
Spring 2010

Prof. Hyesoon Kim

• Assembly code to read touch screen

coordinates

• What to learn

– How to handle peripheral interface in NDS

– Memory layout & communication between

ARM 7 & ARM 9

• ARM 7 can access touch screen

• ARM 9 can display

http://dev-scene.com/Image:Dov_DS_MemoryMap.png

• Main memory (4MB)
Start Address: 0x0200:0000

End Address: 0x023F:FFFF

Mirror : 0x0240:0000 // not cached

– Both ARM7 and ARM9 can access the memory.

– Usually ARM9’s executable code.

– ARM 7’s executable code is stored in IWRAM in DevKit Pro

– (most games also use IWRAM first and then use main memory)

• IWRAM: ARM 7 Fast RAM

– Start Address : 0x03800000 End Address : 0x0380FFFF

• Two main functions- 1 for each processor

• Only Arm7 can access the coordinates and

Arm 9 displays.

• The chosen address must be greater than

0x02400000. Because all addresses lower than

this are cached in the arm9.

• No cache coherence support

0x023fffff

0x023fffff

ARM 9

ARM 7

mem

cache

0

1

write

1

Here Xreg and Yreg are two randomly chosen mem locations

(copyToAddressX, copytoAddressY) accessible to both processors

#include <nds.h>

#include <stdio.h>

int main(void) {

consoleDemoInit();

volatile int* Xreg= (int *) copyToAddressX; //should be 32 bit aligned

volatile int* Yreg= (int *) copyToAddressY;// should be 32 bit algined

while(1) {

iprintf ("\x1b[5;0H X: %2X", *Xreg>>20);

iprintf ("\x1b[6;0H Y: %2X", *Yreg>>20);

swiWaitForVBlank();

}

• SPI Bus is a 4-wire

– Data in,

– Data out,

– Clock,

– Chip set

• (00)DS Firmware serial flash memory

• (01) DS touch screen controller

• (10) DS power management

• (11) Nothing wired up

40001C0h - NDS7 - SPICNT - SPI Bus Control/Status Register

0-1 Baudrate (0=4MHz/Firmware, 1=2MHz/Touchscr, 2=1MHz/Powerman.,

3=512KHz)

2-6 Not used (Zero)

7 Busy Flag (0=Ready, 1=Busy) (presumably Read-only)

8-9 Device Select (0=Powerman., 1=Firmware, 2=Touchscr, 3=Reserved)

10 Transfer Size (0=8bit/Normal, 1=16bit/Bugged)

11 Chipselect Hold (0=Deselect after transfer, 1=Keep selected)

12-13 Not used (Zero)

14 Interrupt Request (0=Disable, 1=Enable)

15 SPI Bus Enable (0=Disable, 1=Enable)

REG_SPICNT = SPI_ENABLE | SPI_BAUD_2MHz |

SPI_DEVICE_TOUCH | SPI_CONTINUOUS;

//0x8A01;

• Synchronous clock protocol

– A single lock one data is sent to slave and one data is

sent back to the master typically using the same

register

– 40001C2h - NDS7 - SPIDATA - SPI Bus Data/Strobe

Register (R/W)

– Even if you want to read, you must write a dummy

value

– 0-7 data, 8-15 NOT USED (even for 16-bit mode)

– During transfer busy flag in SPICNT is set and when

the transfer is done, busy flat is clear

Loop{

Set up REG_SPICNT

Disable interrupt

Wait until SPI is ready

READ REG_SPIDATA

Read once more after setting REG_SPICNT (continuous reading)

READ REG_SPIDATA

Recovery interrupt setting

Write data in a mem location where ARM 9 can read

Wait to give some time to ARM 9 access MEM

}

For some reason send

5 bit + 3 bit

So read two times

while {

dummy for loops //slow down the access // ARM 7 has a high priority

oldIME = REG_IME; // create backup

REG_IME = 0; // turn interrupts off

// REG_IME 0x04000208 16 bits Interrupt Master Enable Register

REG_SPICNT = SPI_ENABLE | SPI_BAUD_2MHz | SPI_DEVICE_TOUCH |

SPI_CONTINUOUS; //0x8A01

REG_SPIDATA = TSC_MEASURE_X;

SerialWaitBusy();

REG_SPIDATA = 0;

SerialWaitBusy();

result = REG_SPIDATA; // MSB bit first

// Clock in the rest of the data (last transfer)

REG_SPICNT = SPI_ENABLE | 0x201;

REG_SPIDATA = 0;

SerialWaitBusy();

result2 = REG_SPIDATA >>3;

REG_IME = oldIME; // restore interrupt enable information

*copyToAddressX= ((result & 0x7F) << 5) | result2; // write data so that ARM 9 can

read

}

REG_SPICNT = 0x040001C0

REG_SPIDATA= 0x040001C2

TSC_MEASURE_X= 0xD0

TSC_MEASURE_Y=0x90

TSC_MEASURE_Z1=0xB4

TSC_MEASURE_Z2=0xC4

Control Byte (transferred MSB first)

0-1 Power Down Mode Select

2 Reference Select (0=Differential, 1=Single-Ended)

3 Conversion Mode (0=12bit, max CLK=2MHz, 1=8bit, max CLK=3MHz)

4-6 Channel Select (0-7, see below)

7 Start Bit (Must be set to access Control Byte)

Channel

0 Temperature 0 (requires calibration, step 2.1mV per 1'C accuracy)

1 Touchscreen Y-Position (somewhat 0B0h..F20h, or FFFh=released)

2 Battery Voltage (not used, connected to GND in NDS, always 000h)

3 Touchscreen Z1-Position (diagonal position for pressure meas.)

4 Touchscreen Z2-Position (diagonal position for pressure meas.)

5 Touchscreen X-Position (somewhat 100h..ED0h, or 000h=released)

6 AUX Input (connected to Microphone in the NDS)

7 Temperature 1

• Power downmode
Mode /PENIRQ VREF ADC Recommended use

0 Enabled Auto Auto Differential Mode (Touchscreen,

Penirq)

1 Disabled Off On Single-Ended Mode (Temperature,

Microphone)

2 Enabled On Off Don't use

3 Disabled On On Don't use

VREF : internal reference voltage NDS has external reference voltage

that is always on

ADC: Analog to digital convert

Penirq: Pen interrupt

All channels are accessible from single-ended mode

Only 1,2,3,4,5 channels are accessible from differential mode

• Low-voltage I/O touch screen controller

• Power: 250mW

• You have to compile separately.

• Build script will be provided in the

assignment homepage

• Start from “C” code

– Submit “C” version of the code and “assembly code”

• Move on Assembly code (ARM 7 code) except

– __SerialWaitBusy();

– SPI set, Interrupt sets, read SPIDATA

• Report (5% of Lab #7)

– Commented code and simple descriptions

– Any problems encountered and solutions

