CS4803DGC Design Game Consoles

Spring 2010
Prof. Hyesoon Kim

Georgia Caollege of
Tech Compuiting



GeForce 8800 GTX

16 highly threaded SM'’s, >128 FPU’s, 367 GFLOPS, 768
MB DRAM, 86.4 GB/S Mem BW, 4GB/S BW to CPU

Host

!

Input Assembler

\4 V‘ y
| N N
| N N
| N N
|| I |||
Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data

Cache Cache Cache Cache Cache Cache Cache Cache

rouure [ revurel i Hreowre [ rocure] | i Trouure | Hresurel i Hroure D[ Hrenel

A ah e LB Lo NEAEZAN

NG ND U
© David Kirk/NVIDIA and Wen—-mei W. Hwu, 2007 ECE 498AL. UIUC ech Cempuiing



GeForce 8800 GTX

v v

N T
N T
N T
NN g

=

L

Global Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

oad/storg



“ .
=

GeForce-8 Series HW Overview

Streaming Processor Array

exture Processor Cluster

Streaming Multiprocessor

Instruction Fetch/Dispatch

Georgia Collegeaef

© David Kirk/NVIDIA and Wen—-mei W. Hwu, 2007 ECE 498AL. UIUC Tech Compuiing




= [

T10P Series

MT Issue

240 SP Cores

e |
1

GPU

___.._ al[a]n .u __
1 _u L H

[rer [ e ]

[T & ]

[rer T =]

[rer ] =]

[T ] Can
[Comw) [Coew) [Coww] [Cowww] [Cowww) [Dowwr) Qo] [Coswr]

[Pee [ 2] [me] ]

leg® off
Compuiiing

ia Cal

Tech



ﬁ t, ]
.
- A

CUDA Processor Terminology

« SPA: Streaming Processor Array

— Array of TPCs
e 8 TPCs in GeForce8800

— TPC: Texture Processor Cluster
e Cluster of 2 SMs+ 1 TEX
« TEX IS a texture processing unit

— SM: Streaming Multiprocessor
« Array of 8 SPs
« Multi-threaded processor core
« Fundamental processing unit for a thread block

— SP: Streaming Processor

« Scalar ALU for a single thread
« With 1K of registers

Cayllaaya Y
| €61 62 \:j,/‘j

eorgia Caollege
https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFa07/Schedule?action=download&upname=EE382V_Fa07fia¢dR G80Carepdf i@

.



GeForce 8800 = I

1 Grid (kernel) at a time

1 thread per SP

(in warps of 32
Across the SM)—




= Il
Bandwidths of GeForce 8800 GTX

 Frequency

— 575 MHz with ALUs running at 1.35 GHz
« ALU bandwidth (GFLOPS)

— (1.35 GHz) X (16 SM) X ((8 SP)X(2 MADD) + (2 SFU)) = ~388 GFLOPs
« Register BW

— (1.35 GHz) X (16 SM) X (8 SP) X (4 words) = 2.8 TB/s
« Shared Memory BW

— (575 MHz) X (16 SM) X (16 Banks) X (1 word) = 588 GB/s
« Device memory BW

— 1.8 GHz GDDR3 with 384 bit bus: 86.4 GB/s
« Host memory BW

— PCl-express: 1.5GB/s or 3GB/s with page locking

= -
NaEE GFF
1EC) SO

https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFaO7/ScheduIe?action=down|oad&upname=EE382V_Fa07_Lectﬁ§h)ntro[:@\%)jaj‘jt—fj\g{?ﬁﬁ@j




SM Executes Blocks

IE HE B

NNNNNNNNNN

| |
t0t1t2 ... tm | “* SM O SM 1 tOtlt2 ... tm ‘

NNNNNNNNNN

> | Blocks

S

}g > _|

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

Threads are assigned to SMs in Block
granularity

— Upto 8 Blocks to each SM as
resource allows

— SMin G80 can take up to 768 threads

 Could be 256 (threads/block) * 3
blocks

« Or 128 (threads/block) * 6 blocks, etc.
Threads run concurrently
— SM assigns/maintains thread id #s

— SM manages/schedules thread
execution

Georgia Colleageof
Tech



_ U= HE W
Thread Scheduling/Execution

« Each Thread Blocks is divided in 32- - Blockd Warps ; Block 2 Warps
thread Warps 2| | [RE&E!
— This is an implementation decision,
not part of the CUDA programming | S |
model
« Warps are scheduling units in SM Streaming Multiprocessor

 If 3 blocks are assigned to an SM and
each Block has 256 threads, how

Instruction Fetch/Dispatch

many Warps are there in an SM? Shared Memory
P

— Each Block is divided into 256/32 = 8
Warps

— There are 8 * 3 = 24 Warps

— At any point in time, only one of the
24 Warps will be selected for
instruction fetch and execution.

P

SFU SFU

P

P

)
§ wn n wn n
o o o o

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC Tech Coempuifing



SM Warp Scheduling = ol

SM hardware implements zero-overhead
Warp scheduling
— Warps whose next instruction has its
operands ready for consumption are
eligible for execution
— Eligible Warps are selected for execution
on a prioritized scheduling policy
— All threads in a Warp execute the same
instruction when selected
4 clock cycles needed to dispatch the
same instruction for all threads in a Warp
In G80
— If one global memory access is needed
for every 4 instructions

— A minimal of 13 Warps are needed to
fully tolerate 200-cycle memory latency

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC Tech Cemputiing



= Bl O
SM Instruction Buffer — Warp Scheduling

Fetch one warp instruction/cycle
— from instruction L1 cache *
— into any instruction buffer slot |

* Issue one “ready-to-go” warp

Instruction/cycle .
— from any warp - instruction buffer slot xR C3 | [Shareq
— operand scoreboarding used to prevent v v v
hazards Operand Select
* Issue selection based on round-robin/age ' '
of warp MAD SFU
 SM broadcasts the same instruction to 32 v

Threads of a Warp

Georgia Caollege el
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC Tech ' Computiing



= HE N

Fetch Polices

e Strict round robin
 Utilization based policy
« Switch when it fetches a branch

Georgia College el
Tech ! Gomputing



Warp Maintaing Unit

=

= IR D

Mux

stall

warp #id

I-cache

Georgia Collegeef
Tech Cempuiiing



ﬁ : !l "
- .

Ports vs. Banks

R1
R1 2o
R2
I & =
QD =: O =
R3 D = 3 3
R4 . o
B 5 =
Q =: O =
o D 3 =

Tpeay
cbeay
gpesy
vpeay
To1UM

» Multiple read ports  * Banks

Georgia Collegeof
Tech  Compuiiing



= BE O
Shared Memory: Bank Addressing Examples

* No Bank Conflicts * No Bank Conflicts
— Linear addressing — Random 1:1
stride == Permutation
Thread O > Thread O
Thread 1 > Thread 1
Thread 2 > >
Thread 3 >
Thread 4 >
Thread 5 > Thread 5
Thread 6 > Thread 6 >
Thread 7 > Thread 7
o o
o o
o o
> Thread 15

Georgia College of
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC Tec Cempuiiing



= IR 0

Data types and bank conflicts

« This has no conflicts if type of shared is 32-bits:

foo = shared[baseIndex + threadIdx.x] Thread 0

Thread 1
Thread 2

 But not if the data type is smaller Thread 3

Thread 4

— 4-way bank conflicts: UG
Thread 6

shared char shared][]; Thread 7

foo = shared[baselIndex + threadIldx.x];

— 2-way bank conflicts:
___shared  short shared[];

foo = shared[baseIndex + threadIdx.x]; Thread 1
Thread 2

Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Georgia
© David Kirk/NVIDIA and Wen—-mei W. Hwu, 2007 ECE 498AL, UIUC Tech




s >t
ﬁ . B
7
-
- »

No Branch Prediction. Why?

Enough parallelism
— Switch to another thread
— Speculative execution Is

Branch predictor could be expensive
— Per thread predictor

Branch elimination techniques
Pipeline flush is too costly

MM avzva =3

Georgia Caollegeef
(D e 1 ey
Tech ©Com oXU] L-ﬁﬂ(;:_,



= HE N

Scoreboarding

« All register operands of all instructions in the Instruction
Buffer are scoreboarded
— Status becomes ready after the needed values are deposited
— prevents hazards
— cleared instructions are eligible for issue

 Decoupled Memory/Processor pipelines

— any thread can continue to issue instructions until
scoreboarding prevents issue

— allows Memory/Processor ops to proceed in shadow of
Memory/Processor ops

——T1B1, W1 stall———
F—TB2, W1 stal—| TB3, W2 stall———
CoTBL TB2 | TB3 | TB3 | TB2 | TB1 | TB1 | TB1 | TB3
: b WL wi w1 w2 W1 w1 w2 G w2
Instruction: | 1 i2:i3i4i5 6|2 i2|1i2|1:2|8 4|7 8|1i2]|1i2]|34

—Time-» TB = Thread Block, W = Warp

Georgia Collegeef
© David Kirk/NVIDIA and Wen—-mei W. Hwu, 2007 ECE 498AL, UIUC Tech Ceomputiing



s >t
ﬁ . B
7
-
- »

Control

 Each SM has its own warp scheduler

« Schedules warps OoO based on hazards and
resources

« Warps can be issued in any order within and
across blocks

« Within a warp, all threads always have the same
position
— Current implementation has warps of 32 threads
— Can change with no notice from NVIDIA

eorgia Collegeef
https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFaO7/ScheduIe?action:downIoad&upnamezEEI@QhaOZgl'e};ﬁgg;Gﬁ"ﬁ}Mgp.pdf



=
Conditionals within a Thread

« What happens if there Is a conditional statement
within a thread?

* No problem Iif all threads in a warp follow same
path

Divergence: threads in a warp follow different
paths

— HW will ensure correct behavior by (partially)
serializing execution

— Compiler can add predication to eliminate divergence
* Try to avoid divergence

— If (TID > 2){...} 2If(TID/ warp_size> 2) {...}

Georgia Collegeef
https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFaO7/ScheduIe?action:downIoad&upnamezEEI@QhaOnge};t}gg;GﬁﬂMgp.pdf



Stack Based Divergent Branch Bl [
Execution

+ Ret/Becony. PC Mext PC Actwe Mask
- G 1111
AN G F 0001
r TOS5 —= & B 1110
BA110 () Inttial State
r —l ¥ Ret/Recony. PC Mext PG Active Mask
[Coo0| [Do10] [Frooot | = - ik
E 3 1110 | (i)
E W] o0 (i)
(e s — E F 10U )
(d) After Divergent Branch
G Ret/Reconv. PC NextPC  Actve Mask
- G 1111
(a) Example Pragram 105 —» G E 1110
(@) After Reconvergence
A C D F G A
—- —= | —- || —=
P T T T e e e s
—= —i= — —i
—- — || — || —-
:) Time
(b) Re-corvergence at iImmediate Post-Dominator of B
Georgia College of
Tech !  Conpuiing




Background: CFG (Control Flowsill [
Graph)
* Basic Block

— Def: a sequence of consecutive operations Iin
which flow of control enters at the beginning
and leaves at the end without halt or possibility
of branching except at the end

— Single entry, single exit

Control-flow graph

Addrl, r2, r3 A
Br.cond target A N
Mov'r3, r4 B B C
Br jmp join
farget aad rL, 12,13 | C —
Join mov r4 r5 D D

. Georgia Caollegeof
http://www.eecs.umich.edu/~mahlke/583w04/ Tech | Cemputing



= HE N

Dominator/Postdominator

. Defn: Dominator — Given a CFG, a BB1
node x dominates a node y, if every /\
path from the Entry block to y BB? BB3

contains x
\ /

— Given some BB, which blocks are
guaranteed to have executed prior BB4
to executing the BB /\
« Defn: Post dominator: Given a BB5 BB6
CFG, a node x post dominates a ~__
node vy, if every path fromy to the
Exit contains x BB/
Given some BB, which blocks are guaranteed
to have executed after executing the BB
— reverse of dominator
Georgia i@(«ttﬂ@i&&}i@ off

http://www.eecs.umich.edu/~mahlke/583w04/ Tech | Cemputing



ﬁ V!l"
- .

Immediate Post Domiantor

« Defn: Immediate post @
dominator (ipdom) — Each |
_node Q_has a utn;que. t BR1
immediate post dominator m
that is the first post N
dominator of n on any path BB2 BB3
from n to the Exit o~
— Closest node that post BB4
dominates
— First breadth-first successor /\
that post dominates a node BB5 BB6
« Immediate post dominator is the 3R~
reconvergence point of divergent |

branch CExit)

. Georgia Caollege ef
http://www.eecs.umich.edu/~mahlke/583w04/ Tech ' Computing



Control Flow

* Recap:
— 32 threads in a warm are executed In SIMD (share one
Instruction sequencer)

— Threads within a warp can be disabled (masked)
« For example, handling bank conflicts

— Threads contain arbitrary code including conditional
branches

 How do we handle different conditions in different
threads?
— No problem if the threads are in different warps
— Control divergence
— Predication

eorg Colleg)
https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFaO7/ScheduIe?action=down|oad&upname=EE382V_FaO7_LectIE{ ntrof¢ 7 ]




= HE N

Eliminating Branches

* Predication
* Loop unrolling

Georgia College of
Tech Coempuiing



ﬁ '
- .

Predication

(normal branch code) (predicated code)

A A

if (cond) { ZR\\

¥ N C

else { D D
b=1; A
pl = (cond) A
} branch p1, TARGET pl = (cond)
B
N " (1p1) mov b, 1
- TARGmEOTVi - - (pl) mov b, 0

Convert control flow dependency to data dependency
Pro: Eliminate hard-to-predict branches (in traditional architecture)

Eliminate branch divergence (in CUDA)

Cons: Extra instructions Georgia College ol
Tech Coempuiing



=
Instruction Predication in G80

.

« Comparison instructions set condition codes (CC)

« Instructions can be predicated to write results only when CC meets
criterion (CC =0, CC >=0, etc.)

« Compiler tries to predict if a branch condition is likely to produce
many divergent warps

— If guaranteed not to diverge: only predicates if < 4 instructions
— If not guaranteed: only predicates if < 7 instructions

« May replace branches with instruction predication

 ALL predicated instructions take execution cycles
— Those with false conditions don’t write their output
* Orinvoke memory loads and stores

— Saves branch instructions, so can be cheaper than serializing
divergent paths

Georgia Collegeef
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC Tech ' Cempuiiing



_ = BE O
Loop Unrolling

* Transforms an M-iteration loop into
a loop with M/N iterations

— We say that the loop has been unrolled N

times
for (1i=0,;i<100;i+=4) {
- - ! 1 1*%=2 -
for (i=0;i<100;i++) afi] ;
i]*=2; E::j> a[i+l]*=2;
mli=e ali+2]*=2;
a[i+3]*=2;

}

Georgia Caollege ef
http://www.cc.gatech.edu/~milos/CS6290F07/ Tech ' Cenputing



t0t1t2...tmI SM O SM 1

NNNNNNNNNN

|| [ S8
Blocks
HER
Courtesy:
John Nicols, NVIDIA

)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

SM Memory Architectu

o= HE B

[
t0 t1 t2 ... tm ‘
NNNNNNNNNYNY

> | Blocks
<§ }g > _|

e Threads in a Block share data &
results

— In Memory and Shared Memory
— Synchronize at barrier instruction

* Per-Block Shared Memory Allocation
— Keeps data close to processor
— Minimize trips to global Memory

— SM Shared Memory dynamically
allocated to Blocks, one of the limiting
resources

Georgia Collegeef
Tech



SM Register File

* Register File (RF)

1$

— 32 KB L1

— Provides 4 operands/clock
. o nstruction Bufter
 TEX pipe can also read/write RF

— 2 SMs share 1 TEX g cs  sared
« Load/Store pipe can also vy

Operand Select

read/write RF

v v
MAD SFU
v
v

Georgia Caollegeef
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC Tech Cemputiing



= HE N

Constants
* |Immediate address constants $
L1
* |Indexed address constants |
« Constants stored in DRAM, and cached on uureade?
chip '
— L1 per SM A Vem'
« A constant value can be broadcast to all v v v
threads in a Warp Operand Select
— Extremely efficient way of accessing a value v v
that is common for all threads in a Block! MAD SFU
» Can reduce the number of registers. Y !

Georgia College of
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC Tech Compuiing



: »
ﬁ it
- ‘ 2

Textures

» Textures are 1D,2D, 3D arrays of values
stored in global DRAM

 Textures are cached in L1 and L2
* Read-only access

» Caches are optimized for 2D access:
— Threads in a warp that follow 2D locality will
achieve better memory performance

* Texels: elements of the arrays, texture
elements

~>IM= = ¥
Colleg® eff

https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFaO7/ScheduIe?action:downIoad&upname:EElﬁthaOTgﬁeﬁiﬁﬁ)@SﬂMgn.pdf



e I W
Streaming Processors, Texture

Units, and On-chip Caches

Streaming Processors

Pl s s « SP = Streaming
< e Processors
spils  TF = Texture Filtering

[rpp— « TA= Texture
. Address Unit

' « L1/L2 = Caches

~
.
-~
.
-~
-~
S
e
-
-~
.
~
.
-~
-
~ ll II 1 4 4
»
-~
A
. 4

" Texture Units

Georgia College of
Tech



=
Exploiting the Texture Samplers

Designed to map textures onto 3D polygons
» Specialty hardware pipelines for:

— Fast data sampling from 1D, 2D, 3D arrays
— Swizzling of 2D, 3D data for optimal access
— Bilinear filtering in zero cycles

— Image compositing & blending operations

Arrays indexed by u,v,w coordinates — easy to
program

« Extremely well suited for multigrid & finite
difference methods

Georgia College of
Tech © fing




Shared Memory

« Each SM has 16 KB of Shared Memory
— 16 banks of 32bit words

« CUDA uses Shared Memory as shared

storage visible to all threads in a thread
block

— read and write access

« Not used explicitly for pixel shader programs
— we dislike pixels talking to each other ©

G ia College
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC Tech Compui

>
>

1$
L1

\v4
Multithreaded
Instruction Buffer
v

R C$ | BhElEe
F L1 Mem

A A% v

Operand Select

v v

MAD SFU

~Mav=mva :
lege eff

4ng)



