







# **CS4803DGC Design Game Console**

Spring 2010 Prof. Hyesoon Kim











## **ARM**











# **Brief History of ARM**

- ARM is short for Advanced Risc Machines Ltd.
  - Founded 1990, owned by Acorn, Apple and VLSI
- Known before becoming ARM as computer manufacturer
- ARM is one of the most licensed company
- Used especially in portable devices due to low power consumption and reasonable performance (MIPS/watt)
- They do not fabricate silicon







#### **ARM ISA**

- 32-bit wide (16-bit thumb compressed format)
- Load-store instruction set architecture
- 3-address data processing instructions
- Conditional execution of every instruction
- Powerful load and store multiple register instructions
- A general shift operation and a sequential ALU operations in a single instruction that executes in a single clock cycle
- Open instruction set extension through the coprocessor instruction set, including adding new registers and data types to the programmer's model
- Compressed 16-bit thumb architecture









#### **Load-store architecture**

- Data processing (ALU) operations write results only into registers
- Memory operations are only copy (from memory to registers, register to memory)
- ARM does not support memory-to-memory operations
- ARM instruction three categories
  - 1. data processing instructions
  - 2. Data transfer instructions
    - memory-to/from-registers, exchange-memory-register (system only)
  - 3. Control flow instructions
    - Branch instructions, branch and link register (saving return address), trap instructions (supervisor calls)









## **ARM Register Set**

#### Usable in user mode

**Abort Mode** 



#### System modes only



spsr

spsr



spsr

spsr





## **Current Program Status Register (CPSR)**

| 31 28 | 27 8   | 7 | 6 | 5 | 4  | 0  |
|-------|--------|---|---|---|----|----|
| NZCV  | unused | I | F | Т | mc | de |

- N: Negative (the last ALU operation)
- Z: zero (the last ALU operation)
- C: carry (the last ALU or from shifter)
- V: overflow









# **ARM Operation Modes**

| CPSR[4:0] | Mode   | Use                                       | Registers |
|-----------|--------|-------------------------------------------|-----------|
| 10000     | user   | Normal user code                          | user      |
| 10001     | FIQ    | Processing fast interrupts                | _fiq      |
| 10010     | IRQ    | Processing standard interrupts            | _irq      |
| 10011     | SVC    | Processing software interrupts (SWIs)     | _svc      |
| 10111     | Abort  | Processing memory faults                  | _abt      |
| 11011     | Undef  | Handling undefined instruction traps      | _und      |
| 11111     | System | Running privileged operating system tasks | user      |

Software interrupt: supervisor calls









## **Memory System**

- A linear array of byte address
- Data format (8-bit bytes, 16-bit half-words, 32-bit words)
- Aligned address accesses
- Little endian

| Bit 31 |    |             | Bit 0       |
|--------|----|-------------|-------------|
| 23     | 22 | 21          | 20          |
| 19     | 18 | 17          | 16          |
| 15     | 14 | 13          | 12          |
| 11     | 10 | 9           | 8           |
| 7      | 6  | 5           | 4           |
| 3      | 2  | 1<br>Byte 1 | 0<br>Byte 0 |









## **ARM ARCHITECTURE**









## **3-stage Pipeline**

- Fetch/Decode/Execute
- Allow multi-cycle execution
- Register, two read ports, one write port,
  - Additional register read/write for r15 (program counter)









## **5-Stage Pipeline Processors**

- Fetch/Decode/Execut e/Mem/write-back
- Introduce forwarding path



Computing







# **ARM Register Timing**

2-Phase non-overlapping clock scheme



Steve Furber, ARM system-on-chip architecture 2<sup>nd</sup> edition **Georgia** College of Computing







## **ARM ISA**









## **Privileged Modes**

SPSR (Saved Program Status Register)

| M[4:0] | Mode       | Accessible register set |                |  |
|--------|------------|-------------------------|----------------|--|
| 10000  | User       | PC, R14R0               | CPSR           |  |
| 10001  | FIQ        | PC, R14_fiqR8_fiq, R7R0 | CPSR, SPSR_fiq |  |
| 10010  | IRQ        | PC,R14_irqR13_irq,R12R0 | CPSR, SPSR_irq |  |
| 10011  | Supervisor | PC,R14_svcR13_svc,R12R0 | CPSR, SPSR_svc |  |
| 10111  | Abort      | PC,R14_abtR13_abt,R12R0 | CPSR, SPSR_abt |  |
| 11011  | Undefined  | PC,R14_undR13_und,R12R0 | CPSR, SPSR_und |  |









#### **Thumb Instruction**

- 16 bits long
- Similarity with ARM ISA
  - The load-store architecture with data processing, data transfer, and control-flow instructions
  - Support Byte, half-word, word (aligned accesses)
  - A 32-bit unsegmented memory
- Differences
  - Most Thumb instructions are executed unconditionally
    - All ARM instructions are executed conditionally
  - Many thumb data processing instructions use a 2-address format
  - Thumb instruction formats are less regular than ARM ISA.









#### **ARM7 and ARM7 TDMI**

- ARM7: 3 stage pipeline, 16 32-bit Registers, 32-bit instruction set
- TMDI
  - Thumb instruction set
  - Debug-interface
  - Multiplier (hardware)
  - Interrupt (fast interrupt)
  - The most commonly used one









#### **ARM7 TDMI**

- 32/16-bit RISC
- 32-bit ARM instruction set
- 16-bit Thumb instruction set
- 3-stage pipeline
- Very small die size and low power
- Unified bus interface
   (32-bit data bus carries both instruction, data)









### **Thumb Instruction Decode**



The ARM9 Family-High Performance Microprocessors for **timb**edded Applications







#### **Thumb Instruction**



- Instruction compression to save I-cache/memory accesses
- Use only top 8 registers,
- 3 operands → 2 operands









#### Thumb...

- Instructions are compiled either native ARM code or Thumb code
  - To utilize full 16bit opcode
  - Use current processor status register (CPSR) to set thumb/native instruction









### **ARM Instruction Set**

- All instructions are conditional
- BX, branch and eXhange → branch and exchange (Thumb)
- Link register (subroutine Link register)
  - R14 receives the return address when a Branch with Link (BL or BLX) instruction is executed









#### ARM9

- 5-stage pipeline
- I-cache and D-cache
- Floating point support with the optional VFP9-S coprocessor
- Enhanced 16 x 32-bit multiplier capable of single cycle MAC operations
- The ARM946E-S
   processor supports
   ARM's real-time trace
   technology



College of Computing







### ARM9

- ARM7 3stage->ARM9 5 stage
  - Increase clock frequency

#### ARM7TDMI Pipeline Operation

| Fetch             | Decode                  |                                           | Execute       |                       |
|-------------------|-------------------------|-------------------------------------------|---------------|-----------------------|
| Instruction Fetch | Convert Thumb<br>to ARM | Main Decode<br>Register Address<br>Decode | Register Read | Shifter ALU Writeback |

#### ARM9TDMI Pipeline Operation

| Fetch             | Decode                                                                                       | Execute       | Memory             | Writeback                                        |
|-------------------|----------------------------------------------------------------------------------------------|---------------|--------------------|--------------------------------------------------|
| Instruction Fetch | ARM Decode Reg. Address Register Decode Read  Thumb Decode Reg. Address Register Decode Read | . Shifter ALU | Memory Data access | ALU Result<br>and / or<br>Load data<br>Writeback |

The ARM9 Family-High Performance Microprocessors for **Georgia** College Applications







## **ARM9** Pipeline

- ARM7: Thumb instruction decode: first ½ phase of decode stage
- ARM9: Parallel decoding
- ARM7: ALU (arithmetic, and logic units) is active all the time
- ARM9: Two units are partitioned to save power
- ARM9: Forwarding path