
Spring 2010

Prof. Hyesoon Kim

• Optimize Algorithms for the GPU

– Reduce communications between the CPU

and GPU

• Increase occupancy

• Optimize Memory Access Coherence

• Take Advantage of On-Chip Shared

Memory

• Use Parallelism Efficiently

• Maximize independent parallelism

• Maximize arithmetic intensity (math/bandwidth)

• Sometimes it’s better to recompute than to cache

– GPU spends its transistors on ALUs, not memory

• Do more computation on the GPU to avoid costly

data transfers

– Even low parallelism computations can sometimes be

faster than transferring back and forth to host

• Coalesced vs. Non-coalesced = order of

magnitude

– Global/Local device memory

• Optimize for spatial locality in cached texture

memory

• In shared memory, avoid high-degree bank

conflicts

• Hundreds of times faster than global

memory

• Threads can cooperate via shared memory

• Use one / a few threads to load / compute

data shared by all threads

• Use it to avoid non-coalesced access

– Stage loads and stores in shared memory to

re-order noncoalesceable addressing

• Partition your computation to keep the

GPU multiprocessors equally busy

– Many threads, many thread blocks

• Keep resource usage low enough to

support multiple active thread blocks per

multiprocessor

– Registers, shared memory

• Highest latency instructions: 400-600 clock

cycles

• Likely to be performance bottleneck

• Optimizations can greatly increase

performance

– Coalescing: up to 10x speedup

Coalesced memory access type

One memory transaction

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread N

Addr 1 Addr 2 Addr 3 Addr 4 Addr 5 Addr 6 Addr N

Thread 2 Thread 3 Thread 4 Thread NThread 1

Multiple memory transactions

Addr 1 Addr 10 Addr 2 Addr 20 Addr N

One warp generates a memory request

Uncoalesced memory access type

- More processing cycles for the uncoalesced case

One warp

Hong&Kim’09 presentation file

t0 t1 t2 t3

. . .
128 132 136 140 144

All threads participate

t14 t15

. . .

. . .
128 132 136 140 144

. . .

t0 t1 t2 t3 t14 t15

X X

Some threads do not participate

184 188 192

184 188 192

• Computing capability =1.2 (GTX280, T10C).
Those two cases are treated as coalesced
memory

t0 t1 t2 t3

. . .
128 132 136 140 144

Permuted Access by Threads

t14 t15

. . .

. . .
128 132 136 140 144

. . .

t0 t1 t2 t3 t14 t15

Misaligned Starting Address (not a multiple of 64)

t13

184 188 192

184 188 192

• Experiment:

– Kernel: read a float, increment, write back

– 3M floats (12MB)

– Times averaged over 10K runs

• 12K blocks x 256 threads:

– 356μs – coalesced

– 357μs – coalesced, some threads don’t
participate

– 3,494μs – permuted/misaligned thread access

__global__ void accessFloat3(float3 *d_in, float3 d_out)

{

int index = blockIdx.x * blockDim.x + threadIdx.x;

float3 a = d_in[index];

a.x += 2;

a.y += 2;

a.z += 2;

d_out[index] = a;

}

• float3 is 12 bytes

• Each thread ends up executing 3 reads

– sizeof(float3) ≠ 4, 8, or 12

– Half-warp reads three 64B non-contiguous regions

• Use a structure of arrays instead of AoS

• If SoA is not viable:

– Force structure alignment: __align(X), where X

= 4, 8, or 16

– Use SMEM to achieve coalescing

• Array of structures (AOS)

– {x1,y1, z1,w1} , {x2,y2, z2,w2} , {x3,y3, z3,w3}

, {x4,y4, z4,w4} ….

– Intuitive but less efficient

– What if we want to perform only x axis?

• Structure of array (SOA)

– {x1,x2,x3,x4}, …,{y1,y2,y3,y4}, …{z1,z2,z3,z4},

… {w1,w2,w3,w4}…

• Coalescing greatly improves throughput

• Critical to small or memory-bound kernels

• Reading structures of size other than 4, 8, or 16

bytes will break coalescing:

– Prefer Structures of Arrays over AoS

– If SoA is not viable, read/write through SMEM

• Future proof code: coalesce over whole warps

• Additional resources:

– Aligned Types CUDA SDK Sample

• Thread instructions executed sequentially,
executing other warps is the only way to hide
latencies and keep the hardware busy

• Occupancy = Number of warps running
concurrently on a multiprocessor divided by
maximum number of warps that can run
concurrently

• Minimize occupancy requirements by minimizing
latency

• Maximize occupancy by optimizing threads per
multiprocessor

• Increasing occupancy does not necessarily

increase performance

– BUT…

• Low-occupancy multiprocessors cannot

adequately hide latency on memory-bound

kernels

– (It all comes down to arithmetic intensity and available

parallelism)

• Part of the SDK

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 22

• One could double buffer the computation, getting

better instruction mix within each thread

– This is classic software pipelining in ILP compilers

Loop {

Load current tile to shared memory

syncthreads()

Compute current tile

syncthreads()

}

Load next tile from global memory

Loop {

Deposit current tile to shared memory
syncthreads()

Load next tile from global memory

Compute current tile

syncthreads()

}

23

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by
ty

2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_
W

ID
T

H
T

IL
E

_
W

ID
T

H
T

IL
E

_
W

ID
T

H
E

W
ID

T
H

W
ID

T
H

• Deposit blue tile from register

into shared memory

• Syncthreads

• Load orange tile into register

• Compute Blue tile

• Deposit orange tile into shared

memory

• ….

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

Each thread

block must load

into shared

memory the

pixels to be

filtered and the

apron pixels.

• When the kernel size is relatively too big

compared to image size

• Use threads to load multiple image blocks

• Use 1/3 threads

Idle threads

• Memory Coalescing:

• Unrolling the kernel

• #pragma unroll
– By default, the compiler unrolls small loops with a known trip

count.

– The #pragma unroll directive however can be used to control

unrolling of any given loop.

