
Spring 2010

Prof. Hyesoon Kim

• A space ship controller

• What to learn

– Graphics mode

– Fixed operations

– Sound

• No need to write assembly code. You can use any APIs

• UP/DOWN- move up/down

• LEFT/RIGHT- move left/right

• A- reset to original

• L/R- Rotate

• X/Y- Scale up/ scale down

• Touch- the background should move in the same direction as the

stylus. It doesn’t need to move as much as the stylus in magnitude-

just the same direction.

• Sound: At every 10th degree rotation, generate sound

• Demo (4/19) Monday

• Report (5% of Lab #8): Lab 8 will be 10% of the total grade.

• Final project will be 12% of the total grade

– Commented code and simple descriptions

– Any problems encountered and solutions

• Dual screen: Main screen, sub screen

• 8 Graphics Mode

• Background Type

– Framebuffer: manipulate each pixel

– 3D: OpenGL 3D feature

– Text: aka tile background

– Rotation: similar to text but rotation, scale

– Extended rotation:

– Large bitmap

• A bitmap that can be displayed on the screen

• The bitmap could be larger than the physical size

of the screen

• Hardware scrolling, rotation, scaling, shearing

• Register sets

Main 2D Engine

Mode BG0 BG1 BG2 BG3

Mode 0 Text/3D Text Text Text

Mode 1 Text/3D Text Text Rotation

Mode 2 Text/3D Text Rotation Rotation

Mode 3 Text/3D Text Text Extended

Mode 4 Text/3D Text Rotation Extended

Mode 5 Text/3D Text Extended Extended

Mode 6 3D -
Large

Bitmap
-

Frame Buffer Direct VRAM display as a bitmap

• Frame buffer can be used by only one

screen

SUB 2D Engine

Mode BG0 BG1 BG2 BG3

Mode 0 Text/3D Text Text Text

Mode 1 Text/3D Text Text Rotation

Mode 2 Text/3D Text Rotation Rotation

Mode 3 Text/3D Text Text Extended

Mode 4 Text/3D Text Rotation Extended

Mode 5 Text/3D Text Extended Extended

• initVideo

• initBackground

/* Set the video mode on the main screen. */

videoSetMode(MODE_5_2D | // Set the graphics mode to Mode 5

DISPLAY_BG2_ACTIVE | // Enable BG2 for display

DISPLAY_BG3_ACTIVE); //Enable BG3 for display

/* Set the video mode on the sub screen. */

videoSetModeSub(MODE_5_2D | // Set the graphics mode to Mode 5

DISPLAY_BG3_ACTIVE); // Enable BG3 for display

Bank Control Register Size

VRAM_A VRAM_A_CR 128KB

VRAM_B VRAM_B_CR 128KB

VRAM_C VRAM_C_CR 128KB

VRAM_D VRAM_D_CR 128KB

VRAM_E VRAM_E_CR 64KB

VRAM_F VRAM_F_CR 16KB

VRAM_G VRAM_G_CR 16KB

VRAM_H VRAM_H_CR 32KB

VRAM_I VRAM_I_CR 32KB

VRAM works as working

space for display.

A certain memory space

will be drawn depending

on Mode

9 banks

http://dev-scene.com/Image:Dov_DS_MemoryMap.png

• We need to allocate right amount of video memory to the correct

memory address for a mode

– Large enough to have the bitmap

void initVideo() {

/*

* Map VRAM to display a background on the main and sub screens.

* The vramSetMainBanks function takes four arguments, one for each of the

* major VRAM banks. We can use it as shorthand for assigning values to

* each of the VRAM bank's control registers.

* We map banks A and B to main screen background memory. This gives us

* 256KB, which is a healthy amount for 16-bit graphics.

* We map bank C to sub screen background memory.

* We map bank D to LCD. This setting is generally used for when we aren't

* using a particular bank.

*/

vramSetMainBanks(VRAM_A_MAIN_BG_0x06000000,

VRAM_B_MAIN_BG_0x06020000,

VRAM_C_SUB_BG_0x06200000,

VRAM_D_LCD);

// graphics mode setting (previous slide code)

}

• BG_{32x32|32x64|64x32|64x64}; used for text backgrounds

• BG_RS_{16x16|32x32|64x64|128x128}; used for rotation backgrounds

• BG_BMP{8|16}_{128x128|256x256|512x256|512x512}: extended rotation background

variants, bit per pixel and resolution

• BG_BMP8_1024x512 and BG_BMP8_512x1024: is used only for MODE 6

• BG_WRAP_ON: if you scroll to the end of the image, it will wrap. This way, you can

"scroll forever".

• BG_PRIORITY(n) or BG_PRIORITY_n: the priority of the background: 0 is the highest

priority, 3 the lowest. A background with a higher priority will be printed on top of

backgrounds with lower priorities. If there is a sprite with the same priority, it will be

printed on top of the background.

• BG_MOSAIC_ON: You have to set this flag if you want to use the mosaic effect (see

below).

• BG_TILE_BASE(n): each tile-block is 16KB. This parameter selects, which block we

want to use. For tile-based backgrounds only.

• BG_MAP_BASE(n): each map-block is 2KB. This parameter selects, which block we

want to use. For tile-based backgrounds only.

• BG_BMP_BASE(n): each bitmap-block is 16KB. This parameter selects, which block

we want to use. For bitmap backgrounds only.

• BGn_X0: this controls where the left origin of the screen maps to the background

• BGn_Y0: this controls where the top of the screen maps to the background

• With n = 0,1,2 or 3. If we use an extended rotation background we have even more

registers:

• BGn_XDX: this controls the x-axis scaling, it's a 0.8.8 fixed point number. If you

don't want to scale at all, set it to 1.0 (which is 1 << 8). Increase the value to

"zoom out." F0or example, 2.0 (1 << 9) will show the background at half its

width.

• BGn_XDY: this is for rotating and shearing

• BGn_YDX: this is for rotating and shearing

• BGn_YDY: this controls the y-axis scaling and works the same as BGn_XDX.

• BGn_CX: this controls where the left origin of the screen maps to the background (in

0.8.8 fixed point, too).

• BGn_CY: this controls where the top of the screen maps to the background (in 0.8.8

fixed point, too).

• With n = 2 or 3 and the same for the sub screen (SUB_BG2_X0 etc.).

• When using a rotation background or extended rotation background the BGn_CX and

BGn_CY registers replace BGn_X0 and BGn_Y0.

http://dev-scene.com/NDS/DOCfixed_point
http://dev-scene.com/NDS/DOCfixed_point
http://dev-scene.com/NDS/DOCfixed_point
http://dev-scene.com/NDS/DOCfixed_point

/* Set up affine background 3 on main as a 16-bit color background. */

REG_BG3CNT = BG_BMP16_256x256 | BG_BMP_BASE(0) | // The starting

place in memory

BG_PRIORITY(3); // A low priority /* Set the affine transformation matrix for the

main screen background 3 * to be the identity matrix. */

REG_BG3PA = 1 << 8;

REG_BG3PB = 0;

REG_BG3PC = 0;

REG_BG3PD = 1 << 8; /* Place main screen background 3 at the origin (upper

left of the * screen). */

REG_BG3X = 0; REG_BG3Y = 0;

• Each background is also

transformed by its affine

transformation matrix

• X-> Ax+B
• 4 registers [ABCD]

• A: REG_BG3PA, B:REG_BG3PB,

C:REG_BG3PC, D: REG_BG3PD

• Use integer operators to calculate floating point

operations

• Fixed point integer
12.23 1223

+20. 41 + 2041

-------------- --------------

32.64 3264

12.23 1223

x 20.41 x 2041

-------------- --------------

249.61 2496143

• a 1.15.16 fixed point number: one bit sign, 15-bit integer,

16-bit fraction. 1+15+16 = 32

Fixed fraction

• v16 = 1.3.12 fixed point number (used for 3D)

• t16 = 1.11.4 fixed point number

• f32 = 1.19.12 fixed point number (used for matrices)

• v10 = 1.0.9 fixed point number (whoops! 10 bits don't fit

into a normal integer? but 3 v10 numbers fit into a 32 bit

integer, so this format is used for normals in 3D (it's also

ok for normals to be between -1 and 1, so this is why

these fixed point numbers have a long fraction but no

integer part!)

• 0.8.8 fixed point number: this format is used for the

scaling of the extended rotation backgrounds and doesn't

have a typedef in the NDSlib.

http://www.tobw.net/dswiki/index.php?title=Graphic_modes

Fixed point number: 0x300

Value ?

3

Fixed point number: 0x104

Value?

0x104=b1 0000 0100 = 1 +

0*1/2+0*1/4+0*1/8+0*1/16+0*1/32+1*1/64+0*1/128+0*/256

Value 4.75  Fixed point?

4.75 = 4 + 0.5+ 0.25  (4 << 8 | 1 << 7 | 1 << 6)

= 0x4C0

• Use hex array values: provided in the

homepage

• Use DMA to read background images
/* Select a low priority DMA channel to perform our background *

copying. */

static const int DMA_CHANNEL = 3;

void displayStarField() {

dmaCopyHalfWords(DMA_CHANNEL, starFieldBitmap, /* This variable

is generated for us by * grit. */

(uint16 *)BG_BMP_RAM(0), /* Our address for main * background 3 */

starFieldBitmapLen); /* This length (in bytes) is generated * from grit.

*/

}

Only ARM 7 can play sound , but the library will handle this.

int main(int argc, char ** argv)

{

[...]

// Turn on Sound

soundEnable ();

…

soundChannelID=soundPlayNoise (10000, 100, 64); //frq can be

changed here. Current frq is 10k Hz.

swiDelay(10000000);

soundKill (soundChannelID);

}

}

If (keysHeld()&KEY_LEFT)

{

// features for left key

}

If (keysHeld()&KEY_X)

{

// features for left key

}

• You might see two ships.

• Please start early.

• Download the startup code

• See more info for background setup

– http://patater.com/files/projects/manual/manual

.html#id2612791

• Team members (1-2)

• Schedule

– 4/12 (1 paragraph project proposal)

– 4/14 proposal 1st feedback

– 4/16 detailed proposal description meeting

– 4/23 progress meeting

– 4/28 final project presentation

• 10 min for each team

– 4/30 project submission

