
Spring 2010 

Prof. Hyesoon Kim 



// Matrix multiplication kernel thread specification

__global__ void MatrixMulKernel(Matrix M, Matrix N, Matrix P)

{

__shared__ float Msub[16][16];

__shared__ float Nsub[16][16];

int tx = threadIdx.x;

int ty = threadIdx.y;

int row = (blockDim.y * blockIdx.y + ty);

int col = blockDim.x * blockIdx.x + tx;

int k = 0;

int temp;

float Psub = 0.0f;

// next slides 

// Output edge condition check

if(col < P.width && row < P.height)

P.elements[row*P.width + col] = Psub;

return;

}



while(k < M.width)

{

//Check M edge condtions for this tile

if(k + tx < M.width && row < M.height)

Msub[ty][tx] = M.elements[row*M.width + k + tx];

else

Msub[ty][tx] = 0.0f;

//Check N edge conditions for this tile

if(k + threadIdx.y < N.height && col < N.width)

Nsub[ty][tx] = N.elements[(k+ty)*N.width + col];

else

Nsub[ty][tx] = 0.0f;

__syncthreads();

// No edge condtions to check here (fixed 16x16 tile size)

for(temp = 0; temp < 16; temp++)

Psub += Msub[ty][temp] * Nsub[temp][tx];

__syncthreads();

k += 16;

}



• A group of threads that are executed 

together as a lock step 

• Similar to SIMD instruction 

• Hardware’s minimum execution unit.

• G80 architecture: 32 threads 

– The number can be changed. miroarchitecture

feature 

• All hardware unit is allocated per warp 



• Up to 8 blocks

• Each SM can take up to 768 threads (Tesla 1024 

threads) 

• 16KB Shared memory limit 

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative to other blocks. 

time

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC



• There are 8192 registers 

in each SM in G80

– This is an implementation 

decision, not part of CUDA

– Registers are dynamically 

partitioned across all Blocks 

assigned to the SM

– Once assigned to a Block, 

the register is NOT 

accessible by threads in 

other Blocks

– Each thread in the same 

Block only access registers 

assigned to itself

4 blocks 3 blocks

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC



 Shows how many warps are assigned to the SM

 Warps are assigned at block granularity

 Programmer specifies the number of threads per block

100% Occupancy 

7

Register 

requirements per block

Shared memory 

requirements per block

Only one block is allocated 

Occupancy calculator is in the website



© David Kirk/NVIDIA and Wen-mei W. Hwu, 

2007-2010 8

• For Matrix Multiplication, should I use 4X4, 8X8, 16X16 or 32X32 
tiles?
– For 4X4, we have 16 threads per block, Since each SM can take up to 

768 threads, the thread capacity allows 48 blocks. However, each SM 
can only take up to 8 blocks, thus there will be only 128 threads in each 
SM!

• There are 8 warps but each warp is only half full.

– For 8X8, we have 64 threads per Block. Since each SM can take up to 
768 threads, it could take up to 12 Blocks. However, each SM can only 
take up to 8 Blocks, only 512 threads will go into each SM! 

• There are 16 warps available for scheduling in each SM

• Each warp spans four slices in the y dimension

– For 16X16, we have 256 threads per Block. Since each SM can take up 
to 768 threads, it can take up to 3 Blocks and achieve full capacity unless 
other resource considerations overrule.

• There are 24 warps available for scheduling in each SM

• Each warp spans two slices in the y dimension

– For 32X32, we have 1024 threads per Block. Not even one can fit into an 
SM!



• Optimize Algorithms for the GPU

– Reduce communications between the CPU 

and GPU

• Increase occupancy 

• Optimize Memory Access Coherence

• Take Advantage of On-Chip Shared 

Memory

• Use Parallelism Efficiently



 Better processor utilization

 Hide the memory latency

10

Warp 1

Warp 2

C M C M C M C M

C M C M C M C M

Processor is not utilized 

Warp 3

Warp 4

Warp 5

C M C M C M C M

C M C M C M C M

C M C M C M C M
Better 

utilization !

Hong & Kim ISCA’09



• First Quiz (Next Monday)

• Until Today’s lecture

• CUDA, architecture, Performance 

calculation, Xbox 360


