
Spring 2010

Prof. Hyesoon Kim

16 highly threaded SM’s, >128 FPU’s, 367 GFLOPS, 768

MB DRAM, 86.4 GB/S Mem BW, 4GB/S BW to CPU

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

TPC
Texture

Processor

Cluster

TPC TPC TPC TPC TPC TPC

TEX

SM

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Texture Processor Cluster Streaming Multiprocessor

SM

Shared Memory

Streaming Processor Array

…

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• SPA: Streaming Processor Array
– Array of TPCs

• 8 TPCs in GeForce8800

– TPC: Texture Processor Cluster
• Cluster of 2 SMs+ 1 TEX

• TEX is a texture processing unit

– SM: Streaming Multiprocessor
• Array of 8 SPs

• Multi-threaded processor core

• Fundamental processing unit for a thread block

– SP: Streaming Processor
• Scalar ALU for a single thread

• With 1K of registers

https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFa07/Schedule?action=download&upname=EE382V_Fa07_Lect12_G80Core.pdf

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFa07/Schedule?action=download&upname=EE382V_Fa07_Lect13_G80Mem.pdf

1 Grid (kernel) at a time

1 thread per SP

(in warps of 32

Across the SM)

1 – 8 thread blocks per SM

(16 – 128 total concurrent blocks)

• Frequency
– 575 MHz with ALUs running at 1.35 GHz

• ALU bandwidth (GFLOPs)
– (1.35 GHz) X (16 SM) X ((8 SP)X(2 MADD) + (2 SFU)) = ~388 GFLOPs

• Register BW
– (1.35 GHz) X (16 SM) X (8 SP) X (4 words) = 2.8 TB/s

• Shared Memory BW
– (575 MHz) X (16 SM) X (16 Banks) X (1 word) = 588 GB/s

• Device memory BW
– 1.8 GHz GDDR3 with 384 bit bus: 86.4 GB/s

• Host memory BW
– PCI-express: 1.5GB/s or 3GB/s with page locking

https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFa07/Schedule?action=download&upname=EE382V_Fa07_Lect14_G80Control.pdf

• Threads are assigned to SMs in Block

granularity

– Up to 8 Blocks to each SM as

resource allows

– SM in G80 can take up to 768 threads

• Could be 256 (threads/block) * 3

blocks

• Or 128 (threads/block) * 6 blocks, etc.

• Threads run concurrently

– SM assigns/maintains thread id #s

– SM manages/schedules thread

execution

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1SM 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Each Thread Blocks is divided in 32-

thread Warps

– This is an implementation decision,

not part of the CUDA programming

model

• Warps are scheduling units in SM

• If 3 blocks are assigned to an SM and

each Block has 256 threads, how

many Warps are there in an SM?

– Each Block is divided into 256/32 = 8

Warps

– There are 8 * 3 = 24 Warps

– At any point in time, only one of the

24 Warps will be selected for

instruction fetch and execution.

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…
Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Streaming Multiprocessor

Shared Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• SM hardware implements zero-overhead

Warp scheduling

– Warps whose next instruction has its

operands ready for consumption are

eligible for execution

– Eligible Warps are selected for execution

on a prioritized scheduling policy

– All threads in a Warp execute the same

instruction when selected

• 4 clock cycles needed to dispatch the

same instruction for all threads in a Warp

in G80

– If one global memory access is needed

for every 4 instructions

– A minimal of 13 Warps are needed to

fully tolerate 200-cycle memory latency

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

...

time

warp 3 instruction 96

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Fetch one warp instruction/cycle

– from instruction L1 cache

– into any instruction buffer slot

• Issue one “ready-to-go” warp

instruction/cycle

– from any warp - instruction buffer slot

– operand scoreboarding used to prevent

hazards

• Issue selection based on round-robin/age

of warp

• SM broadcasts the same instruction to 32

Threads of a Warp

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Strict round robin

• Utilization based policy

• Switch when it fetches a branch

PC

PC
PC

PC
PC

PC
PC

Mux
I-cache

warp #id stall

• Multiple read ports • Banks

R
e
a
d
1

R
e
a
d
2

w
rite

1

R
e
a
d

w
rite

R
e
a
d
3

R
e
a
d
4

R
e
a
d

w
rite

R
e
a
d

w
rite

R
e
a
d

w
rite

R1 R2

R3 R4

R1

R2

R3

R4

• No Bank Conflicts

– Linear addressing

stride == 1

• No Bank Conflicts

– Random 1:1

Permutation

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• This has no conflicts if type of shared is 32-bits:

foo = shared[baseIndex + threadIdx.x]

• But not if the data type is smaller

– 4-way bank conflicts:
__shared__ char shared[];

foo = shared[baseIndex + threadIdx.x];

– 2-way bank conflicts:
__shared__ short shared[];

foo = shared[baseIndex + threadIdx.x];

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Enough parallelism

– Switch to another thread

– Speculative execution is

• Branch predictor could be expensive

– Per thread predictor

• Branch elimination techniques

• Pipeline flush is too costly

• All register operands of all instructions in the Instruction
Buffer are scoreboarded
– Status becomes ready after the needed values are deposited

– prevents hazards

– cleared instructions are eligible for issue

• Decoupled Memory/Processor pipelines
– any thread can continue to issue instructions until

scoreboarding prevents issue

– allows Memory/Processor ops to proceed in shadow of
Memory/Processor ops

TB1

W1

TB = Thread Block, W = Warp

TB2

W1

TB3

W1

TB2

W1

TB1

W1

TB3

W2

TB1

W2

TB1

W3

TB3

W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Each SM has its own warp scheduler

• Schedules warps OoO based on hazards and

resources

• Warps can be issued in any order within and

across blocks

• Within a warp, all threads always have the same

position

– Current implementation has warps of 32 threads

– Can change with no notice from NVIDIA

https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFa07/Schedule?action=download&upname=EE382V_Fa07_Lect13_G80Mem.pdf

• What happens if there is a conditional statement
within a thread?

• No problem if all threads in a warp follow same
path

• Divergence: threads in a warp follow different
paths
– HW will ensure correct behavior by (partially)

serializing execution

– Compiler can add predication to eliminate divergence

• Try to avoid divergence
– If (TID > 2) {…} If(TID/ warp_size> 2) {…}

https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFa07/Schedule?action=download&upname=EE382V_Fa07_Lect13_G80Mem.pdf

• Basic Block

– Def: a sequence of consecutive operations in

which flow of control enters at the beginning

and leaves at the end without halt or possibility

of branching except at the end

– Single entry, single exit
Add r1, r2, r3

Br.cond target

Mov r3, r4

Br jmp join

Target add r1, r2, r3

Join mov r4 r5

A
A

B

C

D

B C

D

Control-flow graph

http://www.eecs.umich.edu/~mahlke/583w04/

• Defn: Dominator – Given a CFG, a

node x dominates a node y, if every

path from the Entry block to y

contains x

– Given some BB, which blocks are

guaranteed to have executed prior

to executing the BB

• Defn: Post dominator: Given a

CFG, a node x post dominates a

node y, if every path from y to the

Exit contains x
• Given some BB, which blocks are guaranteed

to have executed after executing the BB

– reverse of dominator

BB1

BB2

BB4

BB3

BB5 BB6

BB7

http://www.eecs.umich.edu/~mahlke/583w04/

• Immediate post dominator is the

reconvergence point of divergent

branch

• Defn: Immediate post

dominator (ipdom) – Each

node n has a unique

immediate post dominator m

that is the first post

dominator of n on any path

from n to the Exit

– Closest node that post

dominates

– First breadth-first successor

that post dominates a node

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

http://www.eecs.umich.edu/~mahlke/583w04/

• Recap:
– 32 threads in a warm are executed in SIMD (share one

instruction sequencer)

– Threads within a warp can be disabled (masked)
• For example, handling bank conflicts

– Threads contain arbitrary code including conditional
branches

• How do we handle different conditions in different
threads?
– No problem if the threads are in different warps

– Control divergence

– Predication

https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFa07/Schedule?action=download&upname=EE382V_Fa07_Lect14_G80Control.pdf

• Predication

• Loop unrolling

Convert control flow dependency to data dependency

Pro: Eliminate hard-to-predict branches (in traditional architecture)

Eliminate branch divergence (in CUDA)

Cons: Extra instructions

(normal branch code)

C B

D

A
T N

p1 = (cond)

branch p1, TARGET

mov b, 1

jmp JOIN

TARGET:

mov b, 0

A

B

C

B

C

D

A

(predicated code)

A

B

C

if (cond) {

b = 0;

}

else {

b = 1;

} p1 = (cond)

(!p1) mov b, 1

(p1) mov b, 0

• Comparison instructions set condition codes (CC)

• Instructions can be predicated to write results only when CC meets
criterion (CC != 0, CC >= 0, etc.)

• Compiler tries to predict if a branch condition is likely to produce
many divergent warps

– If guaranteed not to diverge: only predicates if < 4 instructions

– If not guaranteed: only predicates if < 7 instructions

• May replace branches with instruction predication

• ALL predicated instructions take execution cycles

– Those with false conditions don’t write their output

• Or invoke memory loads and stores

– Saves branch instructions, so can be cheaper than serializing
divergent paths

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Transforms an M-iteration loop into

a loop with M/N iterations

– We say that the loop has been unrolled N

times
for(i=0;i<100;i+=4){

a[i]*=2;

a[i+1]*=2;

a[i+2]*=2;

a[i+3]*=2;

}

for(i=0;i<100;i++)

a[i]*=2;

http://www.cc.gatech.edu/~milos/CS6290F07/

• Threads in a Block share data &

results

– In Memory and Shared Memory

– Synchronize at barrier instruction

• Per-Block Shared Memory Allocation

– Keeps data close to processor

– Minimize trips to global Memory

– SM Shared Memory dynamically

allocated to Blocks, one of the limiting

resources

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1SM 0

Courtesy:

John Nicols, NVIDIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Register File (RF)

– 32 KB

– Provides 4 operands/clock

• TEX pipe can also read/write RF

– 2 SMs share 1 TEX

• Load/Store pipe can also

read/write RF

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Immediate address constants

• Indexed address constants

• Constants stored in DRAM, and cached on

chip

– L1 per SM

• A constant value can be broadcast to all

threads in a Warp

– Extremely efficient way of accessing a value

that is common for all threads in a Block!

• Can reduce the number of registers.

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Textures are 1D,2D, 3D arrays of values

stored in global DRAM

• Textures are cached in L1 and L2

• Read-only access

• Caches are optimized for 2D access:

– Threads in a warp that follow 2D locality will

achieve better memory performance

• Texels: elements of the arrays, texture

elements

https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFa07/Schedule?action=download&upname=EE382V_Fa07_Lect13_G80Mem.pdf

• Designed to map textures onto 3D polygons

• Specialty hardware pipelines for:
– Fast data sampling from 1D, 2D, 3D arrays

– Swizzling of 2D, 3D data for optimal access

– Bilinear filtering in zero cycles

– Image compositing & blending operations

• Arrays indexed by u,v,w coordinates – easy to
program

• Extremely well suited for multigrid & finite
difference methods

• Each SM has 16 KB of Shared Memory

– 16 banks of 32bit words

• CUDA uses Shared Memory as shared

storage visible to all threads in a thread

block

– read and write access

• Not used explicitly for pixel shader programs

– we dislike pixels talking to each other 

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

