
1/25/2009

1

Spring 2009

Prof. Hyesoon Kim

Thanks to Prof. Loh & Prof. Prvulovic

• One approach: add sockets to your MOBO

– minimal changes to existing CPUs

– power delivery, heat removal and I/O not too

bad since each chip has own set of pins and
cooling

CPU0

CPU1

CPU2

CPU3

Pictures found from google images

• Simple SMP on the same chip

Intel “Smithfield” Block Diagram AMD Dual-Core Athlon FX

Pictures found from google images

1/25/2009

2

• Resources can be

shared between
CPUs

– ex. IBM Power 5

CPU0 CPU1

L2 cache shared between
both CPUs (no need to

keep two copies coherent)

L3 cache is also shared (only tags
are on-chip; data are off-chip)

• Cheaper than mobo-based SMP
– all/most interface logic integrated on to main chip

(fewer total chips, single CPU socket, single interface
to main memory)

– less power than mobo-based SMP as well
(communication on-die is more power-efficient than
chip-to-chip communication)

• Performance
– on-chip communication is faster

• Efficiency
– potentially better use of hardware resources than

trying to make wider/more OOO single-threaded CPU

• Single thread in superscalar execution:
dependences cause most of stalls

• Idea: when one thread stalled, other can go

• Different granularities of multithreading
– Coarse MT: can change thread every few

cycles

– Fine MT: can change thread every cycle

– Simultaneous Multithreading (SMT)
• Instrs from different threads even in the same cycle

• AKA Hyperthreading

1/25/2009

3

• Uni-Processor: 4-6 wide, lucky if you get 1-2 IPC

– poor utilization

• SMP: 2-4 CPUs, but need independent tasks

– else poor utilization as well

• SMT: Idea is to use a single large uni-processor

as a multi-processor

Regular CPU

CMP

2x HW Cost

SMT (4 threads)

Approx 1x HW Cost

• For an N-way (N threads) SMT, we need:

– Fetch:

• Ability to fetch from N threads, multiple PCs

– Rename

• N rename tables (RATs)

• N ARF

– Need to maintain interrupts, exceptions, faults
on a per-thread basis

• But we don’t need to replicate the entire OOO
execution engine (schedulers, execution units,
bypass networks, ROBs, etc.)

1/25/2009

4

• Each process has own virtual address

space

– TLB must be thread-aware

• translate (thread-id,virtual page) � physical page

– Virtual portion of caches must also be thread-
aware

• VIVT cache must now be (virtual addr, thread-id)-
indexed, (virtual addr, thread-id)-tagged

• Similar for VIPT cache

• No changes needed if using PIPT cache (like L2)

• Can have a system that supports SMP,
CMP and SMT at the same time
– Take a dual-socket SMP motherboard…

– Insert two chips, each with a dual-core CMP…

– Where each core supports two-way SMT

• � Nehalem

• This example provides 8 threads worth of
execution, shared on 4 actual “cores”, split
across two physical packages

• SMT/CMP is supposed to look like multiple

CPUs to the software/OS

2-way
SMT

2-way
SMT

2 cores
(either SMP/CMP)

CPU0

CPU1

CPU2

CPU3

Say OS has two
tasks to run…

AA

BB

idleidle

idleidle

Schedule tasks to
(virtual) CPUs

A/BA/B

idleidle

Performance
worse than

if SMT was
turned off
and used

2-way SMP
only

