-threading cost
T ′

mem Tmem − Toverlap cost
Tfp Ideal Tcomp ideal cost
Tmem min Ideal Tmem ideal cost

Bserial Benefits of removing serialization effects benefit
Bitilp Benefits of increasing inter-thread ILP benefit
Bmemlp Benefits of increasing MLP benefit
Bfp Benefits of improving computing effi-

ciency
benefit

Table 1. Summary of performance guidance metrics.

5 In our evaluation we also use the number of FP operations to calculate Tfp.



4. GPGPU Analytical Model
In this section we present an analytical model to generate the
performance metrics described in Section 3. The input parameters
to the analytical model are summarized in Table 2.

4.1 Performance Prediction

First, we define Texec as the overall execution time, which is a
function of Tcomp, Tmem, and Toverlap, as shown in Equation (1).

Texec = Tcomp + Tmem − Toverlap (1)

As illustrated in Figure 4, the execution time is calculated by
adding computation and memory costs while subtracting the over-
lapped cost due to the multi-threading feature in GPGPUs. Each of
the three inputs of Equation (1) is described in the following.

4.1.1 Calculating the Computation Cost, Tcomp

Tcomp is the amount of time to execute compute instructions (ex-
cluding memory operation waiting time, but including the cost
of executing memory instructions) and is evaluated using Equa-
tions (2) through (10).

We consider the computation cost as two components, a paral-
lelizable base execution time plus overhead costs due to serializa-
tion effects:

Tcomp = Wparallel︸ ︷︷ ︸
Base

+ Wserial︸ ︷︷ ︸
Overhead

. (2)

The base time, Wparallel, accounts for the number of operations and
degree of parallelism, and is computed from basic instruction and
hardware values as shown in Equation (3):

Wparallel =
#insts × #total warps

#active SMs︸ ︷︷ ︸
Total instructions per SM

× avg inst lat
ITILP︸ ︷︷ ︸

Effective throughput

. (3)

The first factor in Equation (3) is the total number of instructions
that an SM executes, and the second factor indicates the effective
instruction throughput. Regarding the latter, the average instruction
latency, avg inst lat, can be approximated by the latency of FP op-
erations in GPGPUs. When necessary, it can also be precisely cal-
culated by taking into account the instruction mix and the latency
of individual instructions on the underlying hardware. The value,
ITILP, models the possibility of inter-thread instruction-level paral-
lelism in GPGPUs. In particular, instructions may issue from mul-
tiple warps on a GPGPU; thus, we consider global ILP (i.e., ILP
among warps) rather than warp-local ILP (i.e., ILP of one warp).
That is, ITILP represents how much ILP is available among all ex-
ecuting to hide the pipeline latency.

ITILP can be obtained as follows:

ITILP = min (ILP ×N, ITILPmax) (4)

ITILPmax =
avg inst lat

warp size/SIMD width
, (5)

where N is the number of active warps on one SM, and SIMD width
and warp size represent the number of vector units and the num-
ber of threads per warp, respectively. On the Fermi architecture,
SIMD width = warp size = 32. ITILP cannot be greater than
ITILPmax, which is the ITILP required to fully hide pipeline la-
tency.

We model serialization overheads, Wserial from Equation (2), as

Wserial = Osync + OSFU + OCFdiv + Obank, (6)

where each of the four terms represents a source of overhead—
synchronization, SFU resource contention, control-flow diver-
gence, and shared memory bank conflicts. We describe each over-
head below.

Synchronization Overhead, Osync: When there is a synchro-
nization point, the instructions after the synchronization point can-
not be executed until all the threads reach the point. If all threads
are making the same progress, there would be little overhead for
the waiting time. Unfortunately, each thread (warp) makes its own
progress based on the availability of source operands; a range of
progress exists and sometimes it could be wide. The causes of
this range are mainly different DRAM access latencies (delaying
in queues, DRAM row buffer hit/miss etc.) and control-flow diver-
gences. As a result, when a high number of memory instructions
and synchronization instructions exist, the overhead increases as
shown in Equations (7) and (8):

Osync =
#sync insts × #total warps

#active SMs
× Fsync (7)

Fsync = Γ× avg DRAM lat × #mem insts
#insts︸ ︷︷ ︸

Mem. ratio

, (8)

where Γ is a machine-dependent parameter. We chose 64 for the
modeled architecture based on microarchitecture simulations.

SFU Resource Contention Overhead, OSFU: This cost is
mainly caused by the characteristics of special function units
(SFUs) and is computed using Equations (9) and (10) below. As
described in Section 2.2, the visible execution cost of SFU in-
structions depends on the ratio of SFU instructions to others and
the number of execution units for each instruction type. In Equa-
tion (9), the visibility is modeled by FSFU, which is in [0, 1]. A value
of FSFU = 0 means none of the SFU execution costs is added to the
total execution time. This occurs when the SFU instruction ratio is
less than the ratio of special function to SIMD units as shown in
Equation (10).

OSFU =
#SFU insts × #total warps

#active SMs
× warp size

SFU width︸ ︷︷ ︸
SFU throughput

×FSFU

(9)

FSFU = min

⎧⎪⎪⎨
⎪⎪⎩max

⎧⎪⎪⎨
⎪⎪⎩

#SFU insts
#insts︸ ︷︷ ︸

SFU inst. ratio

− SFU width
SIMD width︸ ︷︷ ︸

SFU exec. unit ratio

, 0

⎫⎪⎪⎬
⎪⎪⎭ , 1

⎫⎪⎪⎬
⎪⎪⎭ .

(10)

Control-Flow Divergence and Bank Conflict Overheads,
OCFdiv and Obank: The overhead of control-flow divergence (OCFdiv)
is the cost of executing additional instructions due, for instance, to
divergent branches [9]. This cost is modeled by counting all the
instructions in both paths. The cost of bank conflicts (Obank) can
be calculated by measuring the number of shared memory bank
conflicts. Both OCFdiv and Obank can be measured using hardware
counters. However, for control-flow divergence, we use our instruc-
tion analyzer (Section 5.2), which provides more detailed statistics.

4.1.2 Calculating the Memory Access Cost, Tmem

Tmem represents the amount of time spent on memory requests and
transfers. This cost is a function of the number of memory requests,
memory latency per each request, and the degree of memory-level
parallelism. We model Tmem using Equation (11),

Tmem =
#mem insts × #total warps

#active SMs × ITMLP︸ ︷︷ ︸
Effective memory requests per SM

×AMAT, (11)



where AMAT models the average memory access time, accounting
for cache effects. We compute AMAT using Equations (12) and (13):

AMAT = avg DRAM lat × miss ratio + hit lat (12)

avg DRAM lat = DRAM lat + (avg trans warp − 1)×Δ.

(13)

avg DRAM lat represents the average DRAM access latency and
is a function of the baseline DRAM access latency, DRAM lat,
and transaction departure delay, Δ. In GPGPUs, memory requests
can split into multiple transactions. In our model, avg trans warp
represents the average number of transactions per memory request
in a warp. Note that it is possible to expand Equation (12) for
multiple levels of cache, which we omit for brevity.

We model the degree of memory-level parallelism through a
notion of inter-thread MLP, denoted ITMLP, which we define as the
number of memory requests per SM that is concurrently serviced.
Similar to ITILP, memory requests from different warps can be
overlapped. Since MLP is an indicator of intra-warp memory-level
parallelism, we need to consider the overlap factor of multiple
warps. ITMLP can be calculated using Equations (14) and (15).

ITMLP = min
(

MLP × MWPcp,MWPpeak bw

)
(14)

MWPcp = min (max (1,CWP − 1) ,MWP) (15)

In Equation (14), MWPcp represents the number of warps whose
memory requests are overlapped during one computation period.
As described in Section 2.1, MWP represents the maximum num-
ber of warps that can simultaneously access memory. However, de-
pending on CWP, the number of warps that can concurrently issue
memory requests is limited.

MWPpeak bw represents the number of memory warps per SM
under peak memory bandwidth. Since the value is equivalent to the
maximum number of memory requests attainable per SM, ITMLP
cannot be greater than MWPpeak bw.

4.1.3 Calculating the Overlapped Cost, Toverlap

Toverlap represents how much the memory access cost can be hidden
by multi-threading. In the GPGPU execution, when a warp issues
a memory request and waits for the requested data, the execution
is switched to another warp. Hence, Tcomp and Tmem can be over-
lapped to some extent. For instance, if multi-threading hides all
memory access costs, Toverlap will equal Tmem. That is, in this case
the overall execution time, Texec, is solely determined by the com-
putation cost, Tcomp. By contrast, if none of the memory accesses
can be hidden in the worst case, then Toverlap is 0.

We compute Toverlap using Equations (16) and (17). In these
equations, Foverlap approximates how much Tcomp and Tmem over-
lap and N represents the number of active warps per SM as in Equa-
tion (4). Note that Foverlap varies with both MWP and CWP. When
CWP is greater than MWP (e.g., an application limited by memory
operations), then Foverlap becomes 1, which means all of Tcomp can
be overlapped with Tmem. On the other hand, when MWP is greater
than CWP (e.g., an application limited by computation), only part
of computation costs can be overlapped.

Toverlap = min(Tcomp × Foverlap, Tmem) (16)

Foverlap =
N − ζ

N
, ζ =

{
1 (CWP ≤ MWP)
0 (CWP > MWP)

(17)

4.2 Potential Benefit Prediction

As discussed in Section 3, the potential benefit metrics indicate
performance improvements when it is possible to eliminate the
delta between the ideal performance and the current performance.
Equations (18) and (19) are used to estimate the ideal compute and

Model Parameter Definition Source
#insts # of total insts. per warp (excluding SFU insts.) Sec. 5.1
#mem insts # of memory insts. per warp Sec. 5.1
#sync insts # of synchronization insts. per warp Sec. 5.2
#SFU insts # of SFU insts. per warp Sec. 5.2
#FP insts # of floating point insts. per warp Sec. 5.2
#total warps Total number warps in a kernel Sec. 5.1
#active SMs # of active SMs Sec. 5.1
N # of concurrently running warps on one SM Sec. 5.1
AMAT Average memory access latency Sec. 5.1
avg trans warp Average memory transactions per memory request Sec. 5.2
avg inst lat Average instruction latency Sec. 5.2
miss ratio Cache miss ratio Sec. 5.1
size of data The size of input data source code
ILP Inst.-level parallelism in one warp Sec. 5.3
MLP Memory-level parallelism in one warp Sec. 5.3
MWP (Per SM) Max #warps that can concurrently access memory Appx.A
CWP (Per SM) # of warps executed during one mem. period plus one Appx.A
MWPpeak bw (Per SM) MWP under peak memory BW Appx.A

warp size # of threads per warp 32
Γ Machine parameter for sync cost 64
Δ Transaction departure delay Table 3
DRAM lat Baseline DRAM access latency Table 3
FP lat FP instruction latency Table 3
hit lat Cache hit latency Table 3
SIMD width # of scalar processors (SPs) per SM Table 3
SFU width # of special function units (SFUs) per SM Table 3

Table 2. Summary of input parameters used in equations.

memory performance (time). Alternatively, an algorithm developer
might provide these estimates.

Tfp =
#FP insts × #total warps × FP lat

#active SMs × ITILP
(18)

Tmem min =
size of data × avg DRAM lat

MWPpeak bw
(19)

Then, the benefit metrics are obtained using Equations (20)-(23),
where ITILPmax is defined in Equation (5):

Bitilp = Wparallel −
#insts × #total warps × avg inst lat

#active SMs × ITILPmax
(20)

Bserial = Wserial (21)

Bfp = Tcomp − Tfp − Bitilp − Bserial (22)

Bmemlp = max
(
T ′

mem − Tmem min, 0
)
. (23)

5. Frontend Data Collector
As described in Section 4, the GPGPU analytical model requires a
variety of information on the actual binary execution. In our frame-
work, the frontend data collector does the best in accurately ob-
taining various types of information that instantiates the analytical
model. For this purpose, the frontend data collector uses three dif-
ferent tools/ways to extract the information: compute visual pro-
filer, instruction analyzer (IA), and static analysis tools, as shown
in Figure 5.

Compute 
Visual Profiler

Instruction 
Analyzer (IA)

Static Analysis
Tools

#insts,
occupancy, ...

#SFU_insts,  ...

ILP, MLP, ....

CUDA Executable

Ocelot Executable

CUDA Binary
(CUBIN)

To Analytical

Model

Figure 5. Frontend data collector.



5.1 Compute Visual Profiler

We use Compute Visual Profiler [14] to access GPU hardware per-
formance counters. It provides accurate architecture-related infor-
mation: occupancy, total number of global load/store requests, the
number of registers used in a thread, the number of DRAM read-
s/writes and cache hits/misses.

5.2 Instruction Analyzer

Although the hardware performance counters provide accurate run-
time information, we still cannot obtain some crucial information.
For example, instruction category information, which is essential
for considering the effects of synchronization and the overhead of
SFU utilization, is not available.

Our instruction analyzer module is based on Ocelot [6], a dy-
namic compilation framework that emulates PTX execution. The
instruction analyzer collects instruction mixture (SFU, Sync, and
FP instructions) and loop information such as loop trip counts. The
loop information is used to combine static analysis from CUDA bi-
nary (CUBIN) files and run-time execution information. Although
there is code optimization from PTX to CUBIN, we observe that
most loop information still remains the same.

5.3 Static Analysis Tools

Our static analysis tools work on PTX, CUBIN and the information
from IA. The main motivation for using static analysis is to obtain
ILP and MLP information in binaries rather than in PTX code.
Due to instruction scheduling and register allocation, which are
performed during target code generation, the degree of parallelism
between PTX and CUBIN can be significantly different. Hence, it
is crucial to calculate ILP/MLP on binaries.

First, we disassemble a target CUBIN file with cuobjdump [13].
We then build a control flow graph (CFG) and def-use chains with
the disassembled instructions. The number of memory requests
between a load request (def) and the first instruction that sources the
memory request (use) is a local MLP. The average of local MLPs
in a basic block is the basic block MLP. For ILP, we group the
instructions that can be scheduled together within a basic block. (If
an instruction has true dependencies to any of other instructions,
they cannot be issued at the same cycle.) Then, the basic block ILP
is the number of instructions in the basic block over the number of
groups in the block.

Second, we combine this static ILP/MLP information with the
dynamic information from IA.6 Basically, we give high weights to
ILP/MLP based on basic block execution frequency. The following
equation shows the exact formula. In the equation, ILP/MLP for
basic block (BB) K is denoted as ILP(MLP)K. ILP(MLP)AVG is
the same as ILP/MLP in Equations (4) and (14).

ILP(MLP)AVG =
#BBs∑
K=1

ILP(MLP)K × #accesses to BBK
#basic blocks

6. Results
Evaluation: Our evaluation consists of two major parts.

• We show that our GPGPU analytical model improves over the
prior state-of-the-art for current generation Fermi-based GPUs
(Section 6.1). Since this model is the basis for our benefit
analysis, validating is critical.

• We show how the benefit metrics can be applied to a variety
of GPGPU codes (Sections 6.2–6.4). Our goal is to see to what

6 We match loop information from IA and basic block information from
static analysis to estimate the basic block execution counts.

extent our benefit metrics can help assess potential performance
bottlenecks and candidate optimizations.

Processor Model: For all of our experiments, we use NVIDIA’s
Tesla C2050, whose hardware specifications appear in Table 3.
Memory model parameters used in this study (DRAM lat and Δ)
are measured using known techniques [9], while cache latencies
and FP latency are obtained using micro-benchmarks which we
design for this study. We use the default L1/shared configuration
where the cache sizes are 16KB and 48KB, respectively. We use
the CUDA 3.2 Toolkit.

Workloads: For Section 6.1, we use micro-benchmarks that are
designed to have different ILP values and FMA (fused multiply-
add) instructions. For real code, we select the workloads using the
following criteria: kernels from a full application (Section 6.2),
CUDA SDK (Section 6.3), and a public benchmark suite (Sec-
tion 6.4).

Model Tesla C2050
Processor clock 1.15 GHz
Memory bandwidth 144.0 GB/s
Compute capability 2.0
The number of SMs 14
The number of SPs (per SM) 32
The number of SFUs (per SM) 4
Shared memory (per SM) 48 KB
L1 cache (per SM) 16 KB
L2 cache 768 KB

FP latency, FP lat 18
DRAM latency, DRAM lat 440
Departure delay, Δ 20
L1 cache latency 18
L2 cache latency 130

Table 3. The specifications of the GPGPU and model parameters
used in this study.

6.1 Improvements of the Analytical Model

Inter-Thread ILP, ITILP in Eq. (4): Figure 6 shows the perfor-
mance measured on Tesla C2050 when we have different ILP and
TLP for the same kernel. For instance, ILP=2 indicates that all
warps have the same ILP value of two. The x-axis represents TLP
as the number of active warps per SM, and the y-axis is normal-
ized to the performance when both ILP and TLP are one. The re-
sult shows that increasing ITILP leads to a performance improve-
ment up to some points by providing more parallelism, but after the
points, it does not help improve performance by merely increasing
ILP or TLP. In the graph, the performance becomes stable at the
points where ITILP is around 18-24. (The number of warps is 18
for ILP=1, 10 for ILP=2, and eight for ILP=3.) As shown in Fig-
ure 7, our analytical model captures this effect and provides better
analysis by modeling ITILP, which is not considered in the MWP-
CWP model. Figure 7 also shows that Bitilp adequately estimates
the possible performance gains by providing inter-thread ILP.

Awareness of SFU Contentions, OSFU in Eq. (9): Figure 8
shows the execution time and Bserial when we vary the number of
SFU instructions per eight FMA instructions. The line graphs rep-
resent the actual execution and the predicted time of MWP-CWP
and new models, while the bar graph shows Bserial normalized to
the predicted time of each variation. The result shows that the cost
of SFU instructions is almost hidden when there is one SFU in-
struction per eight FMAs. As the number of SFU instructions in-
creases, however, the execution of SFU instructions significantly
contributes to the total execution time, and our model adequately
reflects the overhead cost while the MWP-CWP model fails to pre-
dict the overhead. In addition, Bserial indicates that the serialization
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Figure 6. ITILP micro-benchmark on Tesla C2050.
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Figure 8. The execution time and Bserial when increasing the num-
ber of SFU instructions per eight FMA instructions.

effects might be the performance bottleneck, which implies that the
ratio of SFU and FMA instructions is not optimal.

Code optimization effects: As we have discussed in Sec-
tion 2.2, our model improves on the previously proposed the MWP-
CWP model in a way that can differentiate distinct optimizations.
Figure 9 shows the comparisons between the two models for real
code of FMMU (Section 6.2). The y-axis shows the performance
improvements when different optimization techniques are applied
to the baseline in FMMU . The result shows that our model suc-
cessfully predicts the performance impact resulting from code op-
timizations, but the MWP-CWP model often estimates the benefit
as less than the actual one, or even the opposite. For instance, al-
though prefetching improves performance in real hardware, the
MWP-CWP model predicts that the optimization leads to a perfor-
mance degradation. In general, as shown in Figure 9, our model
can estimate the performance delta resulting from several code
optimizations more accurately than the MWP-CWP model.
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Figure 9. The performance improvement prediction over the base-
line FMMU of the MWP-CWP and our models.

6.2 Case Study of Using the Model: FMMU

We apply our model to an implementation of the fast multipole
method (FMM), an O(n) approximation method for n-body com-
putations, which normally scale as O(n2) [8]. We specifically con-
sider the most expensive phase of the FMM, called the U-list phase
(FMMU ), which is a good target for GPU acceleration. The FMMU
phase appears as pseudocode in Algorithm 1.

Algorithm 1 FMMU algorithm

1: for each target leaf node, B do
2: for each target point t ∈ B do
3: for each neighboring source node, S ∈ U(B) do
4: for each source point s ∈ S do
5: φt += F (s, t) /* E.g., force evaluation */

The parallelism and dependency structure are straightforward.
The loop iterations at line 1 are completely independent, as are
those at line 2. Using an owner-computes assignment of threads
to targets is natural. The loop in lines 4–5 implements a reduc-
tion. There is considerable data reuse; the sizes of B and S in Al-
gorithm 1 are always bounded by some constant q, and there are
O(q2) operations on O(q) data, where q is typically O(1, 000). The
FMMU is typically compute bound.

6.2.1 FMM Optimizations

Prefetching (pref): Prefetching generates memory requests in ad-
vance of their use to avoid stalls. For FMMU , the data access pat-
terns are fairly predictable. We consider prefetching s ∈ S into
registers. On current GPUs, explicit software prefetching can help
since there are no hardware prefetchers. Prefetching can increase
memory- and instruction-level parallelism.

Use Shared Memory (shmem): To limit register pressure, we
can use shared memory (scratchpad space) instead. In FMMU , it is
natural to use this space to store large blocks of S. This approach
yields two benefits. First, we increase memory-level parallelism.
Second, we increase the reuse of source points for all targets.

Unroll-and-Jam (ujam): To increase register-level reuse of the
target points, we can unroll the loop at line 2 and then fuse (or
“jam”) the replicated loop bodies. The net effects are to reduce
branches, thereby increasing ILP, as well as to increase reuse of
each source point s. The trade-off is that this technique can also
increase register live time, thereby increasing the register pressure.

Data Layout (trans): When we load points data into GPU
shared memory, we can store these points using an array-of-
structures (AoS) or structure-of-arrays (SoA) format. By default,
we use SoA; the “trans” optimization uses AoS.

Vector Packing (vecpack): Vector packing “packs” multiple
memory requests with short data size into a larger request, such as
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Figure 10. Speedup over the baseline of actual execution and model prediction on 44 different optimizations.

replacing four separate 32-bit requests into a single 128-bit request,
which can be cheaper. This technique increases MLP as well as re-
duces the number of instructions. Vector packing is also essentially
a structure-of-arrays to array-of-structures transformation.

Tight (tight): The “tight” optimization utilizes the ‘float4’
datatype to pack data elements. However, this technique is dif-
ferent from vecpack above since it still issues four of the 32-bit
memory requests.

Reciprocal Square Root - SFU (rsqrt): Our FMMU can re-
place separate divide and square root operations with a single re-
ciprocal square-root. This exploits the dedicated special function
unit (SFU) hardware available for single-precision transcendental
and multiplication instructions on NVIDIA GPUs.

6.2.2 Performance Prediction

Figure 10 shows the speedup over the baseline kernel of actual ex-
ecution and its prediction using the proposed model. The x-axis
shows the code optimization space, where 44 optimization com-
binations are presented. The results show that, overall, the model
closely estimates the speedup of different optimizations. More im-
portantly, the proposed model follows the trend and finds the best
optimization combinations, which makes our model suitable for
identifying potential performance benefits.

6.2.3 Potential Benefit Prediction

To understand the performance optimization guide metrics, we first
compute potential benefit metrics for the baseline, which are as
follows: Bserial = 0, Bmemlp = 0, Bitilp = 6068, and Bfp =

9691. Even from the baseline, it is already limited by computation.
Hence, techniques to reduce the cost of computation are critical.

Figure 11 shows actual performance benefits and Bitilp when the
shared memory optimization (shmem) is applied on top of different
combinations of optimizations. For example, ujam indicates the
performance delta between ujam and ujam + shmem optimiza-
tions. In the graph, both Actual and Bitilp are normalized to the
execution time before shmem is applied. Using the shared mem-
ory improves both MLP and ILP. It increases the reuse of source
points, which also increases ILP. Hence, the benefit of using the
shared memory can be predicted using Bitilp, because Bmemlp = 0.
As shown in the figure, Bitilp predicts the actual performance ben-
efit closely for most of the optimization combinations except tight
optimizations. The interaction between shmem and tight optimiza-
tions should be analyzed further.

Figure 12 represents the performance speedup and potential
benefits normalized to the baseline execution time when optimiza-
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Figure 11. Actual performance benefit and Bitilp when shmem is
applied to each optimization in the x-axis.
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Figure 12. Performance speedup and potential benefits when ap-
plying optimizations to the baseline one by one.

tions are applied one by one. For the baseline, a high Bfp value
indicates that the kernel might have the potential to be improved.
Hence, it is a reasonable decision to try to optimize the baseline
kernel. As we apply adequate optimization techniques that improve
the kernel, the potential benefit decreases. When vecpack, rsqrt,
shmem and ujam have been applied, the potential benefit metric
indicates that the kernel may have very small amount of inefficient



computation and the potential performance gain through further op-
timizations might be limited. As shown in the last bar, pref does
not lead to a performance improvement. Rather, Bfp slightly in-
creases due to the inefficient computation for prefetching code.

6.3 Reduction

6.3.1 Optimization Techniques

Reduction has seven different kernels (K0−K6) to which different
optimization techniques are applied. Table 4 shows the optimiza-
tion techniques applied to each kernel.

Eliminating Divergent Branches: Branch divergence occurs if
threads in a warp take different paths due to conditional branches.
When a warp executes divergent branches, it serially executes both
branch paths while disabling threads that are not on the current
path. By eliminating divergent branches, we can increase the uti-
lization of the execution units.

Eliminating Shared Memory Bank Conflicts: Eliminating
bank conflicts causes shared memory banks to be serviced simulta-
neously to any shared memory read or write requests.

Reducing Idle Threads: As reduction proceeds, the number
of threads that work on data reduces. Thus, this technique packs
more computations into threads, thereby reducing the number of
idle threads.

Loop Unrolling: As described in Section 6.2, loop unrolling
alleviates the loop overhead while eliminating branch-related in-
structions. Thus, reducing the number of instructions will improve
performance for compute-bound kernels.

K0 K1 K2 K3 K4 K5 K6
Eliminating Divergent Branches O O O O O O
Eliminating Bank Conflicts O O O O O
Reducing Idle Threads (Single) O O O
Loop Unrolling (Last Warp) O
Loop Unrolling (Completed) O O
Reducing Idle Threads (Multiple) O

Table 4. Optimization techniques on reduction kernels.

6.3.2 Results

Figure 13 shows the actual execution time and the outcome of the
analytical model. The model closely estimates the execution time
over optimizations. Figure 14 shows the benefit X-Y chart of the
reduction kernels. From K0 to K5, the kernels are in the compute-
bounded zone. All the memory operation cost is hidden because the
cost of computation is higher than that of memory operations; thus,
Bmemlp is zero because of T ′

mem = 0. In addition, even from the K0
kernel, the ITILP value is already the peak value, so Bitilp is also
zero.
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Figure 13. Actual and model execution time of the reduction ker-
nels.
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Figure 14. Benefit X-Y chart of the reduction kernels.

From the chart, we can observe that there are huge gaps between
the (T ′

mem, Tcomp) and (T ′
mem, Tfp) of each kernel, which implies

that the kernels suffer from computing inefficiency. Once we elim-
inate most of the inefficiency of computation, kernel (K6) becomes
memory bounded.

The benefit X-Y chart also indicates that, although some opti-
mization techniques attempt to reduce the overhead of serialization,
the actual benefits mainly come from improving the efficiency of
computation. In particular, the number of instructions was signifi-
cantly reduced by each optimization, which proves our findings.

6.4 Parboil Benchmark

6.4.1 Optimization Techniques

Parboil [17] has algorithm-specific optimization techniques. In this
section we explain each of them briefly. Table 5 shows the tech-
niques applied to the evaluated applications.

Regularization: This optimization is a preprocessing step that
converts irregular workloads into regular ones. In order to do so, the
workloads can be spread over multiple kernels or even to CPUs.

Binning: This optimization pre-sorts input elements into multi-
ple bins based on location in space. For each grid point, only bins
within a certain distance are used for computation, thereby prevent-
ing each thread from reading the entire input.

Coarsening: Thread coarsening is a technique in which each
thread works on several elements instead of one to amortize redun-
dant computation overhead.

Tiling/Data Reuse: This optimization moves data, which can
be shared by multiple threads, into the shared memory to reduce
global memory accesses. To maximize the advantage of the shared
memory, computation is distributed among threads.

Privatization: Privatization allows each thread to have its own
copy of output data. The results from all threads are later combined
when all the writings from all threads are finished. This technique
alleviates the contention of write accesses to the same output data
by multiple threads.

6.4.2 Results

Figure 15 shows the actual and predicted time for the applications
in the parboil benchmarks. The results show that the optimiza-
tion techniques for cutcp are effective, while the techniques for
tpacf fail to effectively optimize the kernel. Our model also pre-
dicts the same.



cutcp tpacf Potential Benefit Metrics
Regularization O Bfp

Binning O Bfp

Coarsening O Bfp

Tiling/Data Reuse O Bmemlp, Bfp

Privatization O Bmemlp, Bserial , Bitilp

Table 5. Optimization techniques on the evaluated applications
and relevant potential benefit metrics.
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Figure 15. Actual and predicted time of cutcp and tpacf in the
parboil benchmarks.
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Figure 16. Benefit metrics in the parboil benchmarks.

The results can be further analyzed with the potential benefit
metrics in Figure 16, where benefit metrics are normalized to the
baseline execution time. The benefit metrics lead to two conclu-
sions. First, cutcp achieves most of the potential performance
benefits in the optimized version. Hence, trying to further optimize
the kernel might not be a good idea. Second, the baseline of tpacf
also had high performance benefit potential, but the applied opti-
mizations failed to achieve some of the benefits.

Surprisingly, although tpacf has the high potential benefits of
Bitilp, the optimization techniques are not designed for that. This
explains why there is almost no performance improvement from
the baseline. Tiling, data reuse, and privatization mostly target im-
proving memory operations. In fact, the optimized kernel signifi-
cantly reduces the number of memory requests, which can lead to a
performance improvement in GPGPUs where there are no caches.
In the Fermi GPGPUs, unfortunately, most of the memory requests
hit the caches, thereby resulting in no Bmemlp. Hence, programmers
or compilers should focus more on other optimizations to increase
instruction-level or thread-level parallelism.

7. Related Work
7.1 GPU Performance Modeling

In the past few years, many studies on GPU performance modeling
have been proposed. Hong and Kim [9] proposed the MWP-CWP
based GPU analytical model. Concurrently, Baghsorkhi et al. [2]
proposed a work flow graph (WFG)-based analytical model to
predict the performance of GPU applications. The WFG is an
extension of a control flow graph (CFG), where nodes represent
instructions and arcs represent latencies. Zhang and Owens [20]
proposed a performance model where they measured the execution
time spent on the instruction pipeline, shared memory, and global
memory to find the bottlenecks. Although Zhang and Owens also
target identifying the bottlenecks, their method does not provide
estimated performance benefits. Furthermore, our analytical model
addresses more detailed performance bottlenecks, such as SFU
resource contention.

Williams et al. [18] proposed the Roofline model, which is use-
ful for visualizing compute-bounded or memory-bounded multi-
core architectures. Our X-Y benefit chart not only shows these lim-
itations but also estimates ideal performance benefits.

Our work is also related to a rich body of work on optimizations
and tuning of GPGPU applications [4, 7, 12, 15, 16, 19]. Ryoo
et al. [16] introduced two metrics to prune optimization space
by calculating the utilization and efficiency of GPU applications.
Choi et al. [4] proposed a performance model for a sparse matrix-
vector multiply (SpMV) kernel for the purpose of autotuning. A
GPGPU compiler framework proposed by Yang et al. [19] performs
GPGPU-specific optimizations, which can improve naive GPGPU
kernels.

7.2 Performance Analysis Tools for CUDA

A handful of tools are available for the performance analysis of
CUDA applications. However, most of the tools simply provide
the performance metrics of the current running application. On the
contrary, GPUPerf estimates potential performance benefit, thereby
providing guidelines for how to optimize applications. As we dis-
cussed in Section 5, GPUPerf utilizes several tools such as visual
profiler [14], Ocelot [6], and cuobjdump [13] to obtain accurate and
detailed basic program analysis information.

Kim and Shrivastava [10] presented a tool that can be used
for analyzing memory access patterns of a CUDA program. They
model major memory effects such as memory coalescing and bank
conflict. However, they do not deal with run-time information as
their approach is a compile-time analysis, which often leads to
inaccurate results for cases such as insufficient parallelism.

Meng et al. [11] proposed a GPU performance projection frame-
work. Given CPU code skeletons, the framework predicts the cost
and benefit of GPU acceleration. Their predictions are also built
on the MWP-CWP model, but our work greatly improves on the
MWP-CWP model.

There are also GPU simulators that can be used for program
analysis. A G80 functional simulator called Barra by Collange et
al. [5] can execute NVIDIA CUBIN files while collecting statistics.
Bakhoda et al. [3] analyzed CUDA applications by implementing
a GPU simulator that runs PTX instruction set. A heterogeneous
simulator called MacSim [1] can also be used for obtaining detailed
statistics on CUDA workloads.

8. Conclusions
The GPUPerf framework determines what bottlenecks are present
in code and also estimates potential performance benefits from re-
moving these bottlenecks. The framework combines an accurate
analytical model for modern GPGPUs (e.g., Fermi-class) as well
as a set of interpretable metrics that directly estimate potential im-



provements in performance for different classes of performance op-
timization techniques. We demonstrate these performance benefit
predictions on FMMU with 44 optimization combinations and sev-
eral other benchmarks. The results show that the predicted potential
benefit estimates are both informative and attainable.

Based on our case studies, we found that among four metrics,
Bitilp and Bfp are easy to exploit through a variety of optimiza-
tions. The Bmemlp metric is often zero indicating that most eval-
uated CUDA applications are in fact limited only by computation
in Fermi-class GPGPUs. The Bfp metric generally has a relatively
high value, which implies that removing compute inefficiencies is
the key to achieving ideal performance. For example, coarsening
and binning reduce such compute inefficiencies greatly in the par-
boil benchmarks.

Our future work will integrate this framework into compiler
tools that can be directly used to improve parallel program effi-
ciency on GPGPUs and other many-core platforms.
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A. Calculating CWP and MWP
A.1 CWP

CWP = min (CWP full, N) (A.1)

CWP full =
mem cycles + comp cycles

comp cycles
(A.2)

comp cycles =
#insts × avg inst lat

ITILP
(A.3)

mem cycles =
#mem insts × AMAT

MLP
(A.4)

mem cycles: memory waiting cycles per warp
comp cycles: computation cycles per warp
#insts: number of instructions per warp (excluding SFU insts.)
#mem insts: number of memory instructions per warp

A.2 MWP

MWP =min

(
avg DRAM lat

Δ
,MWPpeak bw, N

)
(A.5)

MWPpeak bw =
mem peak bandwidth

BW per warp × #active SMs
(A.6)

BW per warp =
freq × transaction size

avg DRAM lat
(A.7)

mem peak bandwidth: bandwidth between the DRAM and GPU
cores (e.g., 144.0 GB/s in Tesla C2050)
freq: clock frequency of the SM processor
(e.g., 1.15 GHZ in Tesla C2050)
transaction size: transaction size for a DRAM request
(e.g., 128B in Tesla C2050)
BW per warp: bandwidth requirement per warp


