CS4803DGC Design Game Consoles

Spring 2010
Prof. Hyesoon Kim

Georgia Caollege of
Tech Compuiting

=
CUDA Optimization Strategies

* Optimize Algorithms for the GPU

— Reduce communications between the CPU
and GPU

* Increase occupancy
* Optimize Memory Access Coherence

» Take Advantage of On-Chip Shared
Memory

» Use Parallelism Efficiently

aNavzva =3

Georgia College ef
(7D ey 16 ey
IeCh e PMAING)

= R
Optimize Algorithms for the GPU

« Maximize independent parallelism
« Maximize arithmetic intensity (math/bandwidth)

Sometimes it’s better to recompute than to cache
— GPU spends its transistors on ALUs, not memory
Do more computation on the GPU to avoid costly

data transfers

— Even low parallelism computations can sometimes be
faster than transferring back and forth to host

T | | Py |

Georgia Collegeof
(7D oy e
Tech ©Com e

ﬁ t,]
.
- A

Optimize Memory Coherence

« Coalesced vs. Non-coalesced = order of
magnitude
— Global/Local device memory

* Optimize for spatial locality in cached texture
memory

 In shared memory, avoid high-degree bank
conflicts

CaillaEya aY
Georgia Caollegeof

Tech ' Compuiing

.

BT
s
@ ““
.l,- ‘

Take Advantage of Shared Memory

Hundreds of times faster than global
memory

Threads can cooperate via shared memory

Use one / a few threads to load / compute
data shared by all threads
Use It to avoid non-coalesced access

— Stage loads and stores in shared memory to
re-order noncoalesceable addressing

Georgia Collegeof
Tech Cao g

N
& | s

ﬁ “‘l
- ‘ 5

Use Parallelism Efficiently

 Partition your computation to keep the
GPU multiprocessors equally busy

— Many threads, many thread blocks
« Keep resource usage low enough to

support multiple active thread blocks per
multiprocessor

— Registers, shared memory

aNavzva =3

Georgia College ef
(7D ey 16 ey
IeCh e PMAING)

=
Global Memory Reads/Writes

» Highest latency instructions: 400-600 clock
cycles

* Likely to be performance bottleneck

« Optimizations can greatly increase
performance

— Coalescing: up to 10x speedup

aNavzva =3

Georgia Caollegeef
(D e 1 ey
Tech ©Com) (DUt NG|

Ve—
2]
B =

Coalesced/Uncoalesced

One warp generates a memory request

One memory transaction
Coalesced memory access type /

One warp
Uncoalesced memory access type Multiple memory transactions
Thread 1 Thread 2 Thread 3 Thread 4 Thread N

- More processing cycles for the uncoalesced case

Georgia Collegeaef
Tech

Hong&Kim’09 presentation file || Compuriing

Coalesced Access: = N

Reading floats
t0O t1 t2 3 t14 t15
128 132 136 140 144 184 188 192
All threads participate
t0 t1 t2 3 t14 t15
| XX Lo
128 132 136 140 144 184 188 192

Some threads do not participate

Georgia College el
Tech ! Gomputing

Uncoalesced Access: = B
Reading floats (Computing Capability
<1.2)

t0O t1 t2 3 t14 t15
> Lo
128 132 136 140 144 184 188 192

Permuted Access by Threads

t0O t1 t2 3 t13 t14 t15
NN N NN N
128 132 136 140 144 184 188 192

Misaligned Starting Address (not a multiple of 64)

« Computing capability =1.2 (GTX280, T10C).
Those two cases are treated as coalesced
me mOry Georgia Collegeef

Tech Coempuiing

: >
TR

ﬁ iz d
- 4= 2

Coalescing: Timing Results

* Experiment:
— Kernel: read a float, increment, write back
— 3M floats (12MB)
— Times averaged over 10K runs

12K blocks x 256 threads:

— 356us — coalesced

— 357us — coalesced, some threads don't
participate

— 3,494 s — permuted/misaligned thread access

aNavzva =3

Georgia Caollegeef
(D e 1 ey
Tech Coemmpu L-ﬁﬂ.‘{;:,

= HE N

Uncoalesced float3 Code

__global void accessFloat3(float3 *d _in, float3 d_out)
{

Int index = blockldx.x * blockDim.x + threadldx.x;

float3 a=d_in[index];

a.x +=2;

a.y += 2,

a.z += 2;

d out[index] = a;

Georgia College el
Tech ! Gomputing

Uncoalesced Access: = HE O
float3 Case

« float3 is 12 bytes

« Each thread ends up executing 3 reads
— sizeof(float3) # 4, 8, or 12
— Half-warp reads three 64B non-contiguous regions

t0 t1 t2 t3
L™ A A 7
il il il
float3 float3 float3
First read

Georgia College of
Tech Coempuifing

= HE N

Coalescing float3 Access

GMEM

Stip 1

Stgp 2
—
—
e

Similarly, Step3 starting at offset 512

Georgia Collegeof
Tech Compuiiing

i

Coalesced Access: float3 Case

__global__ void accessiInt3Shared(float *g_in, float "g_out)

{
~ intindex = 3 * blockldx.x * blockDim.x + threadldx.x;
__shared___ float s_data[256"3];

. s_data[threadldx.x] = g_in[index];

heouah sMem < s_datafthreadidx.x+256] = g_in[index+256];
s_data[threadldx.x+512] = g_in[index+512];
__syncthreads();
. float3 a = ((float3™)s_data)[thread|dx.x];

T ax+=2;
Compute code _ ay += 2:
is not changed a.z 4= 2:

~ ((float3™)s_data)[threadldx.x] =
__syncthreads();

Write the result g_out[index] = s_data[threadldx.x];
through SMEM g_out[index+256] = s_data[threadldx.x+256];
_ 9_out[index+512] = s_data[threadldx.x+512];
}

Georgia Collegeaef
Tech ' Cempuiiing

Coalescing: Structure of Size # 4,8, ﬁ 1’]
Bytes

» Use a structure of arrays instead of AoS

* If SOA Is not viable:

— Force structure alignment: _ align(X), where X
=4, 8, 0r 16

— Use SMEM to achieve coalescing

Georgia Caollege el
Tech Compuiiing

: >
o) N

ﬁ 4 ‘
- 4= 2

SOA & AOS (Review)

 Array of structures (AOS)

—{x1,y1, z1,wl}, {x2,y2, z2,w2} , {x3,y3, z3,w3}
, {x4,y4, zZ4 w4}

— Intuitive but less efficient
— What if we want to perform only x axis?

« Structure of array (SOA)

—{x1,x2,x3,x4}, ... {y1,y2,y3,y4}, ...{z1,22,z3,z4},

. {wl,w2,w3,w4}...

aNavzva =3

Georgia Caollegeef
(D e 1 ey
Tech ©Com) (DUt NG|

ﬁ i
oa s
- ‘ 2

Coalescing: summary

« Coalescing greatly improves throughput
* Critical to small or memory-bound kernels

« Reading structures of size other than 4, 8, or 16
bytes will break coalescing:
— Prefer Structures of Arrays over AoS
— If SOA Is not viable, read/write through SMEM

* Future proof code: coalesce over whole warps

e Additional resources:
— Aligned Types CUDA SDK Sample

(>alavzva 537
Georgia Caollegeef
(7D g 5
Tech Compuiing

Occupancy

* Thread instructions executed sequentially,
executing other warps is the only way to hide
latencies and keep the hardware busy

* Occupancy = Number of warps running
concurrently on a multiprocessor divided by
maximum number of warps that can run
concurrently

* Minimize occupancy requirements by minimizing
latency

« Maximize occupancy by optimizing threads per
multiprocessor

Georgia Caollegeef
Tech GCompuliing

ﬁ A, 7
.
i

- 3

-
Occupancy != Performance

* |ncreasing occupancy does not necessarily
Increase performance

- BUT...

* Low-occupancy multiprocessors cannot
adequately hide latency on memory-bound
kernels

— (It all comes down to arithmetic intensity and available
parallelism)

2 s o ;
(2 I ravava a8
Georgia Collegeef

Tech ' Compuiing

= HE B

Use Occupancy calculator

 Part of the SDK

Georgia Colleg® el
Tech Coempuiing

Prefetching

s >t
ﬁ . B
7
-
- »

* One could double buffer the computation, getting
better instruction mix within each thread

— This Is classic software pipelining in ILP compilers

Loop {

Load current tile to shared memory
syncthreads()

Compute current tile

syncthreads()
}

© David Kirk/NVIDIA and Wen-mei W. Hwu. 2007-2010

Load next tile from global memory

Loop {
Deposit current tile to shared memory
syncthreads()

Load next tile from global memory

Compute current tile

syncthreads()
}

- — nn ra
(2 I ravava a8
Georgia Caollegeef

TYeeh Cosrmnsiioe
LA~ "}] AT U U AT OO0 U 77

Prefetch

* Deposit blue tile from register
Into shared memory

e Syncthreads
* Load orange tile into register
« Compute Blue tile

* Deposit orange tile into shared
memory

j--

TILE_WIDT

P

= BN B

X

012 TILE_WIDTH-1

[|

<«

© David Kirk/NVIDIA and Wen-mei W. Hwu. 2007-2010

i
\-‘;vu A A 4

Tech Cc rma r{ﬁng 23

v

Convolution: Naive Implementa@n:. .
Shared Memory and the Apron

Image in Device Memory EaCh th read

block must load
Into shared
memory the

B - pocen pixels to be

filtered and the

n 0 0 0 0 O 0 O _
e s 22 32| |23 apron pixels.
i 8 1 4 1 e i
507 1 : /o 0 0 O
4 8 3 1 3 2 ."'“ | x4 3 8]+
i 8 5 1 2 1 11
483 13 2|/ . |

1 i 1 8 5 1 1/ 2l Jd

12 1185121} 12 1

Image Block in Shared Memory Georgla Colleg® of

Tech Compuiing

T L = HE O
Optimization I: Avoid idle thread

* When the kernel size is relatively too big
compared to image size

» Use threads to load multiple image blocks
* Use 1/3 threads

Idle threads

Georgia Colleageef
Tech Compuifing

!:ﬂ ’ 1 ! :
- .

Optimization li

 Memory Coalescing:

O = Threads Inactive During Load Stage

KERNEL_RADIUS ROW_TILE_W . . KERNEL_RADIUS
i i > >4

i >
KERNEL_RADIUS_ALIGNED |4 -

blockDim_x

Georgia College of
Tech Coempuiing

ﬂ '
.
- 3

Optimization-lli

* Unrolling the kernel

for(int k = -KERNEL RADIUS; k <= KERNEL RADIUS; k++)
sum += data[smemPos + k] * d Kernel [KERNEL RADIUS - k];

#define CONVOLUTION ROW1 (sum, data, smemPos) {sum = \

data[smemPos - 1] * d Kernel[2] +
data[smemPos + 0] * d Kernel[1l] + \
data[smemPos + 1] * d Kernel[O0]; \

J

e #pragma unroll

— By default, the compiler unrolls small loops with a known trip

count.
— The #pragma unroll directive however can be used to control

unrolling of any given loop.

Georgia College of
Tech Coempuifing

