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• Optimize Algorithms for the GPU

– Reduce communications between the CPU 

and GPU

• Increase occupancy 

• Optimize Memory Access Coherence

• Take Advantage of On-Chip Shared 

Memory

• Use Parallelism Efficiently



• Maximize independent parallelism

• Maximize arithmetic intensity (math/bandwidth)

• Sometimes it’s better to recompute than to cache

– GPU spends its transistors on ALUs, not memory

• Do more computation on the GPU to avoid costly 

data transfers

– Even low parallelism computations can sometimes be 

faster than transferring back and forth to host



• Coalesced vs. Non-coalesced = order of 

magnitude

– Global/Local device memory

• Optimize for spatial locality in cached texture 

memory

• In shared memory, avoid high-degree bank 

conflicts



• Hundreds of times faster than global 

memory

• Threads can cooperate via shared memory

• Use one / a few threads to load / compute 

data shared by all threads

• Use it to avoid non-coalesced access

– Stage loads and stores in shared memory to 

re-order noncoalesceable addressing



• Partition your computation to keep the 

GPU multiprocessors equally busy

– Many threads, many thread blocks

• Keep resource usage low enough to 

support multiple active thread blocks per 

multiprocessor

– Registers, shared memory



• Highest latency instructions: 400-600 clock 

cycles

• Likely to be performance bottleneck

• Optimizations can greatly increase 

performance

– Coalescing: up to 10x speedup



Coalesced memory access type

One memory transaction

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread N

Addr 1 Addr 2 Addr 3 Addr 4 Addr 5 Addr 6 Addr N

Thread 2 Thread 3 Thread 4 Thread NThread 1

Multiple memory transactions

Addr 1 Addr 10 Addr 2 Addr 20 Addr N

One warp generates a memory request

Uncoalesced memory access type

- More processing cycles for the uncoalesced case

One warp

Hong&Kim’09 presentation file
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• Computing capability =1.2 (GTX280, T10C). 
Those two cases are treated as coalesced 
memory 

t0 t1 t2 t3

. . . 
128     132   136    140    144

Permuted Access by Threads

t14 t15

. . . 

. . . 
128     132 136    140    144

. . . 

t0 t1 t2 t3 t14 t15

Misaligned Starting Address (not a multiple of 64)

t13

184 188 192

184 188 192



• Experiment:

– Kernel: read a float, increment, write back

– 3M floats (12MB)

– Times averaged over 10K runs

• 12K blocks x 256 threads:

– 356μs – coalesced

– 357μs – coalesced, some threads don’t 
participate

– 3,494μs – permuted/misaligned thread access



__global__ void accessFloat3(float3 *d_in, float3 d_out)

{

int index = blockIdx.x * blockDim.x + threadIdx.x;

float3 a = d_in[index];

a.x += 2;

a.y += 2;

a.z += 2;

d_out[index] = a;

}



• float3 is 12 bytes

• Each thread ends up executing 3 reads

– sizeof(float3) ≠ 4, 8, or 12

– Half-warp reads three 64B non-contiguous regions







• Use a structure of arrays instead of AoS

• If SoA is not viable:

– Force structure alignment: __align(X), where X 

= 4, 8, or 16

– Use SMEM to achieve coalescing



• Array of structures (AOS)

– {x1,y1, z1,w1} , {x2,y2, z2,w2} , {x3,y3, z3,w3} 

, {x4,y4, z4,w4}  ….

– Intuitive but less efficient

– What if we want to perform only x axis? 

• Structure of array (SOA)

– {x1,x2,x3,x4}, …,{y1,y2,y3,y4}, …{z1,z2,z3,z4}, 

… {w1,w2,w3,w4}…



• Coalescing greatly improves throughput

• Critical to small or memory-bound kernels

• Reading structures of size other than 4, 8, or 16 

bytes will break coalescing:

– Prefer Structures of Arrays over AoS

– If SoA is not viable, read/write through SMEM

• Future proof code: coalesce over whole warps

• Additional resources:

– Aligned Types CUDA SDK Sample



• Thread instructions executed sequentially, 
executing other warps is the only way to hide 
latencies and keep the hardware busy

• Occupancy = Number of warps running 
concurrently on a multiprocessor divided by 
maximum number of warps that can run 
concurrently

• Minimize occupancy requirements by minimizing 
latency

• Maximize occupancy by optimizing threads per 
multiprocessor



• Increasing occupancy does not necessarily 

increase performance

– BUT…

• Low-occupancy multiprocessors cannot 

adequately hide latency on memory-bound 

kernels

– (It all comes down to arithmetic intensity and available 

parallelism)



• Part of the SDK 
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• One could double buffer the computation, getting 

better instruction mix within each thread

– This is classic software pipelining in ILP compilers

Loop {

Load current tile to shared memory

syncthreads()

Compute current tile

syncthreads()

}

Load next tile from global memory

Loop {

Deposit current tile to shared memory
syncthreads()

Load next tile from global memory

Compute current tile

syncthreads()

}
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• Deposit blue tile from register 

into shared memory

• Syncthreads

• Load orange tile into register

• Compute Blue tile

• Deposit orange tile into shared 

memory

• ….
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Each thread 

block must load 

into shared 

memory the 

pixels to be 

filtered and the 

apron pixels.



• When the kernel size is relatively too big 

compared to image size

• Use threads to load multiple image blocks

• Use 1/3 threads  

Idle threads



• Memory Coalescing:



• Unrolling the kernel

• #pragma unroll
– By default, the compiler unrolls small loops with a known trip 

count. 

– The #pragma unroll directive  however can be used to control 

unrolling of any given loop. 


