
Spring 2010

Prof. Hyesoon Kim

cond 0 0 # opcode S Rn Rd operand 2

#rot 8-bit immediate

#shift sh 0 Rm

Rs sh 1 Rm0

1

0

31 28 27 26 25 24 21 20 19 16 15 12 11 0

Set condition codes

11 8 7 0

11 8 7 6 5 4 3 0

11 7 6 5 4 3 0

Register shift length Shift type

Steve Furber, ARM system-on-chip architecture 2nd edition

• Using 12 bits how to represent 32-bit

immediate value?

• Immediate = (0255) x 22n

– Where 0≤n≥ 12 (4 bits rotation)

– 8 bit immediate + 4-bit shift

– 8 bit + 24 = 32 bit representation

Steve Furber, ARM system-on-chip architecture 2nd edition

• ADD r3, r2, r1, LSL #3; r3:=r2+r1*8

• Logical shift vs. Arithmetic shift ?

– E.g.) b1011 , Carry:1

– LSL, 1 : b0110

– LSR, 1: b0101

– ASL, 1: b0110

– ASR, 1: b1101

– ROR, 1: b1101

– RRX, 1: b1101 carry: 1

• Use register to specify shift

• ADD r5,r5,r3, LSL r2; r5 := r5+r3 x 2^(r2)

Coming from carry bit

Input to the ALU

Steve Furber, ARM system-on-chip architecture 2nd edition

Register, optionally with shift operation

 Shift value can be either be:

 5 bit unsigned integer

 Specified in bottom byte of another

register.

 Used for multiplication by constant

Immediate value

 8 bit number, with a range of 0-255.

 Rotated right through even number of

positions

 Allows increased range of 32-bit

constants to be loaded directly into

registers

Result

Operand
1

Barrel
Shifter

Operand
2

ALU

Opcode [24:21] Mnemonic Meaning Effect

0000 AND Logical bit-wise AND Rd := Rn AND Op2

0001 EOR Logical bit-wise exclusive OR Rd := Rn EOR Op2

0010 SUB Subtract Rd := Rn – Op2

0011 RSB Reverse subtract Rd: = Op2 – Rn

0100 ADD Add Rd: = Rn + Op2

0101 ADC Add with carry Rd: = Rn + Op2 +C

0110 SBC Subtract with carry Rd: = Rn – Op2 + C-1

0111 RSC Reverse subtract with carry Rd: = Op2- Rn+C-1

1000 TST Test Scc on Rn AND Op2

1001 TEQ Test equivalence Scc on Rn EOR Op2

1010 CMP Compare Scc on Rn - Op2

1011 CMN Compare negated Scc on Rn + Op2

1100 ORR Logical bit-wise Or Rd: =Rn OR Op2

1101 MOV Move Rd: = Op2

1110 BIC Bit clear Rd: =Rn AND NOT Op2

1111 MVN Move negated Rd: = NOT Op2

Steve Furber, ARM system-on-chip architecture 2nd edition

• S bit (bit 20)

– 1: condition code is set

– 0: condition code is unchanged

• N: 1: result is negative 0: result is 0 or positive

– N = result [31]

• Z: 1: zero 0: non-zero

• C: Carry-out from ALU when the operation is arithmetic

– ADD, ADC, SUB, SBC, RSB, CMP, CMN

– Carry out from shifter

• V: overflow , non-arithmetic operations do not touch V-bit

– Only for signed operations

Steve Furber, ARM system-on-chip architecture 2nd edition

• The possible condition codes are listed below:
• Note AL is the default and does not need to be specified

Not equal
Unsigned higher or same

Unsigned lower
Minus

Equal

Overflow
No overflow

Unsigned higher
Unsigned lower or same

Positive or Zero

Less than
Greater than

Less than or equal
Always

Greater or equal

EQ

NE

CS/HS

CC/LO

PL

VS

HI

LS

GE

LT

GT

LE

AL

MI

VC

Suffix Description

Z=0
C=1
C=0

Z=1
Flags tested

N=1
N=0
V=1
V=0

C=1 & Z=0
C=0 or Z=1

N=V
N!=V

Z=0 & N=V
Z=1 or N=!V

Steve Furber, ARM system-on-chip architecture 2nd edition

• 64-bit add with 32-bit operations

ADDS r2, r2, r0; 32-bit carry out  C

ADC r3, r3,r1 ; .. And added into high word

R1 R0

LSBMSB

R3 R2

LSBMSB+

=

R3 R2

+

C

Steve Furber, ARM system-on-chip architecture 2nd edition

• Use a sequence of several conditional instructions
if (a==0) func(1);

CMP r0,#0

MOVEQ r0,#1

BLEQ func

• Set the flags, then use various condition codes
if (a==0) x=0;

if (a>0) x=1;

CMP r0,#0

MOVEQ r1,#0

MOVGT r1,#1

• Use conditional compare instructions
if (a==4 || a==10) x=0;

CMP r0,#4

CMPNE r0,#10

MOVEQ r1,#0

Steve Furber, ARM system-on-chip architecture 2nd edition

• Consist of :
– Arithmetic: ADD ADC SUB SBC RSB RSC

– Logical: AND ORR EOR BIC

– Comparisons: CMP CMN TST TEQ

– Data movement: MOV MVN

• These instructions only work on registers, NOT memory.

• Syntax:

<Operation>{<cond>}{S} Rd, Rn, Operand2

• Comparisons set flags only - they do not specify Rd

• Data movement does not specify Rn

• Second operand is sent to the ALU via barrel shifter.

• Syntax:

– MUL{<cond>}{S} Rd, Rm, Rs Rd = Rm * Rs

– MLA{<cond>}{S} Rd,Rm,Rs,Rn Rd = (Rm * Rs) + Rn

– [U|S]MULL{<cond>}{S} RdLo, RdHi, Rm, Rs RdHi,RdLo := Rm*Rs

– [U|S]MLAL{<cond>}{S} RdLo, RdHi, Rm, Rs RdHi,RdLo :=

(Rm*Rs)+RdHi,RdLo

• Cycle time

– Basic MUL instruction

• 2-5 cycles on ARM7TDMI

• 1-3 cycles on StrongARM/XScale

• 2 cycles on ARM9E/ARM102xE

– +1 cycle for ARM9TDMI (over ARM7TDMI)

– +1 cycle for accumulate (not on 9E though result delay is one cycle longer)

– +1 cycle for “long”

• Above are “general rules” - refer to the TRM for the core you are using for the

exact details

Opcode [23:21] Mnemonic Meaning Effect

000 MUL Multiply (32-bit result) Rd := (Rm*Rs)[31:0]

001 MLA Multiply-accumulates (32-bit result) Rd := (Rm*Rs+Rn)[31:0]

100 UMULL Unsigned multiply long RdHi:RdLo:=Rm*Rs

101 UMLAL Unsigned multiply-accumulate long RdHi:RdLo:+=Rm*Rs

110 SMULL Signed multiply long RdHi:RdLo:=Rm*Rs

111 SMLAL Signed multiply-accumulate long RdHi:RdLo:+=Rm*Rs

• RdHi:RdLo: 64-bit format RdHi: MSB 32 bits, RdLo: LSB 32 bits

• N: Rd[31] or RdHi[31]

• Z: Rd or RdHi and RdLo are Zero

• C: meaningless

• V: unchanged

• Early ARM supports only 32 bits Multiply operations. 64 bit multiply

instructions are supported from ARM7.

• MUL r4, r3, r2 ; r4 := (r3 x r2) [31:0]

– Immediate second operands are not supported

• Load the value into the register

• Use shift operations

– The result register must not be the same as

the first source register

– Is the „s‟ bit is set the V flag is preserved and

the „C‟ flag is rendered meaningless

• MLA r4,r3,r2,r1; r4:= (r3 x r2 + r1) [31:0]

• Data transfer between registers and memory.

• Single word and unsigned byte data transfer

instructions

• Half-word and signed byte data transfer

instructions

• Multiple register transfer instructions

– Copy subset or multiple registers to memory

• Swap memory and register instructions (SWP)

• Status register to general register transfer

instructions

LDR STR Word

LDRB STRB Byte

LDRH STRH Halfword

LDRSB Signed byte load

LDRSH Signed halfword load

• Memory system must support all access sizes

• Syntax:

– LDR{<cond>}{<size>} Rd, <address>

– STR{<cond>}{<size>} Rd, <address>

e.g. LDREQB

• Register indirect memory addressing

– LDR r0, [r1] ; r0 := mem32[r1]

– STR r0, [r1] ; mem32[r1] := r0

• Particular location:

– Set base register

• an address within 4K bytes of the location

• Base plus offset addressing

– LDR r2, [r1, #4] ; r0 := mem32[r1+4]

– LDR r2, [r1, #4]! ; r0 := mem32[r1+4]; r1: = r1+4

– ! Indicates update the base register

• Post-indexed register

– LDR r2, [r1], #4 ; r0 := mem32[r1]; r1: = r1+4

• Address accessed by LDR/STR is specified by a base register plus
an offset

• For word and unsigned byte accesses, offset can be

– An unsigned 12-bit immediate value (ie 0 - 4095 bytes).
LDR r0,[r1,#8]

– A register, optionally shifted by an immediate value
LDR r0,[r1,r2]

LDR r0,[r1,r2,LSL#2]

• This can be either added or subtracted from the base register:
LDR r0,[r1,#-8]

LDR r0,[r1,-r2]

LDR r0,[r1,-r2,LSL#2]

• For halfword and signed halfword / byte, offset can be:

– An unsigned 8 bit immediate value (ie 0-255 bytes).

– A register (unshifted).

• Choice of pre-indexed or post-indexed addressing

0x5

0x5

r1

0x200
Base

Register 0x200

r0

0x5
Source

Register
for STR

Offset

12 0x20c

r1

0x200

Original
Base

Register
0x200

r0

0x5
Source

Register
for STR

Offset

12 0x20c

r1

0x20c

Updated
Base

Register

Auto-update form: STR r0,[r1,#12]!

• Pre-indexed: STR
r0,[r1,#12]

 Post-indexed: STR r0,[r1],#12

• Syntax:

<LDM|STM>{<cond>}<addressing_mode> Rb{!}, <register list>

• 4 addressing modes:

LDMIA / STMIA increment after

LDMIB / STMIB increment before

LDMDA / STMDA decrement after

LDMDB / STMDB decrement before

IA

r1 Increasing

Address

r4

r0

r1

r4

r0

r1

r4

r0 r1

r4

r0

r10

IB DA DB

LDMxx r10, {r0,r1,r4}

STMxx r10, {r0,r1,r4}

Base Register (Rb)

• Used for transferring large quantities of data

• Usage: procedure entry & exit

• LDMIA r1, {r0, r2, r5}; r0 := mem32[r1]

;r2 := mem32[r1+4]

; r5 := mem32[r1+8]

r1 should be aligned

If you put r15 in {}, it will change control flow

You can combine with ! also.

• Ascending stack

• Descending stack

• Full stack

• Empty stack

• Auto-indexing, multiple registers

• STMIA, LDMIA

• IA,IB, DA, DB(increment after, increment before,

decrement after, decrement before)

0x0108

r5

r1

r0 0x100C

0x1000

r9

r9‟

STMIA r9!, {r0, r1, r5}

r5 0x0108

r1

r0

0x100C

0x1000

r9

r9‟

STMIB r9!, {r0, r1, r5}

0x0108

r5 0x100C

r1

r0

0x1000

r9

r9‟

STMDA r9!, {r0, r1, r5}

0x0108

0x100C

r5

r1

r0 0x1000

r9

r9‟

STMDB r9!, {r0, r1, r5}

• From 1:10 at States Lab

• Only one demo from each team.

• Branch : B{<cond>} label

• Branch with Link : BL{<cond>} subroutine_label

• The processor core shifts the offset field left by 2

positions, sign-extends it and adds it to the PC

– ± 32 Mbyte range

– How to perform longer branches?

2831 24 0

Cond 1 0 1 L Offset

Condition field

Link bit 0 = Branch
1 = Branch with link

232527

• Nested sub-routine calls

• Link register (r14) needs to be stored
BL SUB1

….

SUB1 STMFD r13!, { r0-r2, r14} ; save work and link regs

BL SUB2

SUB2 …

STMFD
sp!,{regs,lr}

:

BL func2

:

LDMFD
sp!,{regs,pc}

func1 func2

:

:

BL func1

:

:

:

:

:

:

:

MOV pc, lr

• Auto-indexing, multiple registers

• STMIA, LDMIA

• IA,IB, DA, DB(increment after, increment before,

decrement after, decrement before)

0x0108

r5

r1

r0 0x100C

0x1000

r9

r9‟

STMIA r9!, {r0, r1, r5}

r5 0x0108

r1

r0

0x100C

0x1000

r9

r9‟

STMIB r9!, {r0, r1, r5}

0x0108

r5 0x100C

r1

r0

0x1000

r9

r9‟

STMDA r9!, {r0, r1, r5}

0x0108

0x100C

r5

r1

r0 0x1000

r9

r9‟

STMDB r9!, {r0, r1, r5}

• Causes an exception trap to the SWI hardware vector

• The SWI handler can examine the SWI number to decide

what operation has been requested.

• By using the SWI mechanism, an operating system can

implement a set of privileged operations which applications

running in user mode can request.

• Syntax:
– SWI{<cond>} <SWI number>

2831 2427 0

Cond 1 1 1 1 SWI number (ignored by processor)

23

Condition Field

• MRS and MSR allow contents of CPSR / SPSR to be transferred to /

from a general purpose register.

• Syntax:

– MRS{<cond>} Rd,<psr> ; Rd = <psr>

– MSR{<cond>} <psr[_fields]>,Rm ; <psr[_fields]> = Rm

where
– <psr> = CPSR or SPSR

– [_fields] = any combination of ‘fsxc’

• Also an immediate form

– MSR{<cond>} <psr_fields>,#Immediate

• In User Mode, all bits can be read but only the condition flags (_f) can

be written.

2731

N Z C V Q

28 67

I F T mode

1623 815 5 4 024

f s x c

U n d e f i n e dJ

• 1. Exceptions generated as the direct effect of

executing an instruction

– Software interrupt, undefined instructions, prefetch

aborts

• 2. Exceptions generated as a side-effect of an

instruction

– Memory fault during a load or store data access

– Unaligned access

• 3. Exceptions generated externally, unrelated to

the instruction flow. Reset, IRQ, and FIQ

• Interrupt:

– It handles as soon as the current instruction is

finished

– E.g.) External events, Fast interrupt (FIQ)

• Exception

– It handles immediately

• E.g.) page faults, unaligned accesses, undefined

opcode

• 1) changes to the operation mode corresponding to the

particular exception

• 2) saves the next PC address into the corresponding r14

register.

• 3) Saves the old value of CPSR in the SPSR of the new

mode

• 4) Disables IRQs by setting bit 7 of the CPSR

– For a fast interrupt, disables further fast interrupt by setting bit 6 of

the CPSR. (no nested fast interrupts!)

• 5) Set PC address to the corresponding interrupt vector

table

Exception Mode Vector Address Priority

Reset SVC 0x00000000 1

Undefined instruction UND 0x00000004 6

Software interrupt (SWI) SVC 0x00000008 6

Prefetch abort

(instruction fetch memory fault)

Abort 0x0000000C 5

Data abort

(data access memory fault)

Abort 0x00000010 2

IRQ (normal interrupt) IRQ 0x00000018 4

FIQ (Fast interrupt) FIQ 0x0000001C 3

• Vector address contains a branch to the relevant routine, except FIQ

– No space to put code.

• FIQ code can start immediately because it has the highest vector

address.

• Two banked registers to hold the return

address and a stack pointer

• Stacks are used to store registers

– Callee based register saving

• FIQ additional registers

– Why? To save time to save registers

• After the exception handler, the hardware

just starts from the user mode.

• Software must

– Restore the modified registers

– CPSR must be restored from the appropriate

SPSR

– PC must be changed back to the relevant

instruction address in the user instruction

stream

• These two cannot happen independently

• Return using a link register (r14)

MOVS pc, r14

S bit is set, a branch occurs and the SPSR of the current

mode is copied to the CPSR

• Return using a stack
LDFMD sp!, {r0-r12, pc}^

– The ^ qualifier specifies that the CPSR is restored from the

SPSR. It must be used only from a privileged mode.

• IRQ and FIQ must return one instruction early in

order to execute the instruction that raised an

exception

• Prefetch abort must return one instruction early to

execute the instruction that had caused a

memory fault when first requested

• Data abort must return the instruction that caused

exception.

• R15: PC

– PC may be used as a source operand

– Register-based shift cannot use R15 as source operands.

• Running-ahead PC‟s behavior

– PC is always running ahead

– PC is always pointing +8 of the current instruction

• Imagine 3-stage pipeline machine . PC is pointing what to fetch when

an instruction is in the WB stage in the 3-stage pipeline machine

• When R15 is a source, the current PC + 8 is supplied to

the source operand.

• When R15 is a destination

– S: 1: SPSR CPSR, affecting interrupt, resource PC and CPSR

automatically,

• Pre-fetch abort : instruction fetch

• Data abort : memory execution

Fetch Decode Execute

Fetch Decode Execute

PC+4 PC+8

void event_EnableIRQ (void)

{

__asm {

MRS r1, CPSR

BIC r1, r1, #0x80

MSR CPSR_c, r1

}

}

Enable Bit 7 (set register 0)

void event_DisableIRQ (void)

{

__asm {

MRS r1, CPSR

ORR r1, r1, #0x80

MSR CPSR_c, r1

}

}

Disable bit 7 (set 1)

N Z C V unused IF T mode

31 28 27 8 7 6 5 4 0

Bit 7: interrupt

Bit 6: Fast interrupt

• SUB lr, lr, #4

• STMFD sp!{reglist, lr}

; ….

LDMFD sp!, {reglist,pc}^

• All grades should be at T-square including

Lab #4

• Lab #6 demo during the class on Friday

