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CUDA Optimization Strategies

* Optimize Algorithms for the GPU

— Reduce communications between the CPU
and GPU

* Increase occupancy
* Optimize Memory Access Coherence

» Take Advantage of On-Chip Shared
Memory

» Use Parallelism Efficiently
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Optimize Algorithms for the GPU

« Maximize independent parallelism
« Maximize arithmetic intensity (math/bandwidth)

Sometimes it’s better to recompute than to cache
— GPU spends its transistors on ALUs, not memory
Do more computation on the GPU to avoid costly

data transfers

— Even low parallelism computations can sometimes be
faster than transferring back and forth to host
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Optimize Memory Coherence

« Coalesced vs. Non-coalesced = order of
magnitude
— Global/Local device memory

* Optimize for spatial locality in cached texture
memory

 In shared memory, avoid high-degree bank
conflicts
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Take Advantage of Shared Memory

Hundreds of times faster than global
memory

Threads can cooperate via shared memory

Use one / a few threads to load / compute
data shared by all threads
Use It to avoid non-coalesced access

— Stage loads and stores in shared memory to
re-order noncoalesceable addressing
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Use Parallelism Efficiently

 Partition your computation to keep the
GPU multiprocessors equally busy

— Many threads, many thread blocks
« Keep resource usage low enough to

support multiple active thread blocks per
multiprocessor

— Registers, shared memory
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Global Memory Reads/Writes

» Highest latency instructions: 400-600 clock
cycles

* Likely to be performance bottleneck

« Optimizations can greatly increase
performance

— Coalescing: up to 10x speedup
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Coalesced/Uncoalesced

One warp generates a memory request

One memory transaction
Coalesced memory access type /

One warp
Uncoalesced memory access type Multiple memory transactions
Thread 1 Thread 2 Thread 3 Thread 4 Thread N

- More processing cycles for the uncoalesced case
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Coalesced Access: = N

Reading floats
t0O t1 t2 3 t14 t15
128 132 136 140 144 184 188 192
All threads participate
t0 t1 t2 3 t14 t15
| XX Lo
128 132 136 140 144 184 188 192

Some threads do not participate
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Uncoalesced Access: = B
Reading floats (Computing Capability
<1.2)

t0O t1 t2 3 t14 t15
> Lo
128 132 136 140 144 184 188 192

Permuted Access by Threads

t0O t1 t2 3 t13 t14 t15
NN N NN N
128 132 136 140 144 184 188 192

Misaligned Starting Address (not a multiple of 64)

« Computing capability =1.2 (GTX280, T10C).
Those two cases are treated as coalesced
me mOry Georgia Collegeef
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Coalescing: Timing Results

* Experiment:
— Kernel: read a float, increment, write back
— 3M floats (12MB)
— Times averaged over 10K runs

12K blocks x 256 threads:

— 356us — coalesced

— 357us — coalesced, some threads don't
participate

— 3,494 s — permuted/misaligned thread access
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Uncoalesced float3 Code

__global void accessFloat3(float3 *d _in, float3 d_out)
{

Int index = blockldx.x * blockDim.x + threadldx.x;

float3 a=d_in[index];

a.x +=2;

a.y += 2,

a.z += 2;

d out[index] = a;
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Uncoalesced Access: = HE O
float3 Case

« float3 is 12 bytes

« Each thread ends up executing 3 reads
— sizeof(float3) # 4, 8, or 12
— Half-warp reads three 64B non-contiguous regions

t0 t1 t2 t3
L™ A A 7
il il il
float3 float3 float3
First read
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Coalescing float3 Access

GMEM

Stip 1

Stgp 2
—
—
e

Similarly, Step3 starting at offset 512
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Coalesced Access: float3 Case

__global__ void accessiInt3Shared(float *g_in, float "g_out)

{
~ intindex = 3 * blockldx.x * blockDim.x + threadldx.x;
__shared___ float s_data[256"3];

. s_data[threadldx.x] = g_in[index];

heouah sMem < s_datafthreadidx.x+256] = g_in[index+256];
s_data[threadldx.x+512] = g_in[index+512];
__syncthreads();
. float3 a = ((float3™)s_data)[thread|dx.x];

T ax+=2;
Compute code _ ay += 2:
is not changed a.z 4= 2:

~  ((float3™)s_data)[threadldx.x] =
__syncthreads();

Write the result g_out[index] = s_data[threadldx.x];
through SMEM g_out[index+256] = s_data[threadldx.x+256];
_  9_out[index+512] = s_data[threadldx.x+512];
}
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Coalescing: Structure of Size # 4,8, ﬁ 1’ ]
Bytes

» Use a structure of arrays instead of AoS

* If SOA Is not viable:

— Force structure alignment: _ align(X), where X
=4, 8, 0r 16

— Use SMEM to achieve coalescing
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SOA & AOS (Review)

 Array of structures (AOS)

—{x1,y1, z1,wl}, {x2,y2, z2,w2} , {x3,y3, z3,w3}
, {x4,y4, zZ4 w4} ....

— Intuitive but less efficient
— What if we want to perform only x axis?

« Structure of array (SOA)

—{x1,x2,x3,x4}, ... {y1,y2,y3,y4}, ...{z1,22,z3,z4},

. {wl,w2,w3,w4}...

aNavzva =3

Georgia Caollegeef
(D e 1 ey
Tech ©Com ) (DUt NG|



ﬁ i
oa s
- ‘ 2

Coalescing: summary

« Coalescing greatly improves throughput
* Critical to small or memory-bound kernels

« Reading structures of size other than 4, 8, or 16
bytes will break coalescing:
— Prefer Structures of Arrays over AoS
— If SOA Is not viable, read/write through SMEM

* Future proof code: coalesce over whole warps

e Additional resources:
— Aligned Types CUDA SDK Sample
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Occupancy

* Thread instructions executed sequentially,
executing other warps is the only way to hide
latencies and keep the hardware busy

* Occupancy = Number of warps running
concurrently on a multiprocessor divided by
maximum number of warps that can run
concurrently

* Minimize occupancy requirements by minimizing
latency

« Maximize occupancy by optimizing threads per
multiprocessor
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Occupancy != Performance

* |ncreasing occupancy does not necessarily
Increase performance

- BUT...

* Low-occupancy multiprocessors cannot
adequately hide latency on memory-bound
kernels

— (It all comes down to arithmetic intensity and available
parallelism)
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Use Occupancy calculator

 Part of the SDK
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Prefetching
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* One could double buffer the computation, getting
better instruction mix within each thread

— This Is classic software pipelining in ILP compilers

Loop {

Load current tile to shared memory
syncthreads()

Compute current tile

syncthreads()
}

© David Kirk/NVIDIA and Wen-mei W. Hwu. 2007-2010

Load next tile from global memory

Loop {
Deposit current tile to shared memory
syncthreads()

Load next tile from global memory

Compute current tile

syncthreads()
}
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Prefetch

* Deposit blue tile from register
Into shared memory

e Syncthreads
* Load orange tile into register
« Compute Blue tile

* Deposit orange tile into shared
memory
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© David Kirk/NVIDIA and Wen-mei W. Hwu. 2007-2010
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Convolution: Naive Implementa@n:. .
Shared Memory and the Apron

Image in Device Memory EaCh th read

block must load
Into shared
memory the
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Optimization I: Avoid idle thread

* When the kernel size is relatively too big
compared to image size

» Use threads to load multiple image blocks
* Use 1/3 threads

Idle threads
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Optimization li

 Memory Coalescing:

O = Threads Inactive During Load Stage

KERNEL_RADIUS ROW_TILE_W . . KERNEL_RADIUS
i i > >4

i >
KERNEL_RADIUS_ALIGNED |4 -

blockDim_x
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Optimization-lli

* Unrolling the kernel

for(int k = -KERNEL RADIUS; k <= KERNEL RADIUS; k++)
sum += data[smemPos + k] * d Kernel [KERNEL RADIUS - k];

#define CONVOLUTION ROW1 (sum, data, smemPos) {sum = \

data[smemPos - 1] * d Kernel[2] +
data[smemPos + 0] * d Kernel[1l] + \
data[smemPos + 1] * d Kernel[O0]; \

J

e #pragma unroll

— By default, the compiler unrolls small loops with a known trip

count.
— The #pragma unroll directive however can be used to control

unrolling of any given loop.
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